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Abstract

This paper is concerned with the study of the embedding circulant matrix

method to simulate stationary complex-valued Gaussian sequences. The method

is, in particular, shown to be well-suited to generate circularly-symmetric sta-

tionary Gaussian processes. We provide simple conditions on the complex co-

variance function ensuring the theoretical validity of the minimal embedding

circulant matrix method. We show that these conditions are satisfied by many

examples and illustrate the algorithm. In particular, we present a simulation

study involving the circularly-symmetric fractional Brownian motion, a model

introduced in this paper.

Keywords: Circularly-symmetric processes; Complex fractional Brownian mo-

tion; Positive definiteness.
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1 Introduction

Complex-valued Gaussian processes have emerged in a wide variety of domains and

applications, such as physics, engineering sciences, signal processing (see e.g. Curtis

(1985); Dunmire et al. (2000); Amblard et al. (1996)), digital communication (Lee

and Messerschmitt, 1994), climate modelling (Tobar and Turner, 2015). The present

paper focusses on fast and exact simulation of a discretized sample path from a

stationary complex-valued Gaussian sequence. By fast, we mean that the method

can be applied for very large sample sizes, and by exact, we mean that the output

vector has the expected covariance matrix.

The simulation of stationary Gaussian sequences is an important problem which

has generated an important literature. Amongst available methods, the embedding

circulant matrix method is probably the most popular as a very efficient alternative

to methods based on the Cholesky decomposition. Introduced by Davies and Harte

(1987), the method has been popularized by Wood and Chan (1994). The main

idea is to embed the covariance matrix, say Γ, of the stationary sequence to be

simulated, into a circulant matrix C. Unlike the diagonalization of Γ, which can

be computationally intensive for large sample sizes, the diagonalization of C can be

efficiently performed using the Fast Fourier Transform since, as a circulant matrix, C

is diagonalizable in the Fourier basis. For n being the sample size, the computational

cost of the embedding circulant matrix method is O(n log n), which considerably

mitigates the computational burden of Cholesky decomposition methods, being of

the order O(n2) for Teoplitz matrices.

A non trivial requirement of circulant embedding method is that the matrix C

must be non-negative. This problem has also been the focus of several papers, and we

especially refer to Dietrich and Newsam (1997) and Craigmile (2003) for simple and

verifiable conditions on the covariance function, ensuring the non-negativeness of C.

It is noticeable that the combination of these two works covers elaborate models,

such as the fractional Brownian motion (see e.g. Coeurjolly (2000) and the FARIMA

model (see e.g. Brockwell and Davis (1987)).

Since the 90’s, the embedding circulant matrix method has been extended in
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many directions. Chan and Wood (1999) extended their algorithm to generate sta-

tionary univariate or multivariate random fields, as well as multivariate time series.

This technical paper has recently been revisited by Helgason et al. (2011) for mul-

tivariate time series. In particular, the authors provided conditions ensuring the

validity of the embedding circulant matrix method. In the context of random fields,

the method has also known many developments by e.g. Stein (2002), Gneiting et al.

(2012), Davies and Bryant (2013), Helgason et al. (2014) among others.

To generate a complex-valued stationary Gaussian sequence with given complex-

valued covariance function, one can obviously simulate the corresponding real-valued

bivariate stationary Gaussian process, and take the first (resp. second) component

to define the real (resp. imaginary) part of the complex-valued stationary sequence

to be simulated. This strategy, however, does not exploit the fact that any circulant

Hermitian matrix can still be diagonalized using the Fourier basis. Percival (2006)

indeed noticed this, and proposed an algorithm to generate a stationary complex-

valued sequence with given complex-valued covariance matrix Γ.

In order to characterize a complex-valued Gaussian process, covariance and

pseudo covariance are both needed (see Section 2 for more details). This paper

digs into the algorithms proposed by Wood and Chan (1994) and Percival (2006).

Special emphasis is put on understanding the consequences on the control of the

pseudo-covariance matrix. In addition, following the works by Dietrich and Newsam

(1997) and Craigmile (2003), we provide conditions which ensure the validity of the

mimnimal embedding circulant matrix method in the complex case.

The rest of the paper is organized as follows. Section 2 presents our main nota-

tion, provides a short background and details several examples. The simulation algo-

rithms as well as an approximation, in the case where C is negative, are presented in

Section 3. Section 4 is focused on the theoretical validation of the embedding circu-

lant matrix method for complex processes. We return to the examples in Section 5.

We apply our theoretical conditions and illustrate the algorithms. In this section,

we also use the simulation algorithm to compare several confidence intervals for

the Hurst parameter of the circularly complex fractional Brownian motion, a model

introduced in Section 2. Finally, proofs of our results are postponed to Appendix.
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2 Background and notation

We denote Z = {Z(t)}t∈S a strictly stationary and complex-valued Gaussian process

with index set S being either the real line, R or the set of integers, Z, or subsets of

them. Since Z is complex-valued, it can be uniquely written as Z(t) = ZR(t)+iZI(t),

for t ∈ S, with i being the complex number verifying i2 = −1. In particular, ZR and

ZI are called real and imaginary parts, respectively, and the bivariate stochastic

process {ZR(t), ZI(t)}t∈S is also stationary. The assumption of Gaussianity on Z

implies that the finite dimensional distributions are uniquely determined through

the second order properties of Z. In particular, we define the covariance function

γ : S → C, through

γ(τ) = E {Z(t+ τ)Z∗(t)} , t, τ ∈ S,

where ∗ stands for the transpose conjugate operator. Covariance functions are posi-

tive definite: for any finite system of complex constants (ck)k=1,...,N ⊂ C, and points

t1, . . . , tN of S, we have
∑

j,k cjγ(tj − tk)c
∗
k ≥ 0. We analogously define the cross

covariances γR,I and γI,R, as γR,I(τ) = E {ZR(t+ τ)Z∗I(t)}, for t, τ ∈ S, and

γI,R(τ) = E {ZI(t+ τ)Z∗R(t)}. A relevant remark is that γR,I and γI,R are not,

in general, positive definite. Instead, the matrix-valued mapping γR(τ) γR,I(τ)

γI,R(τ) γI(τ)


with γj ≡ γjj, j = R, I, is positive definite according to previous definition,

and it is precisely the covariance mapping associated to the stochastic process

{ZR(t), ZI(t)}t∈S. The following identity is true:

γ(τ) = γR(τ) + γI(τ) + i {γRI(τ)− γIR(τ)} = γ∗(−τ), τ ∈ S,

where it is useful to note that, for j, k = R or I, γjk(τ) = γkj(−τ).

The aim of the present paper is to generate a discrete sample path of the process

Z at times j = 0, 1, . . . , n − 1, that is to generate a complex normal vector Z =

{Z(0), . . . , Z(n − 1)}> with length n, zero mean and with covariance matrix Γ =
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E(ZZ∗) given by

Γ =



γ(0) γ∗(1) . . . γ∗(n− 2) γ∗(n− 1)

γ(1) γ(0) γ∗(1)
... γ∗(n− 2)

... . . . . . . . . . ...

γ(n− 2) γ(n− 3) . . . γ(0) γ∗(1)

γ(n− 1) γ(n− 2) . . . γ(1) γ(0)


. (2.1)

The covariance function γ does not determine uniquely the properties of a

complex-valued Gaussian process. This can be achieved if, in addition to γ, the com-

plementary autocovariance function (also called the relation or pseudo–covariance

function) h : S → R, defined through h(τ) = E {Z(t+ τ)Z(t)}, is given (see e.g. Lee

and Messerschmitt (1994, Chapter 8)), the class of circularly-symmetric processes

being an exception. A complex-valued process is said to be circularly-symmetric if

h(τ) = 0 for any τ ∈ S, in which case a stationary complex-valued Gaussian process

is uniquely determined by its covariance function. Elementary calculations show that

for circularly-symmetric stationary processes

γR(τ) = γI(τ) and γRI(τ) = −γIR(τ) = −γRI(−τ), τ ∈ S.

For a given class of pseudo-covariances, we can define the matrix H = E(ZZ>). In

this paper, we propose an algorithm for generating a complex-valued Gaussian vector

with prescribed covariance matrix Γ. We do not focus on the matrix H, which will

be controlled a posteriori, the class of circularly-symmetric processes being again a

notable exception. For example, The Cholesky decomposition method decomposes

Γ as LL∗ where L is a lower triangular matrix and sets Z = LNn where Nn is a

centered complex Gaussian vector with identity covariance matrix. In particular, we

can check that if Nn is real, E(NnN
∗
n) = E(NnN

>
n ) = In and the covariance and

relation matrices are respectively equal to Γ and H = LL>, that is Z ∼ CN(0,Γ,H),

with CN meaning complex normal. If Nn is a circular centered complex normal

random vector with identitiy covariance matrix, then Z ∼ CN(0,Γ,0).

To generate a complex normal vector Z with covariance matrix Γ and pseudo-

covariance matrix H, from a complex stationary process Z, one can simulate the

bivariate Gaussian vector (ZR,ZI) from the bivariate stationary process (ZR, ZI),
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and set Z = ZR + iZI . The simulation of multivariate Gaussian time series is

considered by Chan and Wood (1999) and has been nicely revisited by Helgason

et al. (2011). We did not consider this direction in this paper as we aimed to exploit

the complex characteristic of the process Z. Doing this, our algorithm, except for

circularly-symmetric processes, does not control beforehand the pseudo-covariance,

but its computational cost is clearly smaller than the one required to generate a

bivariate Gaussian time series. Moreover, the algorithms proposed by Chan and

Wood (1999) and Helgason et al. (2011) obviously require the covariance functions

γR and γI , as well as the cross-covariance functions γRI and γIR, to be given.

Instead, the method described in the next section will only assume the complex

covariance function γ to be given. Such a construction seems to be more natural

especially for circularly-symmetric Gaussian processes.

Example 2.1 (Modulated stationary process). Let r : S → R be the covariance

function of a real-valued, Gaussian, and stationary stochastic process {Y (t)}t∈S. Let

Z be the complex-valued Gaussian process defined as Z(t) = e2iπtY (t), t ∈ S and

φ ∈ R. Then, straightforward calculations show that

γ(τ) = e2iπφτr(τ), τ ∈ S (2.2)

is the covariance function of Z, which is called a modulated Gaussian process. Similar

constructions can then be implemented using the fact that covariance functions are

a convex cone being closed under the topology of finite measures. For instance, for

a collection of p uncorrelated real-valued Gaussian processes Yk with covariance rk,

the complex-valued Gaussian process, defined through Z(t) =
∑p

k e2iπφktYk(t), t ∈ S,

for φk ∈ R for all k = 1, . . . , p, has covariance function

γ(τ) =

p∑
j=1

e2iπφjτrj(τ), τ ∈ S (2.3)

Remarkably, for such a construction, the range of dependence, defined as the lag

beyond which becomes negligible, is the maximum of the ranges related to each of

the covariances rk. Let us list a few examples from this construction:

• Exponential modulated process: let p = 1, under the exponential model r(τ) =

σ2e−ατ , where σ2 is the variance and 0 < α a scaling parameter, the related
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construction leads to

γ(τ) = σ2e−ατ+2iπφτ , τ ∈ S. (2.4)

• Complex autoregressive process of order 1: this process is defined by the equa-

tion

Z(t)− aZ(t− 1) = ε(t), t ∈ Z

where a ∈ C such that |a| < 1 and {ε(t)}t∈Z is a complex normal white

noise with variance σ2. Then, Z is a stationary process and its covariance

function is given for any τ by γ(τ) = a|τ |σ2(1 − |a|2)−1. If the white noise is

circularly-symmetric then so is Z. Finally, letting a = ρe2iπφ, we note that

γ(τ) = e2iπφτρ|τ |σ2(1 − |ρ|) = e2iπφτr(τ) where r is the covariance function of

a stationary real-valued AR(1) process.

• Percival (2006) considered for example the sum of two modulated covariance

functions of FARIMA processes

γ(τ) =
2∑

k=1

e2iπφkτr(τ ; dk), τ ∈ S

where r(·; d) is the autocovariance function of a FARIMA process with frac-

tional difference parameter d ∈ [−1/2, 1/2], and with innovations variance σ2
ε

given for τ ∈ N, by, see e.g. Brockwell and Davis (1987),

r(τ ; d) = σ2
ε

(−1)τΓ(1− 2d)

Γ(1− d+ τ)Γ(1− d− τ)
. (2.5)

On the basis of this construction, when p = 1, a realization of Z can be simply

obtained as follows: generate two independent realizations Y1 and Y2 of Y at times

0, 1, . . . , n− 1 using, for instance, the embedding circulant matrix method for real-

valued stationary Gaussian processes (Wood and Chan, 1994). Then, set (Zj)` =

eiφ`(Yj)`, j = 1, 2. Finally, obtain the realization Z through the identity Z = Z1 +

iZ2. The latter has the desired covariance matrix and is ensured to be circular. When

p > 1 this strategy can still be extended but is more computationally intensive and

less natural than directly simulate a circular complex normal vector with the right

covariance function.

7



Example 2.2 (Complex fractional Brownian motion). We define the complex frac-

tional Brownian motion as the self-similar Gaussian process Z̃, equal to zero at zero,

with stationary increments. The self-similarity property is understood as

Z̃(λt)
fidi
= λHZ̃(t) ⇐⇒ Z̃j(λt)

fidi
= λHZ̃j(t), j = R, I (2.6)

where t ∈ R, H ∈ (0, 1) is called the Hurst exponent, λ is any non-negative real num-

ber, the sign fidi
= means equality in distribution for all finite-dimensional margins and

Z̃R(t) (resp. Z̃I(t)) is the real part (resp. imaginary part) of Z̃(t). The self-similarity

property (2.6) is equivalent to {Z̃R(λt), Z̃I(λt)} = λH{Z̃R(t), ZI(t)}, a model called

the multivariate fractional Brownian motion, a particular case of operator fractional

Brownian motion (Didier and Pipiras, 2011), and studied by Amblard et al. (2013);

Coeurjolly et al. (2013). As a direct consequence of these works, the increments pro-

cess, denoted by Z = {Z(t)}t∈R, defined by Z(t) = Z̃(t + 1)− Z̃(t) and referred to

as the complex fractional Gaussian noise has covariance function γ parameterized,

when H 6= 1/2, as

γ(τ) =
1

2

{
σ2
R + σ2

I − 2i η σRσI sign(τ)
} (
|τ − 1|2H − 2|τ |2H + |τ + 1|2H

)
(2.7)

where σR = E{ZR(1)}1/2 and σI = E{ZI(1)}1/2 are non-negative real numbers

and η ∈ R. When H = 1/2 another parameterization occurs and for the ease of the

presentation, we avoid this case. Amblard et al. (2013, Proposition 9) states that the

covariance function (2.7) is a valid covariance function if and only if η2 ≤ tan(πH)2.

When the process is time-reverisble, i.e. Z̃(t)
d
= Z̃(−t) for any t ∈ R then, as

outlined by Amblard et al. (2013), the parameter η must be equal to zero, which

makes the covariance function γ real. This is not of special interest for this paper.

Finally, when σR = σI = σ, the covariance function reduces to

γ(τ) = σ2 {1− i η sign(τ)}
(
|τ − 1|2H − 2|τ |2H + |τ + 1|2H

)
(2.8)

and it can be checked that the corresponding stochastic process Z is circularly-

symmetric.
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3 Simulation through circulant matrix method

This section deals with circulant embedding method for complex-valued covariance

functions. The procedure is an extension of the standard method proposed by Wood

and Chan (1994) for real covariance functions. It is also slightly different from the

extension proposed by Percival (2006) to handle complex covariance functions. Then,

we discuss the main question of this method which is the non-negativeness of the

circulant matrix in which Γ is embedded.

3.1 Simulation of a complex normal vector with covariance

matrix Γ

In order to achieve a realization from the Gaussian process Z, under the covariance

function γ, at times 0, 1, . . . , n − 1, we need to obtain a realization from Z being

complex normal, with covariance matrix Γ given by (2.1).

Let m ≥ n− 1, m̃ = 2m+ 1 and let C be the m̃× m̃ circulant matrix defined by

its first row {cj, j = 0, . . . , 2m}, where

cj =


γ(0) if j = 0

γ∗(j) if j = 1, . . . ,m

γ(2m+ 1− j) if j = m+ 1, . . . , 2m.

(3.1)

By construction, the top left corner of C corresponds to the covariance matrix Γ.

Standard results for symmetric circulant matrices, see Brockwell and Davis (1987),

show that the Hermitian matrix C can be decomposed as C = QΛQ∗, where Λ =

diag{λ0, . . . , λm̃−1} is the diagonal matrix of real eigenvalues of C, Q is the matrix

with entries

(Q)jk = m̃−1/2e−
2iπjk
m̃ , j, k = 0, . . . , m̃− 1. (3.2)

If C is non-negative, that is if λk ≥ 0 for k = 0, . . . , m̃ − 1, the simulation method

consists simply in picking the first n components of the vector QΛ1/2Q∗Nm̃ where

Nm̃ is a complex normal vector with mean 0 and identity covariance matrix. The

main advantage being the fast computation of the eigenvalues, additionally with

minimal storage when using Fast Fourier Transform (FFT).
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The procedure proposed in this paper is similar to the algorithm proposed by

Wood and Chan (1994), who worked in the real-valued case, and by Percival (2006)

in the complex case. In particular, our first algoritmh extends Wood and Chan

(1994) and considers Nm̃ as a real vector, that is a vector of m̃ independent stan-

dard Gaussian random variables. The second algorithm, presented in Section 3.2

considers Nm̃ as a circular complex normal vector with identity covariance matrix.

Algorithm 1.

Step 0. Let m ≥ n− 1, be an odd number (preferably a highly composite number).

Embed the matrix Γ into the circulant matrix C given by (3.1).

Step 1. Determination of the eigenvalues λ0, . . . , λm̃−1. The calculation of Λ =

Q∗CQ leads to

λk =
m̃−1∑
j=0

cje
− 2iπjk

m̃ , k = 0, . . . , m̃− 1. (3.3)

Check that all eigenvalues are non-negative (Section 4 provides some conditions on

γ which ensure this fact). If some of them are negative, increase m and go back to

Step 0 or set the negative eigenvalues to 0. With the latter option, discussed in more

details in Section 3.3, the simulation will be only approximate.

Step 2. Simulation of W = {W0, . . . ,Wm̃−1}> = m̃−1/2Λ1/2Q∗Nm̃. This is achieved

using the following result.

Proposition 3.1. For k = 0, . . . , m̃− 1

(W)k = Wk =

√
λk
2m̃
×

 Sk + iTk for k = 0, . . . ,m

Sm̃−k − iTm̃−k for k = m+ 1, . . . , m̃− 1,

in distribution, where for k = 0, . . . ,m, Sk and Tk are real–valued Gaussian ran-

dom variables with mean 0 and variance 1, and S0, . . . , Sm, T0, . . . , Tm are mutually

independent.

Step 3. Reconstruction of Z. This step results in calculating QΛ1/2Q∗Nm̃ = m̃1/2QW

and keep the first n components, which corresponds to the calculation of

(Z)k =
m̃−1∑
j=0

Wje
− 2iπjk

m̃ , k = 0, . . . , n− 1. (3.4)
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Step 2 requires the simulation 2m+2 independent realizations of standard Gaus-

sian random variables. This is computationally less expensive than the similar step

of the algorithm proposed by Percival (2006), which, with the notation of the present

paper, requires 4m realizations of Gaussian variables. Since m̃ = 2m + 1 is an odd

number, the proof of Step 2 is also slightly different from Wood and Chan (1994,

Proposition 3.3). Steps 1 and 3 can be handled very quickly using the direct FFT.

Some comments are in order. In the real-valued case, Γ is real and symmetric

by construction. In particular, we have γ(m) = γ∗(m), so that the dimension of

C can be reduced to 2m × 2m, where m is an integer being larger than 2(n − 1),

and 2m can be set to a power of two. In the complex-valued case, C has dimension

(2m+ 1)× (2m+ 1), with (2m+ 1) being necessarily an odd number.

Percival (2006) used a specific modulation of the initial process Z to force γ(m)

to be real, that is instead of generating Z with covariance matrix Γ, the idea is

to generate Ž =
{
eiνk(Z)k

}
k=1,...,n

where ν is chosen such that eiνmγ∗(m) is a real

number. This modulation enables to recover a circulant matrix C with dimension

2m× 2m, 2m can still be set to a power of two, which allows the use of ’powers of

two’ FFT algorithm for diagonalizing C. Forcing γ(m) to be real has however some

minor drawbacks: first, if we increase the value ofm, the modulation changes and the

first row of C is completely modified. Second, the introduction of the modulation

modifies the covariance function γ. The resulting covariance function is less easy

to handle from a theoretical point of view, in particular when we want to provide

conditions on γ ensuring C to be non-negative.

Defining C by (3.1) imposes the number of rows to be an odd number. However, this

is not of great importance because FFT algorithm (like the one implemented in the

R function fft) is very efficient when 2m+ 1 is highly composite, that is has many

factors, see Brockwell and Davis (1987) or Numerical Algorithms Group (1993). We

explore this in Table 1. Remind that n is the length of the desired sample path of

Z. Using a specific modulation of Z, Percival (2006) suggested to use a minimal

embedding which corresponds to a circulant matrix whose first row length, denoted

by m̃mod, is the first power of 2 larger 2(n−1). When C is defined by (3.1), we let m̃
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be the first power of 3, 5, 7, 11 or a combination of these powers larger than 2n− 1.

Table 1 reports average time in milliseconds of FFT algorithm applied to vector of

length equal to m̃mod or m̃ for different values of n. For the values of n considered

in Table 1, we can always find a highly composite integer number m̃ < m̃mod. As a

consequence of this, we observe a time reduction when a FFT is applied whereby we

conclude that there is no reason to focus on embedding into a circulant matrix with

first row as a power of two. Therefore, we did not consider the modulation suggested

by Percival (2006).

n=1000 5000 10000 50000 100000 500000 1000000

m̃mod = 2p 0 1 2 13 25 210 470

m̃ = 3p 0 1 3 10 82 331 1258

5p 0 1 4 47 47 369 2553

7p 0 1 7 8 136 1319 1343

11p 1 1 10 10 296 282 5106

3p15p2 0 0 2 6 15 198 410

3p15p27p3 1 1 2 6 12 173 439

3p15p27p311p4 0 1 1 6 12 169 383

Table 1: Average time (in ms) of FFT applied to vectors (obtained as realizations

of standard Gaussian random variables) of length m̃mod or m̃. Ten replications are

considered. We restrict attention on the cases p3 ≥ 1 and p1 ∧ p2 > 0 for the second

to last row and on the cases p4 ≥ 1 and p1∧p2∧p3 > 0 for the last row. Experiments

are performed on a 1.7 GHz Intel Core i7 processor.

Algoritm 1 does not control the relation matrix H but we can have an idea of

its form. This is given by the following result.

Proposition 3.2. Let Zm̃ be the output vector of Algoritm 1, then the relation

matrix H of Z = (Zm̃)0:(n−1) corresponds to the top left corner of Hm̃ = E Zm̃Z>m̃ =

Q∗VQ where V = diag(vk, k = 0, . . . , m̃ − 1) is the diagonal matrix with elements

given by v0 = 0 and vk =
√
λkλm̃−k for k ≥ 1, where λk, k = 0, . . . , m̃ − 1 are the

eigenvalues of C given by (3.3). Thus, Q∗VQ is necessarily a circulant matrix and
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H is necessarily a Toeplitz Hermitian matrix with first row given by

H0k =
m̃−1∑
j=1

√
λjλm̃−je

− 2iπjk
m̃ .

3.2 Simulation of a circular complex normal with covariance

matrix Γ

This section focusses on the circularly symmetric case, for which H = 0. A realiza-

tion Z from such a process can be obtained as follows: let Z1 and Z2 be two output

vectors from Algorithm 1. Then, set Z = (Z1 + iZ2)/
√

2. This in turn results in

a modification of Algorithm 1: in Step 2, Nm̃ is replaced by a circular complex

normal random vector, i.e. the vector (N1,m̃ + iN2,m̃)/
√

2 where N1,m̃ and N2,m̃

are two real-valued, mutually independent, random vectors of independent standard

Gaussian random variables.

Algorithm 2.

Steps 0 and 1. Similar to Steps 0 and 1 of Algorithm 1.

Step 2. Simulation of W = {W0, . . . ,Wm̃−1}> = m̃−1/2Λ1/2Q∗(N1,m̃ + iN2,m̃)/
√

2.

This is achieved using the following result.

Proposition 3.3. For k = 0, . . . , m̃− 1,

Wk =

√
λk
2m̃

(Sk + iTk)

in distribution, where for k = 0, . . . ,m, Sk and Tk are Gaussian random variables

with mean 0 and variance 1, and S0, . . . , Sm, T0, . . . , Tm are mutually independent.

Step 3. Similar to Step 3 of Algorithm 1.

It is worth noticing that Step 2 of Algorithm 2 now requires the simulation

of 4m+ 2 realizations of standard Gaussian distributions and is very similar to the

corresponding step of the algorithm proposed by Percival (2006).

We think the distinctions we make between the two algorithms we propose, make

more clear the understanding of the consequences of each algorithm on the relation

matrix H.
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3.3 Approximation and error control

In this section, we focus on circularly-symmetric processes and propose a modifi-

cation of Algorithm 2 when C is negative. When, it is practically unfeasible to

increase the value of m and reperform Steps 0 and 1, we follow Wood and Chan

(1994) and suggest to truncate the eigenvalues to 0. The simulation becomes only

approximate.

This section details the procedure and provides a control of the approximation

error. We decompose C as follows

C = QΛQ∗ = Q(Λ+ −Λ−)Q∗ = C+ −C−

where Λ± = diag{max(0,±λk), k = 0, . . . , m̃−1}. We suggest to replace C in Step 1

by ϕ2C+ with ϕ = tr(Λ)/tr(Λ+). Let Zapp be the output vector of Algorithm 2,

which is a circular centered complex normal vector with covariance matrix Σapp

equal to the top left corner of
(
ϕ2C+

)
. It is worth noticing that this choice for

ϕ leads to (ϕ2C+)jj = (Σ)jj, for j = 0, . . . , n − 1. Let Z be a complex normal

vector independent of Zapp, with zero mean and covariance matrix Σ. We define

∆ = Z−Zapp as the random error of approximation. Clearly, ∆ is a circular centered

complex normal vector with covariance matrix Σ−Σapp. Using multivariate normal

probabilities on rectangles proposed by Dunn (1958, 1959) (see also Tong (1982,

chapter 2)), we obtain the following approximation.

Proposition 3.4. Let s2j = Var ∆j, s2j,R = Var Re(∆j) and s2j,I = Var Im(∆j), for

j = 0, . . . , n− 1. Then, for each x > 0

P

(
max

j=0,...,n−1
σ−1j |∆j| > x

)
≤ 1−

n−1∏
j=0

∏
k∈T

{
2Φ

(
xσj

σj,M
√

2

)
− 1

}
, (3.5)

for T = {R, I}.

For different values of x, (3.5) can be used to control the largest normalized error.

4 Non-negativeness of C

The condition ensuring the circulant matrix C to be non-negative is now discussed.

Dietrich and Newsam (1997) and Craigmile (2003) dealt with the real-valued case,
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and combination of their results covers many interesting classes of covariance func-

tions. We now show how to extend these results to the complex-valued case.

Let us first express the eigenvalues λk in terms of the covariance function γ.

By (3.1) and (3.3), we have for any k = 0, . . . , m̃− 1

λk = γ(0) +
m∑
j=1

γ∗(j)e−
2iπjk
m̃ +

2m∑
j=m+1

γ(m̃− j)e−
2iπjk
m̃

= γ(0) +
m∑
j=1

{
γ∗(j)e−

2iπjk
m̃ + γ(j)e

2iπjk
m̃

}
= γ(0) + 2

m∑
j=1

{
R(j) cos

(
2πjk

m̃

)
− I(j) sin

(
2πjk

m̃

)}
, (4.1)

whereR and I correspond to the real and imaginary parts of the complex covariance

function γ, that is R(j) = γR(j) + γI(j) and I(j) = γRI(j)− γIR(j).

The first result extends the main result of Craigmile (2003).

Proposition 4.1. For any integer m ≥ n − 1, let λk, k = 0, . . . , m̃ − 1 as defined

through Equation (4.1). Then, either of the following conditions are sufficient for λk

to be non-negative for all k.

(i) For j ∈ Z \ {0}, R(j) is negative and s = sign{jI(j)} is constant. Additionally,

for any j ∈ Z, the matrix

M(j) =

 γR(j) sign(j)γRI(j)

−sign(j)γIR(j) γI(j)

 (4.2)

is the covariance matrix of a bivariate stationary process on Z which admits a well–

defined spectral density matrix S.

(ii) For a circularly-symmetric stationary process Z such that γRI(j) = ηsign(j)γR(j)

for j 6= 0 for some parameter η ∈ [−1, 1], and such that γR(j) is negative for j ≥ 1.

(iii) The covariance function γ is defined according to Equation (2.2) and r ≥ 0 on

Z+.

The next result extends Dietrich and Newsam (1997, Theorem 2). For a sequence

(fk)k≥0 of real numbers, we denote the first and second order finite differences by

∆fk = fk − fk+1 and ∆2fk = ∆fk −∆fk+1. The sequence (f0, . . . , fk, . . . ) is said to

be decreasing and convex respectively, if ∆fk ≥ 0 and ∆2fk ≥ 0 for k ≥ 0.
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Proposition 4.2. Let the functions D̃, K and K̃ be, respectively, the conjugate

Dirichlet, the Féjer and conjugate Féjer kernels, as being defined in Lemma A.1

(Appendix). For any k = 0, . . . , m̃ − 1, let λk as being defined through Equation

(4.1). Then, it is true that

λk = −I(m)D̃m

(
k

m̃

)
+ (−∆I)(m− 1)K̃m−1

(
k

m̃

)
+

m−2∑
j=1

(−∆2I)(j)K̃j

(
k

m̃

)

+ ∆R(m− 1)Km−1

(
k

m̃

)
+

m−2∑
j=0

(∆2R)(j)Kj

(
k

m̃

)
. (4.3)

Also, for any integer m ≥ n− 1, the following conditions are sufficient for λk to

be non-negative:

(i) The two sequences {R(0), . . . ,R(m)} and {−I(1), . . . ,−I(m)} are both decreas-

ing and convex, −I(m) ≥ 0 and

∆2R(0) + Sm ≥ −I(m) (4.4)

where

Sm = inf
k=0,...,m̃−1

m−2∑
j=1

{
∆2R(j)Kj

(
k

m̃

)
−∆2I(j)K̃j

(
k

m̃

)}
.

(ii) For Z a circularly-symmetric stationary process such that

γRI(j) = −ηsign(j)γR(j) for j 6= 0 and some parameter η > 0, the sequence

{γR(0), . . . , γR(m)} is decreasing and convex, with γR(m) ≥ 0 and

∆2γR(0) + Sm(η) ≥ ηγR(m) (4.5)

where

Sm(η) = inf
k=0,...,m̃−1

m−2∑
j=1

∆2γR(j)

{
Kj

(
k

m̃

)
+ ηK̃j

(
k

m̃

)}
.

Remark 4.3. By Lemma A.1, the Féjer kernel is always non-negative. The con-

jugate Féjer kernel is also non-negative for any k such that k/m̃ < 1/2. There-

fore, the infimum involved in conditions (4.4) and (4.5) can be taken over the set

{m+1, . . . , m̃−1}. This term Sm could look annoying as it seems to depend strongly

on m. We investigate this in Section 5.1 on a specific example.

Remark 4.4. If in (i), {I(1), . . . , I(m)} is a decreasing and convex sequence, or if

in (ii) η < 0, then instead of simulating Z, we simulate Z∗: the expresssion of λk
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would be in this case

λk = γ(0) + 2
m∑
j=1

{
R(j) cos

(
2πjk

m̃

)
+ I(j) sin

(
2πjk

m̃

)}
and Proposition 4.2 can be applied if in addition (4.4) or (4.5) holds.

The following result extends Dietrich and Newsam (1997, Theorem 2) for mod-

ulated stationary covariances.

Proposition 4.5. Assume that the covariance function γ is a modulated stationary

covariance, that is, there exists φ ∈ R and a real-valued covariance function r, such

that γ(τ) = e2iπφτr(τ). Assume that {r(0), . . . , r(m)} forms a decreasing and convex

sequence, then, for any m ≥ n− 1 and k = 0, . . . , m̃− 1, λk ≥ 0.

Remark 4.6. If the covariance function γ is the sum of p complex covariance func-

tions, that is γ(τ) =
∑p

j=1 γj(τ), then the circulant matrix C into which Γ is embed-

ded is also the sum of circulant matrices Cj into which Γj, the covariance matrices

corresponding to γj, are embedded. Hence, the eigenvalues of C can be written as

λk =
∑p

j=1 λ
(j)
k for k = 0, . . . , m̃ − 1, where λ(j)k are the eigenvalues of Cj. As a

consequence, if for j = 1, . . . , p, the covariance function γj satisfies the conditions of

Proposition 4.1, 4.2 or 4.5, then the eigenvalues λk are non-negative.

5 Applications

5.1 Back to Examples

We now show that the results in Section 4 can be applied to Examples 2.1-2.2.

In particular, for such classes the minimal embedding is sufficient to ensure the

non-negativeness of C. The method is therefore exact for these examples.

5.1.1 Modulated stationary processes

Proposition 4.1 (iii) applies to real covariances functions satisfying the assumptions

in Proposition 1 of Craigmile (2003). Typical examples are the covariance functions
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of a FARIMA process with fractional difference parameter d ∈ [−1/2, 0) (see Equa-

tion (2.5)) and the covariance function of a fractional Gaussian noise with Hurst pa-

rameter H ∈ (0, 1/2). For these two examples, Proposition 4.5 completes the result,

since it can be checked that the aforementioned covariance functions are decreasing

and convex when d ∈ (0, 1/2] for the FARIMA process and when H ∈ (1/2, 1) for

the fractional Gaussian noise.

Referring to Berg and Forst (1978), here is a list of other examples with positive,

decreasing and convex covariance functions, thus satisfying Proposition 4.5: (a) the

mapping τ 7→ r(τ ;α, β) = σ2(1 + |τ |α)−β, α ∈ (0, 1], β > 0, σ > 0 and τ ∈ R; (b)

r(τ) = σ2(1−|τ |)n+, n > 0 and σ > 0; (c) r(τ) = σ2
∫
(0,∞)

(1− ξ|τ |)+µ(dξ), for µ any

positive and bounded measure and σ > 0; (d) r(τ) = σ2e−α|τ |, α > 0 and σ > 0; (e)

r(τ) = σ2ρ|τ |, 0 < ρ < 1 and σ > 0.

This, in particular, covers the modulated exponential covariance (2.4) and the

complex AR(1) process presented in Example 2.1. Finally, Remark 4.6 can be applied

to embrace examples where the covariance is the sum of modulated FARIMA or

fractional Gaussian noise covariance functions. Figure 1 illustrates this section.

5.1.2 Circular complex fBm

The circular complex fBm has covariance given by (2.8). We omit the case H =

1/2, which, as outlined earlier, leads to another parametrization of the covariance

function. We remind that this covariance function is positive definite under the

condition that η ≤ | tan(πH|. We study separately the cases H ∈ (0, 1/2) and

H ∈ (1/2, 1). When H ∈ (0, 1/2), Proposition 4.1 (ii) applies with the restriction

η < min{1, tan(πH)}.

When H ∈ (1/2, 1), we apply Proposition 4.2 (ii). In this setting, γR(j) corre-

sponds to the covariance function of a fractional Gaussian noise with Hurst exponent

H. This covariance function is decreasing and convex for any H ∈ (1/2, 1). Let us

now comment (4.5). We can establish that the sequence {∆2r(j)}j≥1 decreases hy-

perbolically to 0 with a rate of convergence j2H−2 and since the Féjer and conjugate

Féjer kernels are bounded, it can be expected that Sm is quite small. Added to the

fact that γR(m)→ 0, we can really expect that (4.5) is not restrictive.
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Figure 1: Simulation details for the example of a modulated FARIMA(0, d, 0) process

with unit variance, fractional parameter d = 0.2 and phase parameter φ = 1/8. The

sample size is n = 500 and C is chosen as a m×m matrix with m = 3×5×7 = 514.

For (d), a constant is added to the real part of Z(t) to differentiate the two sample

paths.
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For several values of m, we have evaluated the value of H̃ such that for the

maximal value of the parameter η allowed by the model, that is η = | tan(πH)|,

∆2γR(0) + Sm{| tan(πH)|} ≥ | tan(πH)|γR(m) is valid for any H ∈ (1/2, H̃). We

obtained the values H̃ = 0.939, 0.954 and 0.964 when m = 100, 1000 and 10000.

The conditions (4.4)–(4.5) could be slightly refined, for instance by noticing that

Km−1(k/m̃) ≥ 1. We do not present this since, for instance regarding the value of

H̃ investigated above, we did not notice significant improvements.

Figures 2, 3 and 4 illustrate this section. For H = 0.2 and H = 0.8. Figures 2-3

depict the sample paths of the circular complex fBm with length n = 106. Four

seconds is the timing required to generate each realization. As expected, we observe

that the higher H the more regular the sample path. We can check that despite the

plot of the eigenvalues exhibit different shapes, the eigenvalues are all non-negative.

Finally, using the R function acf, the circularity property is graphically tested in

Figure 4. The difference between the estimates γRI and −γIR(j) are very small,

which convinces us that the realization should be circular.

5.2 Confidence interval for the Hurst exponent of a circular

complex fBm

In this section, we suppose to have access to a sampled version of circular complex

fBm. We extend an estimation method to estimate the Hurst exponent and illus-

trate how the simulation method can be used to derive confidence intervals using

parametric Bootstrap samples. Many methods allow to estimate the self-similarity

parameter of a fractional Brownial motion efficiently. We consider here the discrete

variations method, see Kent and Wood (1997); Istas and Lang (1997); Coeurjolly

(2001). We focus only on the estimation of the Hurst exponent H to illustrate the

simulation method. However, we are convinced that using the mentioned papers,

estimates for the parameters η and σ2 can be easily derived.
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Figure 2: Simulation details for the example of a circular complex fBm with unit

variance, Hurst exponent H = 0.8 and η = 2
3
| tan(πH)|. The sample size is n = 106

and C is chosen as a m×m matrix with m = 2033647. For (d), a constant is added

to the real part of Z(t) to differentiate the two sample paths.
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Figure 3: Simulation details for the example of a circular complex fBm with unit

variance, Hurst exponent H = 0.8 and η = 2
3
| tan(πH)|. The sample size is n = 106

and C is chosen as a m × m matrix with m = 2033647. For (c), we focus on the

eigenvalues λk for k = 50000, . . . , 2× 106. The other ones are very large. For (d), a

constant is added to the real part of Z(t) to differentiate the two sample paths.
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Figure 4: Verification of the circularity property. The computation of empirical

cross-covariances are based on a discrete sample path of length n = 106 of a circular

complex fBm with variance 1 and η = 2
3
| tan(πH)|.
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Let ` and q be two positive integers. We consider the following set of filters A`,q:

A`,q =
{

(ak)k∈Z : ak = 0, ∀k ∈ Z− \ {0} ∪ {`+ 1, . . . ,∞}

and
∑
k∈Z

klak = 0,∀l = 0, . . . , q − 1,
∑
k∈Z

kqak 6= 0
}
.

Typical examples are the difference filter δl,0− δl,1 and its compositions, Daubechies

wavelet filters, and any known wavelet filter with compact support and a sufficient

number of vanishing moments. For a ∈ A`,q and an integer µ ≥ 1 we define the µth

dilated version of a, say aµ as

aµk =

 ak/µ if k ∈ µZ

0 if k 6∈ µZ.

Apparently, a1 = a and aµ ∈ A`,q for any µ. The µth dilated version is thus simply

obtained by oversampling a by a factor of µ, i.e. by adding µ − 1 zeros between

each of the first ` + 1 coefficients of the impulse response ak. We denote by Z̃µ a

discretized sample path of a circular complex fBm Z̃ at times t = 0, . . . , n−1 filtered

with aµ. In other words

Z̃µ(j) =
∑̀
k=0

aµkZ̃(j − k), j = `, . . . , n− 1.

Let µ, µ′ ≥ 1, we denote by γZµ,Zµ′ (τ) the cross-covariance function between Z̃µ and

Z̃µ′ .

By definition of a, we have

γZµ,Zµ′ (τ) =

µ`∑
q=0

µ′`∑
r=0

aµqa
µ′

r E
{
Z̃(τ + k − q)Z̃(k − r)

}
= −σ2

∑̀
q,r=0

{1− iη sign(τ + µ′r − µq)} |τ + µ′r − µq|2H .

In particular, we can check that

Var{Z̃µ(j)} = γZµ,Zµ(0) = µ2H

(
−σ2

∑̀
q,r=0

aqar|q − r|2H
)
.

Now, let S2(µ) be the empirical mean squared modulus at scale µ given by

S2(µ) =
1

n− µ`

n−1∑
j=µ`

|Z̃µ(j)|2.
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Since S2(µ) is expected to be close to κµ2H where κ is independent of H, we propose

to estimate H by a linear regression of logS2(µ) on log µ for µ ∈M ⊂ NM \ {0}, a

collection of dilation factors. This estimate is given by

Ĥ =
L>

2L>L

{
logS2(µ)

}
µ∈M with L =

(
log µ−M−1

∑
µ

log µ

)
µ∈M

.

Such an estimate is very close to the ones proposed by Coeurjolly (2001) and Am-

blard and Coeurjolly (2011) to estimate the Hurst exponent of a fBm and the Hurst

exponents of a multivariate fBm respectively. We simply exploit the complex char-

acteristic of the process. Using theoretical results from the previous papers, we have

the following asymptotic result, given without proof.

Proposition 5.1. As n→∞, Ĥ tends to H with probability 1, and if p > H + 1/4

√
n(Ĥ −H)→ N

{
0,

L>ΣML

2(L>L)2

}
, (5.1)

in distribution, where ΣM is the M ×M matrix with entries

(ΣM)µµ′ =
∑
k∈Z

|γZµ,Zµ′ (k)|2

γZµ,Zµ(0)γZµ′ ,Zµ′ (0)
, µ, µ′ ∈M. (5.2)

The condition p > H + 1/4 is quite standard for such problems and expresses

the fact that a circular complex fBm needs to be filtered with a filter with at least

two zeroes moments to ensure a Gaussian behaviour for any H ∈ (0, 1). In the rest

of this section, we intend to compare several approaches for constructing confidence

intervals for H. We assume that both parameters σ2 and η are known. The first ap-

proach, referred to as clt, uses (5.1) to construct asymptotic confidence intervals.

The series involved in (5.2) are truncated The two other ones are based on paramet-

ric Bootstrap. We considered the percentile Bootstrap and Studentized Bootstrap

methods, referred to as ppb and spb respectively, to propose confidence intervals.

Given a sample path of a circular complex fBm, we use 2000 replications of the

fitted model for these parametric Bootstrap methods. Table 2 reports the empiri-

cal coverage rate and the mean length of 95% confidence intervals based on 2000

replications of a circular complex fBm for different values of n, η,H. The variance

σ2 is set to 1. In terms of coverage rate, the confidence intervals tend to be very
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comparable. The pbp method produces confidence intervals with length larger than

the two other methods. Amongst the clt and the spb approaches, the latter seems

to be slightly better in terms of confidence intervals. It is worth noticing that even

for small sample sizes, the clt method is very competitive.

H = 0.2 H = 0.8

clt ppb spb clt ppb spb

n = 100

1
3
ηmax 94 (22.0) 95 (22.8) 95 (21.9) 94 (27.9) 96 (30.1) 96 (27.9)

2
3
ηmax 94 (23.7) 96 (24.4) 96 (23.6) 94 (31.2) 94 (33.3) 94 (31.1)

n = 500

1
3
ηmax 95 (9.8) 95 (9.9) 95 (9.8) 95 (12.5) 96 (12.8) 96 (12.5)

2
3
ηmax 95 (10.6) 95 (10.7) 95 (10.6) 94 (13.9) 92 (14.4) 92 (13.9)

n = 1000

1
3
ηmax 96 (7.0) 96 (7.0) 96 (6.9) 94 (8.8) 95 (9.0) 95 (8.8)

2
3
ηmax 95 (7.5) 95 (7.5) 95 (7.5) 95 (9.9) 94 (10.1) 94 (9.8)

Table 2: Empirical coverage rate and mean length, between brackets, of 95% con-

fidence intervals built using (5.1) (method clt) or Bootstrap techniques (methods

ppb and spb). The simulation is based on 2000 replications of circular complex fBm

for different sample sizes and different values of H and η. Empirical coverage rates

are reported in percentage and mean lengths are multiplied by 100.

A Proofs

A.1 Auxiliary lemmas

The following definitions and results are quite standard in Fourier theory. We refer

the reader to Zygmund (2002).
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Lemma A.1. Let p ∈ N \ {0}. The Dirichlet and Féjer kernels are respectively

defined by

Dp(ω) = 1 + 2

p∑
j=1

cos(2πjω) =


sin{πω(2p+1)}

sin(πω)
if ω ∈ R \ Z

2p+ 1 if ω ∈ Z,

Kp(ω) =

p∑
j=0

Dj(ω) =


[
sin{πω(p+1)}

sin(πω)

]2
≥ 0, if ω ∈ R \ Z

(p+ 1)(2p+ 1) if ω ∈ Z.

The conjugate Dirichlet and Féjer kernels are respectively defined by

D̃p(ω) = 2

p∑
j=0

sin(2πjω) =


cos(πω)
sin(πω)

− cos{πω(2p+1)}
sin(πω)

if ω ∈ R \ Z

0 if ω ∈ Z,

K̃p(ω) =

p∑
j=0

D̃j(ω) =


(p+1) sin(2πω)−sin{2πω(p+1)}

2 sin(πω)2
if ω ∈ R \ Z,

0 if ω ∈ Z.

Moreover, the conjugate Féjer kernel satisfies K̃p(ω) ≥ 0 whenever ω ∈ [k, k+ 1/2],

for any k ∈ Z.

Proof. Except for the last result, the proofs can be found in Zygmund (2002). For

the last assertion, we need to prove that p sin(t)−sin(pt) is non-negative for t ∈ [0, π]

which is proved as follows

sin(pt) ≤ | sin(pt)| = | sin{(p− 1)t} cos(t) + cos{(p− 1)t} sin(t)|

≤ | sin{(p− 1)t}|+ | sin(t)| ≤ · · · ≤ p| sin(t)| = p sin(t)

when t ∈ [0, π].

The following result is a summation by parts formula mainly used in the proof

of Proposition 4.2.

Lemma A.2. Let n ≥ 1 and (f0, . . . , fn)> and (g0, . . . , gn)> be two vectors of real

numbers then,
n∑
j=0

fjgj = fn

n∑
j=0

gj +
n−1∑
j=0

(fj − fj+1)

j∑
`=0

gk. (A.1)
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A.2 Proof of Proposition 3.1

Proof. For k = 0, . . . , m̃ − 1, since (m̃1/2Λ1/2Q∗Nm̃)k is a complex normal random

variable, we identify it to
√
λk(S

′
k+iT ′k)/m̃ where S ′k and T ′k are the Gaussian random

variables given by

S ′k =
m̃−1∑
j=0

cos

(
2πjk

m̃

)
(Nm̃)j and T ′k =

m̃−1∑
j=0

sin

(
2πjk

m̃

)
(Nm̃)j.

The proof reduces to calculate Cov(Uk, Uk′) for k, k′ = 0, . . . , m̃− 1 and Uk = S ′k or

T ′k.

Let k, k′ ∈ {0, . . . , m̃− 1}. First, by Lemma A.1, it can be checked that

Cov(S ′k, S
′
k′) =

m̃−1∑
j=0

cos

(
2πjk

m̃

)
cos

(
2πjk′

m̃

)

=
1

2

[
m̃−1∑
j=0

cos

{
2πj(k − k′)

m̃

}
+

m̃−1∑
j=0

cos

{
2πj(k + k′)

m̃

}]

=
1

2
+

1

4
Dm̃−1

(
k − k′

m̃

)
+

1

4
Dm̃−1

(
k + k′

m̃

)

=


1
2

+ 1
4
{2(m̃− 1)} = m̃

2
if k = k′

1
2

+ 1
4
{2(m̃− 1)} = m̃

2
if k + k′ = m̃

1
2

+ 1
4
sin{π(k−k′)(2m̃−1)/m̃}

sin{π(k−k′)/m̃} + 1
4
sin{π(k+k′)(2m̃−1)/m̃}

sin{π(k+k′)/m̃} = 0 otherwise.

We remark that k+k′ = m̃ takes place only when k∧k′ > 0. Second, with the same

ideas

Cov(T ′k, T
′
k′) =

m̃−1∑
j=0

sin

(
2πjk

m̃

)
sin

(
2πjk′

m̃

)

=
1

2

[
m̃−1∑
j=0

cos

{
2πj(k − k′)

m̃

}
−

m̃−1∑
j=0

cos

{
2πj(k + k′)

m̃

}]

=
1

4
Dm̃−1

(
k − k′

m̃

)
− 1

4
Dm̃−1

(
k + k′

m̃

)

=


m̃
2

if k = k′

− m̃
2

if k + k′ = m̃

0 otherwise.
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Third,

Cov(S ′k, T
′
k′) =

m̃−1∑
j=0

cos

(
2πjk

m̃

)
sin

(
2πjk′

m̃

)

=
1

2

[
m̃−1∑
j=0

sin

{
2πj(k + k′)

m̃

}
−

m̃−1∑
j=0

sin

{
2πj(k − k′)

m̃

}]

=
1

4
D̃m̃−1

(
k + k′

m̃

)
− 1

4
D̃m̃−1

(
k − k′

m̃

)
= 0,

whereby we deduce the result.

A.3 Proof of Proposition 3.2

Proof. It is clear that H = QΛ1/2(Q∗)2Λ1/2Q. Using, the proof of Proposition 3.1,

we can check that for j, k = 0, . . . , m̃− 1

(Q∗)2jk = m̃−1
m̃−1∑
`=0

{
cos

(
2πj`

m̃

)
cos

(
2πk`

m̃

)
− sin

(
2πj`

m̃

)
sin

(
2πk`

m̃

)}

+ i m̃−1
m̃−1∑
`=0

{
sin

(
2πj`

m̃

)
cos

(
2πk`

m̃

)
+ cos

(
2πj`

m̃

)
sin

(
2πk`

m̃

)}

=

 1 if j + k = m̃

0 otherwise.

Let L be the m̃× m̃ matrix given by (L)jk =
√
λjλm̃−j, if j ∧ k > 0 and j + k = m̃

and 0 otherwise. We have, Λ1/2(Q∗)2Λ1/2 = L. The result follows from

(QL)jk = m̃−1/2
m̃−1∑
`=0

e−
2iπj`
m̃ (L)`k = m̃−1/2e−

2iπj(m̃−k)
m̃

√
λkλm̃−k1(k > 0) = (Q∗V)jk,

where V = diag(vk, k = 0, . . . , m̃− 1) is the diagonal matrix with elements given by

v0 = 0 and vk =
√
λkλm̃−k for k ≥ 1.

A.4 Proof of Proposition 3.3

Proof. We proceed similarly to the proof of Proposition 3.1. We identify the Gaussian

random variableWk to
√
λk/2(S ′k+iT ′k)/m̃ where S ′k and T ′k are the Gaussian random
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variables given by

S ′k =
m̃−1∑
j=0

{
cos

(
2πjk

m̃

)
(Nm̃)1,j − sin

(
2πjk

m̃

)
(Nm̃)2,j

}

T ′k =
m̃−1∑
j=0

{
sin

(
2πjk

m̃

)
(Nm̃)1,j + cos

(
2πjk

m̃

)
(Nm̃)2,j.

}
.

We leave the reader to check that for any k, k′ ∈ {0, . . . , m̃ − 1}, Cov(S ′k, S
′
k′) =

Cov(T ′k, T
′
k′) = m̃δkk′ and Cov(S ′k, T

′
k′) = 0, whereby we deduce the result.

A.5 Proof of Proposition 3.4

Proof. For each x > 0,

P

(
max

j=0,...,n−1
σ−1j |∆j| > x

)
= 1− P

(
n−1⋂
j=0

{σ−1j |∆j| ≤ x}

)

≤ 1− P

[
n−1⋂
j=0

{
|Re(∆j)| ≤

xσj√
2
, |Im(∆j)| ≤

xσj√
2

}]
.

From Dunn (1958, 1959)

P

(
max

j=0,...,n−1
σ−1j |∆j| > x

)
≤ 1−

n−1∏
j=0

P

{
|Re(∆j)| ≤

xσj√
2

}
P

{
|Im(∆j)| ≤

xσj√
2

}
whereby we deduce the result.

A.6 Proof of Proposition 4.1

Proof. (i) For any k = 0, . . . , m̃− 1, we have

λk ≥ γ(0) + 2
m∑
j=1

{R(j)− sI(j)} =
∑
|j|≤m

{R(j)− s sign(j)I(j)} =: Am.

Since Am+1 − Am = 2R(m + 1) − s{I(m + 1) − I(−m − 1)} ≤ 0, {Am}m≥1 is

a decreasing sequence. By Assumption, S(ω) =
∑

j∈Z M(j)e−2iπjω is a Hermitian

non-negative definite matrix for every ω. In particular, for y = (1,−s)> and ω = 0,

we have

y>S(0)y =
∑
j∈Z

{R(j)− sI(j)} ≥ 0,
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whereby we deduce that λk ≥ limm→∞ y
>S(0)y ≥ 0.

(ii) In this setting, R(j) = 2γR(j) and I(j) = 2γRI(j) = 2ηsign(j)γR(j). Hence, the

matrix M(j) given by (4.2) takes the form

M(j) = γR(j)

 1 η

η 1

 .

This indeed corresponds to the covariance matrix of a stationary bivariate process,

say Ž. By the same argument than Craigmile (2003)[Proposition 1] in the real case,

if γR is not summable then the spectrum at zero frequency is negative infinity, an

impossibility. Hence, Ž admits a well–defined spectral density matrix and Proposi-

tion 4.1 applies.

(iii) Let φ̃ = φm̃. Using standard trigonometric identities, the expression of λk re-

duces to

λk = r(0) + 2
m∑
j=1

r(j) cos

{
2πj

m̃
(k + φ̃)

}
. (A.2)

The rest of the proof follows the same lines as for the proof of (i).

A.7 Proof of Proposition 4.2

Proof. Lemmas A.1–A.2 are used in this proof. By the summation by parts formula,

we have

2
m̃−1∑
j=0

R(j) cos

(
2πjk

m̃

)
= R(m)

{
Dm

(
k

m̃

)
+ 1

}
+

m̃−1∑
j=0

∆R(j)

{
Dj

(
k

m̃

)
+ 1

}

2
m̃−1∑
j=1

I(j) sin

(
2πjk

m̃

)
= I(m)D̃m

(
k

m̃

)
+

m̃−1∑
j=1

∆I(j)D̃j

(
k

m̃

)
.

Reinjecting these equations in (4.1) leads to

λk = −I(m)D̃m

(
k

m̃

)
+

m−1∑
j=1

(−∆I)(j)D̃j

(
k

m̃

)
+

m−1∑
j=0

∆R(j)Dj

(
k

m̃

)
.

Another application of Lemma A.2 allows us to obtain (4.3).

(i) This assertion ensues from Lemma A.1 and condition (4.4).

(ii) This point is a particular case of (i).
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A.8 Proof of Proposition 4.5

Proof. Starting from (A.2), if we apply twice a summation by parts formula, we

obtain

λk = ∆r(m− 1)Km−1

(
k + φ̃

m̃

)
+

m−2∑
j=0

(∆2r)(j)Kj

(
k + φ̃

m̃

)
, (A.3)

which is non-negative by assumption and Lemma A.1.
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