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We present a new method to solve nonlinear Hammerstein equations with weakly singular kernels. The process to approximate the solution, followed usually, consists in adapting the discretization scheme from the linear case in order to obtain a nonlinear system in a finite dimensional space and solve it by any linearization method. In this paper, we propose to first linearize, via Newton method, the nonlinear operator equation and only then to discretize the obtained linear equations by the product integration method. We prove that the iterates, issued from our method, tends to the exact solution of the nonlinear Hammerstein equation when the number of Newton iterations tends to infinity, whatever the discretization parameter can be. This is not the case when the discretization is done first: in this case, the accuracy of the approximation is limited by the mesh size discretization. A Numerical example is given to confirm the theorical result.

Introduction

The general framework of this paper is the following. Let X be a complex Banach space and K : O ⊆ X → X a nonlinear Fréchet differentiable integral operator of the Hammerstein type defined on a nonempty open set O of X :

K(x)(s) := b a
H(s, t)L(s, t)F (t, x(t)) dt, for all x ∈ Ω, [START_REF] Ahues | Spectral Computations for Bounded Operators[END_REF] where H is the singular part of the kernel, L is the regular part of the kernel and F , the nonlinear part of the operator, is a real-valued function of two variables :

(t, u) ∈ [a, b]×R → F (t, u) ∈ R,
with enough regularity so that K is twice Fréchet-differentiable on O. The problem is a nonlinear Fredholm integral equation of the second kind:

Find ϕ ∈ O : ϕ -K(ϕ) = y, (2) 
for a given function y ∈ X . Let T := K denote the Fréchet derivative of K, i.e., for all x ∈ O,

T (x)h(s) = b a H(s, t)L(s, t) ∂F ∂u (t, x(t))h(t) dt, h ∈ X , s ∈ [a, b]. (3) 
In the following, X will be the space of the real valued continuous functions over a real interval [a, b], C 0 ([a, b], R), equiped with the supremum norm . .

If we consider a singular kernel such as H(s, t) := log(|s-t|) or |s-t| α , 0 < α < 1, an approximation based on standard numerical integrations is a poor idea. The main idea of the product integration method is introduced by Atkinson for linear integral equations ( [START_REF] Atkinson | Extensions of the Nyström Method for the Numerical Solution of Integral Equations of the Second Kind[END_REF], [START_REF] Atkinson | The Numerical Solution of Integral Equations of the Second Kind for nonlinear integral equation[END_REF] and [START_REF] Atkinson | The Numerical Solution of Integral Equations of the Second Kind[END_REF]) and is motivated by Young [START_REF] Young | The application of approximate product integration to the numerical solution of integral equations[END_REF]. The product integration method consists in performing a piecewise polynomial linear interpolation of the smooth part of the kernel times the function involving the unknown. This method is called product trapezoidal rule when the interpolation is linear. The solution of a second kind Fredholm integral equation with weakly singular kernel is typically nonsmooth near the boundary of the domain of integration. In order to obtain a high order of convergence, taking into account the singular behaviour of the exact solution, polynomial spline on graded mesh are developped (among other authors, Brunner, Pedas, Vainikko, Schneider [START_REF] Brunner | The piecewise polynomial collocation method for nonlinear weakly singular Volterra Equations[END_REF], [START_REF] Pedas | Superconvergence of piecewise polynomial collocations for nonlinear weakly singular integral equations[END_REF] and [START_REF] Schneider | Product integration for weakly singular integral equations[END_REF]). In [START_REF] Kaneko | Numerical solution for Weakly Singular Hammerstein Equations And Their Superconvergence[END_REF], Kaneko, Noren and Xu discuss a standard product integration method with a general piecewise polynomial interpolation for weakly singular Hammerstein equation and indicate its superconvergence properties. Under particular assumptions on the right hand side y, on the function F defining the nonlinearity and on the regularity of the exact solution of (2), they give an error estimation involving n the discretization paramater and the degree m of the piecewise polynomial interpolation. Hence the error depends on n and m.

In the 1950's, the major theme in the domain of theoretical numerical analysis was the developement of general frameworks in the domain of functional analysis to build and analyze numerical methods. A particular important contribution in this context is the paper of Kantorovich [START_REF] Kantorovich | Functional analysis and applied mathematics Uspehi Mat[END_REF] and later [START_REF] Kantorovich | Functional analysis in normed spaces[END_REF]. It proposes a generalization of Newton's method for solving nonlinear operator equations on Banach spaces. This idea is used everywhere when dealing with integral equations or partial differential equations. In [START_REF] Anselone | Collectively Compact Operator Approximation Theory and Application to Integral Equations[END_REF], chapter 6, Anselone studies the Newton method to approximate solutions of nonlinear equations P (x) = 0 where P is a nonlinear differentiable operator from a Banach space into itself. When dealing with the convergence of approximate solutions, these are defined as the solution of P n (x) = 0 where P n is an approximation of P . The Newton method is then applied to the functional equation P n (x) = 0. The philosophy of most of the papers dealing with the numerical approximation of nonlinear integral operator equation consists in defining an approximate operator P n to P and then apply Newton method ( [START_REF] Ansorge | Convergence of Discretizations of Nonlinear Problems. A General Approach[END_REF], [START_REF] Atkinson | Projection and iterated projection methods for nonlinear integral equations[END_REF], [START_REF] Atkinson | The discrete collocation method for nonlinear integral equation[END_REF], [START_REF] Atkinson | A Survey of Numerical Methods for Solving Nonlinear Integral Equation[END_REF], [START_REF] Brunner | The piecewise polynomial collocation method for nonlinear weakly singular Volterra Equations[END_REF], [START_REF] Dellwo | Accelerated projection and iterated projection methods with applications to nonlinear integral equations[END_REF], [START_REF] Grammont | Modified projection and the iterated modified projection methods for nonlinear integral equations[END_REF], [START_REF] Grammont | Modified projection method for Urysohn integral equations with non smooth kernels[END_REF], [START_REF] Kaneko | Numerical solution for Weakly Singular Hammerstein Equations And Their Superconvergence[END_REF], [START_REF] Krasnoselskii | Geometrical Methods of Nonlinear Analysis[END_REF], [START_REF] Krasnoselskii | Approximate Solution of Operator Equations[END_REF], [START_REF] Pedas | Superconvergence of piecewise polynomial collocations for nonlinear weakly singular integral equations[END_REF] and [START_REF] Vainikko | Galerkin's perturbation method and general theory of approximate methods for nonlinear equations[END_REF]).

We propose to apply Newton's method directly to the operator equation P (x) = 0 and then to discretize the linear operator equations, issued from the Newton's iterations, by a product integration method. We will prove that the approximate iterates tend to the exact solution of the operator equation as the number of iterations tends to infinity. The important fact is that the convergence holds whatever the discretization parameter, defining the size of the linear system to be solved, can be. As we do not need the solution of each Newton iteration to be particularly accurate, we chose to apply the classical trapezoidal product integration method.

Section 2 is devoted to the description of our method (linearization via Newton's method followed by discretization by the product integration method). In Section 3, the convergence result is proved. In the last section, the classical method (discretization followed by linearization) is recalled and we compare it with our method through a numerical example.

Description of the new method

To solve the problem (2) for a given function y in C 0 ([a, b], R), we propose to first apply the Newton method to the equation ϕ -K(ϕ) = y. It leads to the sequence (ϕ (k) ) k≥0 ∈ O:

(4) ϕ (0) ∈ O, (I -T (ϕ (k) ))(ϕ (k+1) -ϕ (k) ) = -ϕ (k) + K(ϕ (k) ) + y, k ≥ 0.
Then we discretize this equation with the product integration method associated to the piecewise linear interpolation. Let ∆ n , defined by

(5) a =: t n,0 < t n,1 < • • • < t n,n := b, be the uniform grid of [a, b] with mesh h n := b -a n .
Setting

f x (t) := ∂F ∂u (t, x(t)), [L(s, t)f x (t)h(t)] n denotes the piecewise linear interpolation of L(s, t)f x (t)h(t) : ∀s ∈ [a, b], ∀i = 1, . . . , n: [L(s, t)f x (t)h(t)] n := 1 h n (t n,i -t)L(s, t n,i-1 )f x (t n,i-1 )h(t n,i-1 ) + 1 h n (t -t n,i-1 )L(s, t n,i )f x (t n,i ))h(t n,i ) for t ∈ [t n,i-1 , t n,i ].
We define the approximate operator T n by

T n (x)(h)(s) := b a H(s, t)[L(s, t)f x (t)h(t)] n dt, x ∈ O, h ∈ X , s ∈ [a, b]. (6)
Then the approximate problem is:

Find ϕ (k+1) n ∈ X : (I -T n (ϕ (k) n ))(ϕ (k+1) n -ϕ (k) n ) = -ϕ (k) n + K(ϕ (k) n ) + y. (7) 
We have

T n (x)(h)(s) := n j=0 w n,j (s)L(s, t n,j )f x (t n,j )h(t n,j ), w n,0 (s) := 1 h n t n,1 t n,0 H(s, t)(t n,1 -t)dt, w n,n (s) := 1 h n tn,n t n,n-1 H(s, t)(t -t n,n-1 )dt,
and for 1 ≤ j ≤ n -1,

w n,j (s) := 1 h n t n,j t n,j-1 H(s, t)(t -t n,j-1 )dt + 1 h n t n,j+1
t n,j H(s, t)(t n,j+1 -t)dt.

Hence [START_REF] Atkinson | Extensions of the Nyström Method for the Numerical Solution of Integral Equations of the Second Kind[END_REF] can be rewritten as

ϕ (k+1) n (s) - n j=0 w n,j (s)L(s, t n,j )f k (t n,j )ϕ (k+1) n (t n,j ) (8) = K(ϕ (k) n )(s) + y(s) - n j=0 w n,j (s)L(s, t n,j )f k (t n,j )ϕ (k) n (t n,j ), (9) 
where

f k (t n,j ) := ∂F ∂u (t n,j , ϕ (k) n (t n,j )). Setting x (k+1) n (j) := ϕ (k+1) n (t n,j ),
From the evaluations of equation ( 26) at the nodes of the grid, it is straightforward that the vector x (k+1) n is the solution of the linear system [START_REF] Atkinson | Projection and iterated projection methods for nonlinear integral equations[END_REF] (I -

A (k) n )x (k+1) n = b (k) n ,
where

A (k) n (i, j) := w n,j (t n,i )L(t n,i , t n,j )f k (t n,j ), b (k) n := K(ϕ (k) n )(t n,i ) + y(t n,i ) -A (k) n x (k) n . ϕ (k+1) n
is recovered from equation ( 26) :

ϕ (k+1) n (s) = n j=1 w n,j (s)L(s, t n,j )f k (t n,j ) x (k+1) n (t n,j ) -x (k) n (t n,j ) + K(ϕ (k) n )(s) + y(s).

Convergence property of the new method

Existence, uniqueness and regularity properties of the solution of equation ( 2) have been already considered (for example by Kaneko, Noren and Xu [START_REF] Kaneko | Regularity of the Solution of Hammerstein Equations With Weakly Singular Kernel[END_REF] or Pedas and Vainikko [START_REF] Pedas | The smoothness of solutions to nonlinear weakly singular integral equations[END_REF]). In this section, we are only interested by the proof of the convergence of ϕ 

(H3) ϕ ∈ O is an isolated solution of ϕ -K(ϕ) = f . (H4) I -T (ϕ) is invertible.
These assumptions ensure that equations (2),( 7) and [START_REF] Schneider | Product integration for weakly singular integral equations[END_REF] for n large enough, are uniquely solvable (see [START_REF] Atkinson | The Numerical Solution of Integral Equations of the Second Kind[END_REF]). 

M 2 (a) := sup t∈[a,b],|u|≤a+ ϕ | ∂ 2 F ∂u 2 (t, u)|.
The proof of convergence relies on the successive approximations convergence result (see [START_REF] Krasnoselskii | Approximate Solution of Operator Equations[END_REF] Theorem 2.3. pp 21). Let us recall this result (in a form slicely different from [START_REF] Krasnoselskii | Approximate Solution of Operator Equations[END_REF]).

Proposition 1 Consider a nonlinear operator A from a Banach space X into itself, defined on an open set V. Let x * ∈ V be a fixed point of A. Let the operator A be Fréchet differentiable at the point x * . Let us assume that the following condition is fulfilled

(11) ρ 0 := ρ(A (x * )) < 1,
where ρ denotes the spectral radius and A denotes the Fréchet derivative of A.

Then, for all ε > 0 such that ρ 0 +ε < 1, there exist r ε > 0 and r ε > 0 such that B(x * , r ε ) ⊂ V and B(x * , r ε ) ⊂ V and such that for x (0) in B(x * , r ε ), the successive approximations x (k) defined by

x (k+1) = A(x (k) ), k ∈ N,
remain in B(x * , r ε ) for all k ∈ N, and the sequence (x (k) ) k≥0 converges to x * . Moreover,

x (k) -x * ≤ r ε (ρ 0 + ε) k .
The following four lemmas are needed to prove our main result.

Lemma 1 For all a > 0 such that B(ϕ, a) ⊂ O, for all x ∈ B(ϕ, a), Proof : From the mean value theorem applied to ∂F ∂u , for all t, there exist a real number c(t) between ϕ(t) and x(t) such that

T (x) -T (ϕ) ≤ c H c L M 2 (a) x -ϕ , (12) 
∂F ∂u (t, x(t)) - ∂F ∂u (t, ϕ(t)) = ∂ 2 F ∂u 2 (t, c(t))(x(t) -ϕ(t)). As ∀t ∈ [a, b], |c(t)| ≤ r + ϕ , T (x) -T (ϕ) ≤ x -ϕ sup s∈[a,b] b a |H(s, t)||L(s, t)|| ∂ 2 F ∂u 2 (t, c(t))|dt (13) ≤ c H c L M 2 (a) x -ϕ . (14)
Hence ( 13) is deduced. Now a is fixed such that B(ϕ, a) ⊂ O.

Lemma 2 There is a positive number r < a such that for all x ∈ B(ϕ, r), I -T (x) is invertible and

(I -T (x)) -1 ≤ 2µ, ( 15 
)
where µ := (I -T (ϕ)) -1 . Moreover, for all x ∈ B(ϕ, r), for n large enough, I -T n (x) is invertible and there exists a constant c x > 0, independent of n, such that

(I -T n (x)) -1 ≤ c x . ( 16 
)
Proof : Let 0 < r < a be such that r ≤ 1 2µc H c L M 2 (a)
.

For all x ∈ B(ϕ, r),

I -T (x) = I -T (ϕ) + T (ϕ) -T (x) = (I -T (ϕ))[I + (I -T (ϕ)) -1 (T (ϕ) -T (x))]. Since (I -T (ϕ)) -1 (T (ϕ) -T (x)) ≤ µ T (ϕ) -T (x) ≤ µc H c L M 2 (a)r ≤ 1 2 ,
we conclude that I -T (x) is invertible and that its inverse is uniformly bounded on B(ϕ, r). In fact (I -T (x))

-1 = I + (I -T (ϕ)) -1 (T (ϕ) -T (x)) -1 (I -T (ϕ)) -1 , so (I -T (x)) -1 ≤ µ ∞ k=0 (I -T (ϕ)) -1 (T (ϕ) -T (x)) k ≤ 2µ. The function (s, t) → L(s, t) ∂F ∂u (t, x(t)) is in C 0 ([a, b] × [a, b], R).
Hence, according to [START_REF] Atkinson | The Numerical Solution of Integral Equations of the Second Kind[END_REF] or [START_REF] Anselone | Collectively Compact Operator Approximation Theory and Application to Integral Equations[END_REF],

T n (x) p -→ T (x), where p -→ denotes the pointwise convergence, and the sequence (T n (x)) n≥0 is collectively compact.

For all x ∈ B(ϕ, r), T n (x) is a collectively compact approximation of T (x) (see [START_REF] Anselone | Collectively Compact Operator Approximation Theory and Application to Integral Equations[END_REF]). Hence for n large enough, I -T n (x) is invertible and (I -T n (x)) -1 is uniformly bounded in n. This means that there is a constant c x such that for n large enough,

(I -T n (x)) -1 ≤ c x .
This ends the proof.

Let A n be the operator defined on B(ϕ, r) by

A n (x) := x + S n (x) (K(x) + y -x) , (17) 
where

S n (x) := (I -T n (x)) -1 . (18) 
Notice that we have

A n (ϕ) = ϕ. ( 19 
)
Lemma 3 The operator S n is Fréchet differentiable at ϕ.

Proof : As for all h ∈ X , T n (x)(h)(s) = n j=0
w n,j (s)L(s, t n,j ) ∂F ∂u (t n,j , x(t n,j ))h(t n,j ), the operator

x → T n (x) is differentiable at ϕ, and we have for all h ∈ X and δ ∈ X ,

T n (x)(δ, h)(s) = n j=0 w n,j (s)L(s, t n,j ) ∂ 2 F ∂u 2 (t n,j , x(t n,j ))δ(t n,j )h(t n,j ).
As, at the first order, (

L + E) -1 -(L) -1 -(L) -1 E(L) -1 , we have S n (ϕ + δ) -S n (ϕ) = (I -T n + δ)) -1 -(I -T n (ϕ)) -1 = (I -T n (ϕ) -T n (ϕ)δ + O(δ 2 ))) -1 -(I -T n (ϕ)) -1
S n (ϕ)T n (ϕ)δS n (ϕ), so that S n is Fréchet differentiable at ϕ and

S n (ϕ)δ = S n (ϕ)T n (ϕ)δS n (ϕ).

Lemma 4

The operator A n is Fréchet differentiable at ϕ. For n large enough,

ρ(A n (ϕ)) < 1. ( 20 
) Proof : Notice that A n (ϕ) = ϕ, hence A n (ϕ + h) -A n (ϕ) = ϕ + h + S n (ϕ + h) (K(ϕ + h) + y -ϕ -h) -ϕ = h + S n (ϕ + h) K(ϕ) + T (ϕ)h + O(h 2 ) + y -ϕ -h = h + S n (ϕ + h) (T (ϕ) -I)h + O(h 2 ) , hence A n is differentiable at ϕ and A n (ϕ) = I -S n (ϕ)(I -T (ϕ)). ( 21 
)
We have

ρ (I -S n (ϕ)(I -T (ϕ))) = inf n (I -S n (ϕ)(I -T (ϕ))) n 1 n (22) ≤ (I -S n (ϕ)(I -T (ϕ))) 2 1 2 . (23) Since (I -S n (ϕ)(I -T (ϕ))) = S n (ϕ) (T (ϕ) -T n (ϕ)), (I -S n (ϕ)(I -T (ϕ))) 2 = S n (ϕ) (T (ϕ) -T n (ϕ)) S n (ϕ) (T (ϕ) -T n (ϕ)) ≤ S n (ϕ) (T (ϕ) -T n (ϕ)) S n (ϕ) (T (ϕ) -T n (ϕ)) ≤ c ϕ (T (ϕ) -T n (ϕ)) S n (ϕ) (T (ϕ) -T n (ϕ)) .
As S n (ϕ) is uniformly bounded (see Lemma 2) and (T (ϕ) -T n (ϕ)) is collectively compact, the closure of the set

S := ∪ n {S n (ϕ)(T (ϕ) -T n (ϕ))x, x ≤ 1} is compact so that (I -S n (ϕ)(I -T (ϕ)) 2 ≤ c ϕ sup x∈S (T (ϕ) -T n (ϕ)) x -→ n→∞ 0. Then ρ(A n (ϕ)) -→ n→∞ 0.
This ends the proof.

Theorem 1 Under assumptions (H0) to (H4), there exists r > 0 such that, for a fixed n large enough to have

ρ n := ρ A n (ϕ) < 1,
and for any ε > 0 such that ρ n +ε < 1, there exist B(ϕ, r n,ε ) ⊂ B(ϕ, r) and B(ϕ, r n,ε ) ⊂ B(ϕ, r)

such that, if ϕ (0) 
n ∈ B(ϕ, r n,ε ), then the sequence (ϕ

(k) n ) k≥0 solution of (I -T n (ϕ (k) n ))(ϕ (k+1) n -ϕ (k) n ) = -ϕ (k) n + K(ϕ (k) n ) + f,
is defined, belongs to B(ϕ, r n,ε ) and

ϕ (k) n -→ k→∞ ϕ.
Moreover, the following estimation holds:

(24) ϕ (k) n -ϕ ≤ r n,ε (ρ n + ε) k .
Proof : The exact solution ϕ of the nonlinear problem (2) is a fixed point of A n (see [START_REF] Kaneko | Numerical solution for Weakly Singular Hammerstein Equations And Their Superconvergence[END_REF]). From Lemma 4, A n is Fréchet differentiable at ϕ and for n large enough ρ(A n (ϕ)) < 1. The conditions needed to apply Proposition 1 to the operator A n are satisfied so that Proposition 1 gives the result.

4 Numerical evidence

The classical product integration method

Let us recall the classical product integration method applied to nonlinear operators (see [START_REF] Kaneko | Numerical solution for Weakly Singular Hammerstein Equations And Their Superconvergence[END_REF]). The classical product integration approximation ψ n solves the nonlinear equation

ψ n (s) - b a H(s, t)[L(s, t)F (t, ψ n (t))] n dt = y(s),
where 

Set

Y n (i) := y(t n,i ),

A n (i, j) := = w n,j (t n,i )L(t n,i , t n,j ),

X n :=    ψ n (t n,0 ) . . . ψ n (t n,n )    , F(X n ) :=    F (t n,0 , ψ n (t n,0 )) . . . F (t n,n , ψ n (t n,n ))    .
Evaluating the equation ( 25) at the nodes t n,i , i = 0, . . . , n, the following non linear system is obtained:

(26) X n -A n F(X n ) = Y n ,
which we can solve by the classical finite dimensional Newton method ( [START_REF] Argyros | Convergence and Applications of Newton-type Iterations[END_REF] and [START_REF] Argyros | Some methods for finding errors bounds for Newton-like methods under mild differentiability conditions[END_REF]). Notice that the Newton's iterates tends to ψ n when k → ∞ and not to ϕ, the exact solution. It means that the accuracy of the approximate solution is limited by n.

The classical discretization-linearization method can not be accurate if it is performed on a coarse grid (n = 50). We obtain the approximate solution ψ n of ϕ and the error is constant with the number of iterations. On the other hand, our linearization-discretization method approaches the exact solution ϕ even if the discretization is done with a coarse grid. It confirms the theoretical result. When n increases, the number of Newton's iterations needed to reach a fixed accuracy decreases. It can be useful to apply higher order product integration methods (see the idea of Diogo, Franco and Lima in [START_REF] Diogo | High Order Product Integration Method for a Volterra Integral Equation with Logarithmic singular Kernel[END_REF]), instead of the product trapezoidal rule, to reduce the number of Newton's iterations and therefore the computational cost of the method. An high order product integration approximation, adapted to a Fredholm equation, can also be a good starting point for the Newton's iterations of our method.

n

  towards ϕ when k → ∞. Hypotheses: (H0) F , defined in (1), is twice continuously differentiable on [a, b] × R. (H1) L ∈ C 0 ([a, b] × [a, b], R). (H2) H verifies: (H2.1) c H := sup s∈[a,b] b a |H(s, t)|dt < +∞. (H2.2) lim h→0 ω H (h) = 0, where ω H (h) := sup |s-τ |≤h, s,τ ∈[a,b] b a |H(s, t) -H(τ, t)|dt.

  Let a > 0 such that B(ϕ, a) ⊂ O, where B(ϕ, a) denotes the open ball in C 0 ([a, b], R) centered in ϕ and of radius a. As ϕ ∈⊂ C 0 ([a, b], R), ϕ is bounded. As F is twice continuously differentiable, the following constant exists:

  where c L := max s,t∈[a,b]|L(s, t)|.

Figure 2 :

 2 Figure 2: errors of the linearization-discretization method for increasing values of n

  

  [L(s, t)F (t, ψ n (t))] n denotes the piecewise linear interpolant of t → L(s, t)F (t, ψ n (t)).

	Using the uniform grid ∆ n , we obtain	
	(25)		ψ n (s) -	
	where					
	w n,0 (s) :=	1 h n	t n,1 t n,0	H(s, t)(t n,1 -t)dt,	
	w n,j (s) :=	1 h n	t n,j t n,j-1	H(s, t)(t -t n,j-1 )dt +	1 h n	t n,j+1 t n,j
	w n,n (s) :=	1 h n	tn,n t n,n-1		

n j=0 w n,j (s)L(s, t n,j )F (t n,j , ψ n (t n,j )) = y(s), H(s, t)(t n,j+1 -t)dt, j = 1, . . . , n -1,

H(s, t)(t -t n,n-1 )dt.
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Numerical Illustration

Numerical experiments are now carried out to illustrate the accuracy of our method. Let us consider in X := C 0 ([0, 1], R), the operator

with the real valued kernel function κ :

Implementation remark : To solve the linear system at each Newton iteration, the integral b a log(|s -t|) sin(ϕ (k) n (t))dt needs to be evaluated. To evaluate it, we use the singularity subtraction technique ([3] and also [START_REF] Ahues | Spectral Computations for Bounded Operators[END_REF]).

In the following, our method is called the linearization-discretization method and the classical one is called the discretization-linearization method. We compare them.