Strong modularity of reducible Galois representations - Archive ouverte HAL
Journal Articles Transactions of the American Mathematical Society Year : 2017

Strong modularity of reducible Galois representations

Abstract

In this paper, we call strongly modular those reducible semi-simple odd mod $l$ Galois representations for which the conclusion of the strongest form of Serre's original modularity conjecture holds. Under the assumption that the Serre weight $k$ satisfies $l>k+1$, we give a precise characterization of strongly modular representations, hence generalizing a classical theorem of Ribet pertaining to the case of conductor $1$. When the representation $\rho$ is not strongly modular, we give a necessary and sufficient condition on the primes $p$ not dividing $Nl$ for which it arises in level $Np$, where $N$ denotes the conductor of $\rho$. This generalizes a result of Mazur on the case $(N,k)=(1,2)$.
Fichier principal
Vignette du fichier
minimal_level.pdf (262.74 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01295749 , version 1 (31-03-2016)
hal-01295749 , version 2 (23-05-2016)

Identifiers

Cite

Nicolas Billerey, Ricardo Menares. Strong modularity of reducible Galois representations. Transactions of the American Mathematical Society, 2017, 370 (2), pp.967-986. ⟨10.1090/tran/6979⟩. ⟨hal-01295749v2⟩
174 View
183 Download

Altmetric

Share

More