Multilingual document classification via transductive learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

Multilingual document classification via transductive learning

Résumé

We present a transductive learning based framework for multilingual document classification, originally proposed in [7]. A key aspect in our approach is the use of a large-scale multilingual knowledge base, BabelNet, to support the modeling of different language-written documents into a common conceptual space, without requiring any language translation process. Results on real-world multilingual corpora have highlighted the superiority of the proposed document model against existing language-dependent representation approaches, and the significance of the transductive setting for multilingual document classification.
Fichier principal
Vignette du fichier
mt2015-pub00046636.pdf (198.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01295784 , version 1 (31-03-2016)

Identifiants

Citer

S. Romeo, Dino Ienco, A. Tagarelli. Multilingual document classification via transductive learning. 6th Italian Information Retrieval Workshop, May 2015, Cagliari, Italy. 4 p. ⟨hal-01295784⟩
146 Consultations
58 Téléchargements

Partager

More