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Distributed Synthesis of State-Dependent Switching Control

We present a correct-by-design method of state-dependent control synthesis for linear discrete-time switching systems. Given an objective region R of the state space, the method builds a capture set S and a control which steers any element of S into R. The method works by iterated backward reachability from R. More precisely, S is given as a parametric extension of R, and the maximum value of the parameter is solved by linear programming. The method can also be used to synthesize a stability control which maintains indefinitely within R all the states starting at R. We explain how the synthesis method can be performed in a distributed manner. The method has been implemented and successfully applied to the synthesis of a distributed control of a concrete floor heating system with 11 rooms and 2 11 = 2048 switching modes.

Introduction

The importance of switched systems has grown up considerably these last years in reason of their ease of implementation for controlling cyber-physical systems. A switched system is a family of sub-systems, each with its own dynamics characterized by a parameter mode u whose values are in a finite set U (see [START_REF] Liberzon | Switching in systems and control[END_REF]). However, due to the composition of many switched systems together, the global switched system has a number of modes and dynamics which increases exponentially. Take for example a heating system for a building of 11 rooms (see [START_REF] Kim G Larsen | Online and Compositional Learning of Controllers with Application to Floor Heating[END_REF]): each room i has a heater with 2 mode values {off,on}. This makes a combination of 2 11 = 2048 mode values. If we want to analyze the evolution of a trajectory on a horizon of K units of discrete time, we have to consider the dynamics corresponding to 2 11K possible sequences of modes, which is intractable even for small values of K. It is therefore essential to design compositional methods in order to obtain control methods of switched systems that give formal guarantees on the correct behavior of the cyber physical systems.

In this paper, we give a symbolic compositional method which allows to synthesize a control of linear discrete-time switched systems that is guaranteed to satisfy attainability and stability properties.

The method starts from an objective region R of the state space, which is rectangular (i.e., is a product of closed intervals of reals). It then generates in a backward manner, using linear programming techniques, an increasing sequence of nested rectangles {R (i) } i≥0 such that every trajectory issued from R (i) is guaranteed to reach R (i-1) in a bounded number of time units. Once R (0) = R is reached, the trajectory is also guaranteed to stay in R indefinitely (stability). The method relies on a simple operation of tiling of the rectangles R (i) in a finite number of sub-rectangles (tiles), using a standard operation of bisection. Although the method works in a backward fashion, it does not require to inverse the linear dynamics of the system (via matrix inversion), and does not compute predecessors of symbolic states (tiles), but only successors using the forward dynamics. This is useful in order to avoid numerical imprecisions, especially when the dynamics are contractive, which happens often in practical systems (see [10]).

Another contribution of this paper is a technique of state over-approximation which allows a distributed control synthesis: this over-approximation allows subsystem 1 to infer a correct value for its next local mode u 1 without knowing the exact value of the state of sub-system 2. This distributed synthesis method is computationally efficient, and works in presence of partial observability. This is at the cost of the performance of the control which usually makes the trajectories attain the objective area in more steps than with a centralized approach.

Related Work

In symbolic analysis and control synthesis methods for hybrid systems, the method of backward reachability and the use of polyhedral symbolic states, as used here, is classical (see, e.g., [START_REF] Asarin | Effective synthesis of switching controllers for linear systems[END_REF][START_REF] Jeremy H Gillula | Applications of hybrid reachability analysis to robotic aerial vehicles[END_REF]). The use of tiling or partitioning the state-space using bisection is also classical (see, e.g., [START_REF] Jaulin | Applied Interval Analysis with Examples in Parameter and State Estimation[END_REF][START_REF] Girard | Low-complexity switching controllers for safety using symbolic models[END_REF]). The main original contribution of this paper is to give a simple technique of over-approximation, which allows one component to estimate the symbolic state of the other component, in presence of partial information. This is similar in spirit to an assumeguarantee reasoning where the controller synthesis for each sub-systems assumes that some safety properties are are satisfied by the others [START_REF] Alur | Reactive modules[END_REF]9]. In contrast to [START_REF] Fribourg | Game-based Synthesis of Distributed Controllers for Sampled Switched Systems[END_REF], we do not need, for the mode selection of a sub-system, to explore blindly all the possible mode choices made by the other sub-system. This yields a drastic reduction of the complexity 4 . This approach allows us to treat a real case study which is intractable with a centralized approach. This case study comes from [START_REF] Kim G Larsen | Online and Compositional Learning of Controllers with Application to Floor Heating[END_REF], and we use the same decomposition of the system in two parts (rooms 1-5 and rooms 6-11). In contrast to the work of [START_REF] Kim G Larsen | Online and Compositional Learning of Controllers with Application to Floor Heating[END_REF] which uses an on-line and heuris-tic approach with no formal guarantees, we use here an off-line formal method which guarantees attainability and stability properties.

Implementation

The methods of control synthesis both in the centralized context and in the distributed context have been implemented in a prototype written in Octave [11]. All the computation times given in the paper have been performed on a 2.80 GHz Intel Core i7-4810MQ CPU with 8 GB of memory.

Plan

The structure of this paper is as follows. The class of systems considered and some preliminary definitions are given in Section 2. Our symbolic approach, which is based on the tiling of the state space and backward reachability, is explained in Section 3. In Section 4, we present a centralized method to synthesize a controller based on a "generate-and-test" tiling procedure. A distributed approach is then given in Section 5 where we introduce a state over-approximation technique in order to avoid the use of non-local information by the subsystem controllers. For both methods, we provide attainability and stability guarantees on the controlled trajectories of the system. Finally, in Section 6, our distributed approach is applied on a real-case study of temperature control in a building with 11 rooms and 2 11 = 2048 switching modes of control.

State-dependent Switching Control

Control modes

Consider the discrete-time system with finite control:

x 1 (t + 1) = f 1 (x 1 (t), x 2 (t), u 1 ) x 2 (t + 1) = f 2 (x 1 (t), x 2 (t), u 2 )
where x 1 (resp. x 2 ) is the 1st-component (resp. 2nd-component) of the state vector variable, which takes its values in R n1 (resp. R n2 ), and u 1 (resp. u 2 ) is the 1st (resp. 2nd) component of the control mode variable which takes its values in the finite set U 1 (resp. U 2 ). We will often use x for (x 1 , x 2 ), u for (u 1 , u 2 ), and n for n 1 + n 2 . We will also abbreviate the set U 1 × U 2 as U . Let N be the cardinal of U , and N 1 (resp. N 2 ) the cardinal of U 1 (resp. U 2 ). We have

N = N 1 •N 2 .
More generally, we abbreviate the discrete-time system under the form:

x(t + 1) = f (x(t), u)
where x is a vector state variable which takes its values in

R n = R n1 × R n2 , u is of the form (u 1 , u 2 ) where u 1 takes its values in U 1 and u 2 in U 2 .
In this context, we are interested by the following centralized control synthesis problem: at each discrete-time t, select the appropriate mode u ∈ U in order to satisfy a given property. In this paper we focus on state-dependent control, which means that, at each time t, the selection of the value of u is done by considering only the values of x(t).

In the distributed context, the control synthesis problem consists in selecting concurrently the value of u 1 in U 1 according to the value of x 1 (t) only, and the value of u 2 in U 2 according to the value of x 2 (t) only.

The properties that we consider are attainability properties: given a set S and a set R, we look for a control which will steer any element of S to R in a bounded number of steps. We will also consider stability properties, which means, that once the state x of the system is in R at time t, the control will maintain it in R indefinitely at t + 1, t + 2, • • • . Actually, given a state set R, we will present a method which does not start from a given set S, but constructs it, together with a control which steers all the elements of S to R within a bounded number of steps (S can be seen as a "capture set" of R).

In this paper, we consider that R and S are "rectangles" of the state space. More precisely, R = R 1 × R 2 is a rectangle of reals, i.e., R is a product of n closed intervals of reals, and R 1 (resp. R 2 ) is a product of n 1 (resp. n 2 ) closed intervals of reals. Likewise, we assume that S = S 1 ×S 2 is a rectangular sub-area of the state space.

Example 1. The centralized and distributed approaches will be illustrated by the example of a two rooms apartment, heated by two heaters located in each room (adapted from (Girard)). In this example, the objective is to control the temperature of the two rooms. There is heat exchange between the two rooms and with the environment. The continuous dynamics of the system is given by the equation:

˙ T 1 T 2 = -α 21 -α e1 -α f u 1 α 21 α 12 -α 12 -α e2 -α f u 2 T 1 T 2 + α e1 T e + α f T f u 1 α e2 T e + α f T f u 2 .
Here T 1 and T 2 are the temperatures of the two rooms, and the state of the system corresponds to T = (T 1 , T 2 ). The control mode variable u 1 (respectively u 2 ) can take the values 0 or 1 depending on whether the heater in room 1 (respectively room 2) is switched off or switched on (hence

U 1 = U 2 = {0, 1}). Hence, here n 1 = n 2 = 1, N 1 = N 2 = 2 and n = 2, N = 4.
T e corresponds to the temperature of the environment, and T f to the temperature of the heaters. The values of the different parameters are the following:

α 12 = 5×10 -2 , α 21 = 5×10 -2 , α e1 = 5×10 -3 , α e2 = 5×10 -3 , α f = 8.3×10 -3
, T e = 10 and T f = 35.

We suppose that the heaters can be switched periodically at sampling instants τ, 2τ, . . . (here, τ = 5s). By integration of the continuous dynamics between t and t + τ , the system can be easily put under the desired discrete-time form:

T 1 (t + 1) = f 1 (T 1 (t), T 2 (t), u 1 ) T 2 (t + 1) = f 2 (T 1 (t), T 2 (t), u 2 ),
where f 1 and f 2 are affine functions.

Given an objective rectangle for T = (T 1 , T 2 ) of the form R = [18.5, 22] × [18. [START_REF] Girard | Low-complexity switching controllers for safety using symbolic models[END_REF]22], the control synthesis problem is to find a rectangular capture set S as large as possible, from which one can steer the state T to R ("attainability"), then maintain T within R for ever ("stability").

Control patterns

It is often easier to design a control of the system using several applications of f in a row rather than using just a single application of f at each time. We are thus led to the notion of "macro-step", and "control pattern". A (control) pattern π = (π 1 , π 2 ) of length k is a sequence of modes defined recursively by:

1. π is of the form (u 1 , u 2 ) ∈ U 1 × U 2 if k = 1, 2. π is of the form (u 1 • π 1 , u 2 • π 2 ), where u 1 (resp. u 2 ) is in U 1 (resp. U 2 ), and (π 1 , π 2 ) is a (control) pattern of length k -1 if k ≥ 2.
The set of patterns of length k is denoted by

Π k (for length k = 1, Π 1 = U ). Likewise, for k ≥ 1, we denote by Π k 1 (resp. Π k 2 ) the set of sequences of k ele- ments of U 1 (resp. U 2 ).
For a system defined by

x(t+1) = f (x(t), (u 1 , u 2 )) and a pattern π = (π 1 , π 2 ) of length k, one can define recursively x(t + k) = f (x(t), (π 1 , π 2 )) with (π 1 , π 2 ) ∈ Π k , by: 1. f (x(t), (π 1 , π 2 )) = f (x(t), (u 1 , u 2 )), if (π 1 , π 2 ) is a pattern of length k = 1 of the form (u 1 , u 2 ) ∈ U , 2. f (x(t), (π 1 , π 2 )) = f (f (x(t), (π 1 , π 2 )), (u 1 , u 2 )), if (π 1 , π 2 ) is a pattern of length k ≥ 2 of the form (u 1 • π 1 , u 2 • π 2 ) with (u 1 , u 2 ) ∈ U and (π 1 , π 2 ) ∈ Π k-1 .
One defines (f (x, π)) 1 ∈ R n1 and (f (x, π)) 2 ∈ R n2 to be the 1st and 2nd com-

ponents of f (x, π) ∈ R n1 × R n2 = R n , i.e: f (x, π) = ((f (x, π)) 1 , f (x, π) 2 ).
In the following, we suppose that K ∈ N is an upper bound of the length of patterns. The value of K can be seen as a maximum number of time steps, for which we compute the future behavior of the system ("horizon"). We denote by

Π ≤K 1 (resp. Π ≤K 2 ) the expression 1≤k≤K Π k 1 (resp. 1≤k≤K Π k 2 )
. Likewise, we denote by Π ≤K the expression 1≤k≤K Π k .

3 Control Synthesis Using Tiling

3.1 Tiling Let R = R 1 × R 2 be a rectangle. We say that R is a (finite rectangular) tiling of R if R is of the form {r i1,i2 } i1∈I1,i2∈I2
, where I 1 and I 2 are given finite sets of positive integers, each r i1,i2 is a sub-rectangle of R of the form r i1 × r i2 , and r i1 , r i2 are closed sub-intervals of R 1 and R 2 respectively. Besides, we have

i1∈I1 r i1 = R 1 and i2∈I2 r i2 = R 2 (Hence R = i1∈I1,i2∈I2 r i1,i2
). We will refer to r i1 , r i2 and r i1,i2 as "tiles" of R 1 , R 2 and R respectively. The same notions hold for rectangle S.

In the centralized context, given a rectangle R, the macro-step (backward reachability) control synthesis problem with horizon K consists in finding a rectangle S and a tiling S = {s i1,i2 } i1∈I1,i2∈I2 of S such that, for each (i 1 , i 2 ) ∈ I 1 × I 2 , there exists π ∈ Π ≤K such that:

f (s i1,i2 , π) ⊆ R (i.e., for all x ∈ s i1,i2 : f (x, π) ∈ R).
This is illustrated in Figure 1. 

Parametric extension of tiling

In the following, we assume that the set S we are looking for is a parametric extension of R, denoted by R + (a, a), which is defined in the following.

Suppose that We now consider that S is a (parametric) superset of R of the form R+(a, a). We define a tiling S = S 1 × S 2 of S of the form {s i1 × s i2 } i1∈I1,i2∈I2 , which is

R = R 1 × R 2 is given as well as a tiling R = R 1 × R 2 = {r i1 ×r i2 } i1∈I1,i2∈I2 = {r i1,i2 } i1∈I1,i2∈I2 .
obtained from R = R 1 × R 2 = {r i1 × r i2 } i1∈I1,i2∈I2

by a simple extension, as follows:

A tile r i1 (resp. r i2 ) of R 1 (resp. R 2 ) in "contact" with ∂R 1 (resp. ∂R 2 ) is prolonged as a tile s i1 (resp. s i2 ) in order to be in contact with ∂(R 1 + a) (resp. ∂(R 2 + a)); a tile "interior" to R 1 (i.e., with no contact with ∂R 1 ) is kept unchanged, and coincides with s i1 , and similarly for R 2 .

We denote the resulting tiling S by R + (a, a). We also denote s i1 (resp. s i2 ) as r i1 + a (resp. r i2 + a) even if r i1 (resp. r i2 ) is "interior" to R 1 (resp. R 2 ). Likewise, we will denote s i,j as r i,j + (a, a). Note that a tiling of R of index set I 1 × I 2 induces a tiling of R + (a, a) with the same index set I 1 × I 2 , hence the same number of tiles as R, for any a ≥ 0. This is illustrated in Figure 2, where the tiling of R is represented with black continuous lines, and the extended tiling of R + (a, a) with red dashed lines. 

Generate and test tilings

By replacing S with R + (a, a) in the notions defined in Section 3.1 the problem of macro-step control synthesis can now be reformulated as:

Finding a tiling R of R which induces a macro-step control of R + (a, a) towards R, for some a ≥ 0; besides, if we find such R, we want to compute the maximum value of a for which the induced control exists. This problem can be solved by a simple "generate and test" procedure: one generates a candidate tiling, then one tests if it satisfies the control property (the control test procedure is explained in Section 4.1); if the test fails, one generate another candidate, and so on iteratively.

In practice, the generation of a candidate R is done, starting from the trivial tiling (made of one tile equal to R), then using successive bisections of R until, either the control test succeeds ("success"), or the depth of bisection of the new candidate is greater than a given upper bound D ("failure"). See details in Appendix 8.1.

Remark 1. Note that, if the generate-and-test process stops with "success" for a tiling R, then the tiling R D,unif orm also solves the problem, where R D,unif orm is the "finest" tiling obtained by bisecting D times all the n components of R. Since R D,unif orm has exactly 2 nD tiles, it is in general impractical to perform directly the control test on it. From a theoretical point of view however, it is convenient to suppose that R = R D,unif orm for reducing the worst case time complexity of the control synthesis procedure to the complexity of the control test part only (see Section 4.1).

Centralized control

Tiling test procedure

As seen in Section 3.2, the (macro-step) control synthesis problem with horizon K consists in finding (the maximum value of) a ≥ 0, and a tiling

R = {r i1,i2 } i1∈I1,i2∈I2 of R such that, for each (i 1 , i 2 ) ∈ I 1 × I 2 , there exists some π ∈ Π ≤K with f (r i1,i2 + (a, a), π) ⊆ R.
In order to test if a tiling candidate R = {r i1,i2 } i1∈I1,i2∈I2 of R satisfies the desired property, we define, for each (i 1 , i 2 ) ∈ I 1 × I 2 :

Π ≤K i1,i2 = {π ∈ Π ≤K | f (r i1,i2 , π) ⊆ R}.
When Π ≤K i1,i2 = ∅, we define:

a i1,i2 = max π∈Π ≤K i 1 ,i 2 max{a ≥ 0 | f (r i1,i2 + (a, a), π) ⊆ R} π i1,i2 = argmax π∈Π ≤K i 1 ,i 2 max{a ≥ 0 | f (r i1,i2 + (a, a), π) ⊆ R} A = min (i1,i2)∈I1×I2 {a i1,i2 }.
For each tile r i1,i2 of R and each π ∈ Π ≤K , the test of inclusion f (r i1,i2 , π) ⊆ R can be done in time polynomial in n when f is affine. Hence the test

Π ≤K i1,i2 = ∅ can be done in O(N K • n α ) since Π ≤K contains O(N K ) elements.
The computation of max{a ≥ 0 |f (r i1,i2 + (a, a), π) ⊆ R} can be done by linear programming in time polynomial in n, the dimension of the state space. The computation time of {a i1,i2 } i1∈I,i2∈I2 , π i1,i2 , and A is thus in O(N K •2 nD ), where D is the maximal depth of bisection. Hence the complexity of testing a candidate tiling R is in O(N K • 2 nD ). By Remark 1 above, the complexity of the control synthesis by generate-and-test is also in O(N K • 2 nD ).

We have:

Proposition 1. Suppose that there exists a tiling R = {r i1,i2 } i1∈I1,i2∈I2 of R such that:

∀(i 1 , i 2 ) ∈ I 1 × I 2 Π ≤K i1,i2 = ∅.
Then R induces a macro-step control of horizon K of R+(A, A) towards R with:

∀(i 1 , i 2 ) ∈ I 1 × I 2 : f (r i1,i2 + (A, A), π i1,i2 ) ⊆ R
where A and π i1,i2 are defined as above.

Once a candidate tiling R satisfying the control test property is found, the generate-and-test procedure ends with success (see Section 3.3), and a set S = R + (a (1) , a (1) ) with a (1) = A has been found. One can then iterate the "generate and test" procedure in order to construct an increasing sequence of nested rectangles of the form R + (a (1) , a (1) ), R + (a (1) + a (2) , a (1) + a (2) ), . . . , which can all be driven to R, as explained in Appendix 8.2.

Example 2. Consider the specification of a two-rooms appartment given in Example 1. Set R = [18.5, 22] × [18. [START_REF] Girard | Low-complexity switching controllers for safety using symbolic models[END_REF]22]. Let D = 1 (the depth of bisection is at most 1), and K = 4 (the maximum length of patterns is 4). We look for a centralized controller which will steer the rectangle S = [18.5-a, 22]×[18.5-a, 22] to R with a as large as possible, and stay in R indefinitely. Using our implementation, the computation of the control synthesis takes 4.14s of CPU time.

The method iterates successfully 15 times the macro-step control synthesis procedure. We find S = R + (a, a) with a = 53.5, i.e. S = [-35, 22] × [-35, 22]. This means that any element of S can be driven to R within 15 macro-steps of length (at most) 4, i.e., within 15 × 4 = 60 units of time. Since each unit of time is of duration τ = 5s, any trajectory starting from S reaches R within 60 × 5 = 300s. Once the trajectory x(t) is in R, it returns in R every macro-step of length (at most) 4, i.e., every 4 × 5 = 20s.

These results are consistent with the simulation given in Figure 3 for the time evolution of (T 1 , T 2 ) starting from (12, 12). Simulations of the control, starting from (T 1 , T 2 ) = (12, 12), (T 1 , T 2 ) = (12, 19) and (T 1 , T 2 ) = (22, 12) are also given in the state space plane in Figure 3.

Stability as a special case of reachability

Instead of looking for a set of the form S = R + (a, a) from which R is reachable via a macro-step, let us consider the particular case where S = R (i.e., a = 0).

The problem is now to construct a tiling R = {r i1,i2 } i1∈I1,i2∈I2 of R such that, for all (i 1 , i 2 ) ∈ I 1 ×I 2 , there exists a pattern π i1,i2 ∈ Π ≤K with f (r i1,i2 , π i1,i2 ) ⊆ R. If such a tiling R exists, then x(t) ∈ R implies x(t + k) ∈ R for some k ≤ K. 6Actually, we can slightly modify the procedure in order to impose, additionally, that ∀k ≤ K x(t + k) ∈ R + ε for some ε > 0 (see Section 5.2). It follows that R + (ε, ε) is stable under the control induced by R.

We can thus treat the stability control of R as a special case of reachability control. 5 Distributed control

Background

In the distributed context, given a set R = R 1 × R 2 , the (macro-step) distributed control synthesis problem with horizon K consists in finding (the maximum value of) a ≥ 0, and a tiling

R 1 = {r i1 } i1∈I1 of R 1 which induces a (macro-step) control on R 1 + a, a tiling R 2 = {r i2 } i2∈I2 which induces a (macro-step) control on R 2 + a.
More precisely, we seek tilings R 1 and R 2 such that: there exists ∈ N such that, for each i 1 ∈ I 1 there exists a sequence π 1 of modes in U 1 , and for each i 2 ∈ I 2 , a sequence π 2 of modes in U 2 such that:

(f ((r i1 +a)×(R 2 +a), (π 1 , π 2 ))) 1 ⊆ R 1 ∧ (f ((R 1 +a)×(r i2 +a), (π 1 , π 2 ))) 2 ⊆ R 2 .
In order to synthesize a distributed strategy where the control pattern π 1 is determined only by i 1 (regardless of the value of i 2 ), and the control pattern π 2 only by i 2 (regardless of the value of i 1 ), we now define an over-approximation X i1 (a, π 1 ) for (f ((r i1 + a) × (R 2 + a), (π 1 , π 2 ))) 1 , and an over-approximation X i2 (a, π 2 ) for (f ((R 1 + a) × (r i2 + a), (π 1 , π 2 ))) 2 . The correctness of these overapproximations relies on the existence of a fixed positive value for parameter ε. Intuitively, ε represents the width of the additional margin (around R + (a, a)) within which all the intermediate states lie when a macro-step is applied to a point of R + (a, a).

Tiling test procedure

Let π k 1 (resp.π k 2 ) denote the prefix of length k of π 1 (resp.π 2 ), and π 1 (k) (resp. π 2 (k)) the k-th element of sequence π 1 (resp. π 2 ). Definition 1. Consider an element r i1 (resp. r i2 ) of a tiling R 1 (resp. R 2 ) of R 1 (resp. R 2 ), and a sequence π

1 ∈ Π ≤K 1 (resp. π 2 ∈ Π ≤K 2 ) of length 1 (resp. 2 ). The approximate 1st-component (resp. 2nd-component) sequence {X k i1 (a, π 1 )} 0≤k≤ 1 (resp. {X k i2 (a, π 2 )} 0≤k≤ 2 ) is defined as follows: -X 0 i1 (a, π 1 ) = r i1 + a and -X k i1 (a, π 1 ) = f 1 (X k-1 i1 (a, π 1 ), R 2 + a + ε, π 1 (k)) for 1 ≤ k ≤ 1 (resp. -X 0 i2 (a, π 2 ) = r i2 + a and -X k i2 (a, π 2 ) = f 2 (R 1 + a + ε, X k-1 i2 (a, π 2 ), π 2 (k)) for 1 ≤ k ≤ 2 ).
We define the property P rop(a, i 1 , π 1 ) of {X k i1 (a, π 1 )} 0≤k≤ 1 by:

-X k i1 (a, π 1 ) ⊆ R 1 + a + ε for 1 ≤ k ≤ 1 -1, and -X 1 i1 (a, π 1 ) ⊆ R 1 .
Likewise, we define the property P rop(a, i 2 , π 2 ) of {X k i2 (a, π 2 )} 0≤k≤ 2 by:

-X k i2 (a, π 2 ) ⊆ R 2 + a + ε for 1 ≤ k ≤ 2 -1, and -X 2 i2 (a, π 2 ) ⊆ R 2 . Figure 4 illustrates property P rop(a, i 1 , π 1 ) for π 1 = (u 1 • v 1 • w 1 ), 1 = 3 and i 1 = 1: in the upper part, P rop(a, i 1 , π 1 ) is not satisfied because X 1 1 (a, π 1 ) ⊆ R 1 + a + ε is false (X 2
1 (a, π 1 ) ⊆ R 1 + a + ε and X 3 1 (a, π 1 ) ⊆ R 1 are true); in the lower part, P rop(a, i 1 , π 1 ) is satisfied. Given a tiling R 1 = {r i1 } i1∈I1 of R 1 , we now define, for each i 1 ∈ I 1 , and each k ∈ {1, . . . , K}:

Π k i1 = {π 1 ∈ Π k 1 | P rop(0, i 1 , π 1 )}.
When Π k i1 = ∅, we define:

a k i1 = max π1∈Π k i 1 max{a ≥ 0 | P rop(a, i 1 , π 1 )} π k i1 = argmax π1∈Π k i 1 max{a ≥ 0 | P rop(a, i 1 , π 1 )}
Given R 2 , we define similarly: Π k i2 , a k i2 and π k i2 .

Suppose now, that: (H1) there exists k 1 ∈ {1, . . . , K} such that ∀i 1 ∈ I 1 :

Π k1 i1 = ∅. (H2) there exists k 2 ∈ {1, . . . , K} such that ∀i 2 ∈ I 2 : Π k2 i2 = ∅.
Then we define a k1 1 = min i1∈I1 {a k1 i1 }, a k2 2 = min i2∈I2 {a k2 i2 }, and A = min{a k1 1 , a k2 2 }.

NB1: Given a tiling R = R 1 × R 2 , (H1) means that the points of R 1 + A can be (macro-step) controlled to R 1 using patterns which all have the same length k 1 ; in other terms, all the macro-steps controlling R 1 + A contain the same number k 1 of elementary steps. And symmetrically for (H2). NB2: The determination of an appropriate value for ε is for the moment done by hand, and is the result of a compromise: if ε is too small, then

f 1 (r i1 + a, R 2 + a, u 1 ) ⊆ R 1 + a + ε; if ε is too big, f 1 (X k-1 i1 , R 2 + a + ε, π 1 (k)) ⊆ R 1 + a.
Given a tiling R = R 1 × R 2 of R and a real ε > 0, the problem of existence and computation of k 1 , k 2 , {π k1 i1 } i1∈I1 , {π k2 i2 } i2∈I2 , and A can be solved by linear programming since f 1 and f 2 are affine. Using the same kinds of calculation as in the centralized case (see Section 4.1), one can see that the complexity of testing Π k i1 = ∅ and Π k i2 = ∅ for 1 ≤ k ≤ K, checking (H1)-(H2), generating k 1 , k 2 , A and {π i1 } i1∈I1 , and

{π i2 } i2∈I2 is in O((max(N 1 , N 2 )) K • 2 max(n1,n2)D ).
Hence the complexity of the control test procedure is also in O((max

(N 1 , N 2 )) K • 2 max(n1,n2)D ). Lemma 1. Consider a tiling R = R 1 × R 2 of the form {r i1 × r i2 } (i1,i2)∈I1×I2 .
Let a ≥ 0. We suppose that (H1) and (H2) hold, and that, for all i 1 ∈ I 1 , P rop(a, i 1 , π 1 ) holds for some π 1 ∈ Π k1 1 , and for all i 2 ∈ I 2 , P rop(a, i 2 , π 2 ) holds for some π 2 ∈ Π k2

2 , then we have:

-in case k 1 ≤ k 2 : (f ((r i1 + a, R 2 + a), (π k 1 , π k 2 ))) 1 ⊆ X k i1 (a, π 1 ) ⊆ R 1 + a + ε and (f ((R 1 + a, r i2 + a), (π k 1 , π k 2 ))) 2 ⊆ X k i2 (a, π 2 ) ⊆ R 2 + a + ε, for all 1 ≤ k ≤ k 1 , and (f ((r i1 + a, R 2 + a), (π k1 1 , π k1 2 ))) 1 ⊆ X k1 i1 (a, π 1 ) ⊆ R 1 , -in case k 2 ≤ k 1 : (f ((r i1 + a, R 2 + a), (π k 1 , π k 2 ))) 1 ⊆ X k i1 (a, π 1 ) ⊆ R 1 + a + ε and (f ((R 1 + a, r i2 + a), (π k 1 , π k 2 ))) 2 ⊆ X k i2 (a, π 2 ) ⊆ R 2 + a + ε, for all 1 ≤ k ≤ k 2 , and (f ((R 1 + a, r i2 + a), (π k2 1 , π k2 2 ))) 2 ⊆ X k2 i2 (a, π 2 ) ⊆ R 2 .
The proof of given in Appendix 9. At t = 0, consider a point x(0) = (x 1 (0), x 2 (0)) of R+(A, A), and let us apply concurrently the strategy induced by R 1 on x 1 , and R 2 on x 2 . After k 1 steps, by Lemma 1, we obtain a point x(k

1 ) = (x 1 (k 1 ), x 2 (k 1 )) ∈ R 1 × (R 2 + A + ε).
Then, after k 1 steps, we obtain again a point x(2k 1 ) ∈ R 1 × (R 2 + A + ε), and so on iteratively. Likewise, we obtain points x(k 2 ), x(2k 2 ), . . . which all belong to (R

1 + A + ε) × R 2 . It follows that, after = lcm(k 1 , k 2 ) steps, we obtain a point x( ) which belongs to R 1 × R 2 = R. Theorem 1. Suppose that there is a tiling R 1 = {r i1 } i1∈I1 of R 1 , a tiling R 2 = {r i2 } i2∈I2 of R 2 ,
and a positive real ε such that (H1) and (H2) hold, and let k 1 , k 2 , A be defined as above.

Let = lcm(k 1 , k 2 ) with = α 1 k 1 = α 2 k 2 for some α 1 , α 2 ∈ N.
Then R 1 induces a sequence of α 1 macro-steps on R 1 +A, and R 2 a sequence of α 2 macro-steps on R 2 + A, such that, applied concurrently, we have, for all i 1 ∈ I 1 and i 2 ∈ I 2 :

(f ((r i1 + A) × (R 2 + A), π)) 1 ⊆ R 1 ∧ (f ((R 1 + A) × (r i2 + A), π)) 2 ⊆ R 2 , for some π = (π 1 , π 2 ) ∈ Π where π 1 (resp. π 2 ) is of the form π 1 1 • • • π α1 1 (resp. π 1 2 • • • π α2 2 ) with π i 1 ∈ Π k1 1 for all 1 ≤ i ≤ α 1 (resp. π i 2 ∈ Π k2 2 for all 1 ≤ i ≤ α 2 ).
Besides, for all prefix π of π, we have

(f ((r i1 +A)×(R 2 +A), π )) 1 ⊆ R 1 +A+ε ∧ (f ((R 1 +A)×(r i2 +A), π )) 2 ⊆ R 2 +A+ε.
If (H1)-(H2) hold, there exists a control that steers R+(A, A) to R in steps. Letting R = R + (A, A), it is then possible to iterate the process on R and, in case of success, generate a rectangle R = R + (A , A ) from which R would be reachable in steps, for some A ≥ 0 and ∈ N. And so on, iteratively, one generates an increasing sequence of nested control rectangles, as in Section 4.1.

Example 3. Consider again the specification of a two-rooms appartment given in Example 1. We consider the distributed control synthesis problem where the 1st (resp. 2nd) state component corresponds to the temperature of the 1st (resp. 2nd) room T 1 (resp. T 2 ), and the 1st (resp. 2nd) control mode component corresponds to the heater u 1 (resp. u 2 ) of the the 1st (resp. 2nd) room.

Set [START_REF] Girard | Low-complexity switching controllers for safety using symbolic models[END_REF]22]. Let D = 3 (the depth of bisection is at most 3), and K = 10 (the maximum length of patterns is 10). The parameter ε is set to value 1.5 • C. We look for a distributed controller which steers any temperature state in S = S 1 × S 2 = [18.5 -a, 22] × [18.5 -a, 22] to R with a as large as possible, then maintain it in R indefinitely.

R = R 1 × R 2 = [18.5, 22] × [18.
Using our implementation, the computation of the control synthesis takes 220s of CPU time.

The method iterates 8 times the macro-step control synthesis procedure. We find S = [18.5 -a, 22] × [18.5 -a, 22] with a = 6.5, i. These results are consistent with the simulation given in Figure 5 showing the time evolution of (T 1 , T 2 ) starting from (12, 12). Simulations of the control are also given in the state space plane, in Figure 5, for initial states (T 1 , T 2 ) = (12, 12), (T 1 , T 2 ) = (12, 19) and (T 1 , T 2 ) = (22, 12).

Not surprisingly, the performance guaranteed by the distributed approach (a = 6.5, attainability of R in 400s) are worse than those guaranteed by the centralized approach of Example 2 (a = 53.5, attainability of R in 300s). However, unexpectedly, the CPU computation time in the distributed approach (220s) is here worse than the CPU time of the centralized approach (4.14s). This relative inefficiency is due to the small size of the example. 

Case study

This case study, proposed by the Danish company Seluxit, aims at controlling the temperature of an eleven rooms house, heated by geothermal energy.

The continuous dynamics of the system is the following:

d dt T i (t) = n j=1 A d i,j (T j (t) -T i (t)) + B i (T env (t) -T i (t)) + H v i,j .v j (1) 
The temperatures of the rooms are the T i . The matrix A d contains the heat transfer coefficients between the rooms, matrix B contains the heat transfer coefficients betweens the rooms and the external temperature, set to T env = 10 • C for the computations. The control matrix H v contains the effects of the control on the room temperatures, and the control variable is here denoted by v j . We have v j = 1 (resp. v j = 0) if the heater in room j is turned on (resp. turned off). We thus have n = 11 and N = 2 11 = 2048 switching modes.

Note that the matrix A d is parametrized by the open of closed state of the doors in the house. In our case, the average between closed and open matrices was taken for the computations. The exact values of the coefficients are given in [START_REF] Kim G Larsen | Online and Compositional Learning of Controllers with Application to Floor Heating[END_REF]. The controller has to select which heater to turn on in the eleven rooms. Due to a limitation of the capacity supplied by the geothermal device, the 11 heaters cannot be turned on at the same time. In our case, we set to 4 the maximum number of heaters turned on at the same time.

We consider the distributed control synthesis problem where the 1st (resp. 2nd) state component corresponds to the temperatures of rooms 1 to 5 (resp. 6 to 11), and the 1st (resp. 2nd) control mode component corresponds to the heaters of rooms 1 to 5 (resp. 6 to 11). Hence n 1 = 5, n 2 = 6, N 1 = 2 5 , N 2 = 2 6 . We impose that at most 2 heaters are switched on at the same time in the 1 st sub-system, and at most 2 in the 2 nd sub-system.

Let D = 1 (the depth of bisection is at most 1), and K = 4 (the maximum length of patterns is 4). The parameter ε is set to value 0.5 • C. The sampling time is τ = 15 min.

We look for a distributed controller which steers any temperature state in the rectangle S = [18 -a, 22] 11 to R = [18, 22] 11 with a as large as possible, then maintain the temperatures in R indefinitely.

Using our implementation, the computation of the control synthesis takes around 20 hours of CPU time.

The method iterates 15 times successfully the macro-step control synthesis procedure. We find S = [18 -a, 22] 11 with a = 4.2, i.e. S = [13. [START_REF] Liberzon | Switching in systems and control[END_REF]22] 11 . This means that any element of S can be driven into R within 15 macro-steps of length (at most) 4, i.e., within 15 × 4 = 60 units of time. Since each unit of time is of duration τ = 15 min, any trajectory starting from S attains R within 60 × 15 = 900 min. The trajectory is then guaranteed to stay in R + (ε, ε) = [17.5, 22.5] 11 .

These results are consistent with the simulation given in Figure 6 showing the time evolution of the temperature of the rooms, starting from 14 11 .

Robustness simulations for our controller are given in Appendix 10.

Final Remarks

In this paper, we have proposed a distributed approach for control synthesis and applied it to a real floor heating system. To our knowledge, this is the first time that attainability and stability properties are guaranteed for a case study of this size. The method can be extended to take into account obstacles and Let us now explain how we find a tiling R of R such that Π i1,i2 = ∅. We focus on the centralized case, but the distributed case is similar. We start from the trivial tiling R 0 = {R} which consists of just one tile equal to R. If f (R, π) ⊆ R for some π ∈ Π ≤K , then R 0 is the desired tiling. Otherwise, we refine R 0 by bisection, which gives a tiling R 1 of the form {r (i,1),(j,2) } 1≤i,j≤n . If, for all 1 ≤ i, j ≤ n there exists some π ∈ Π ≤K such that f (r (i,1),(j,2) , u) ⊆ R, then R 1 is the desired tiling. Otherwise, there exist some "bad" tiles of the form r (i,1),(j,2) with 1 ≤ i, j ≤ n such that ∀π ∈ Π ≤K f (r (i,1),(j,2) , π) ⊆ R; we then transform R 1 into R 2 by bisecting all the bad tiles. And so on iteratively, we produce tilings R 1 , R 2 , • • • , R d until either no bad tiles remain in R d (success) or d is greater than the upper bound D of depth of bisection (failure).

Iterated macro-step control synthesis

Suppose that we are given an objective rectangle R = R 1 × R 2 . If the one-step control synthesis described in Section 8.1 succeeds, then there is a positive null real a (1) = A and a tiling R of R which induces a control steering all the points of R (1) = R + (a (1) , a (1) ) to R in one step. Now the macro-step control synthesis can be reapplied to R (1) . If it succeeds again, then it produces a tiling R (1) of R (1) which induces a control that steers R (2) = R (1) + (a (2) , a (2) ) to R (1) for some a (2) ≥ 0. And so on, the iterated application of macro-step control synthesis outputs a sequence of tilings R (i) which induce a control that steers R (i+1) = R + (Σ i+1 j=1 a (j) , Σ i+1 j=1 a (j) ) to R (i) , for some a (j) ≥ 0 (1 ≤ j ≤ i + 1). We thus synthesize a control which steers R (i+1) to R in at most i + 1 macro-steps (i ≥ 0), using an increasing sequence of nested rectangles around R. This is illustrated in Figure 7, for i = 1.

The iteration process halts at step, say m, when the last macro-step control synthesis fails because the maximum bisection depth D is reached while "bad" tiles still remain (see Section 8.1). We also stop the process when the last macrostep control synthesis outputs a real a (m) which is smaller than a given bound η > 0: this is because the sequence of controllable rectangles around R seems to approach a limit. Fig. 7. Iterated control of R (1) = R + (a (1) , a (1) ) towards R, and R (2) = R (1) + (a (2) , a (2) ) towards R (1) .

Note that the first argument of f 1 in the last expression satisfies [f ((r i1 + a, R 2 + a), (π k-1 1 , π k-1

2

))] 1 ⊆ X k i1 by P 1 i1 (k -1). Besides, the second argument satisfies [f ((r i1 +a, R 2 +a), (π k-1

1 , π k-1 2 ))] 2 ⊆ j2∈I2 X k-1 j2 ⊆ R 2 +a+ε, because 1. r i1 + a ⊆ R 1 + a 2. j2∈I2 X k-1 j2 ⊆ R 2 + a + ε since X k-1 j2
⊆ R 2 + a + ε (by P 2 j2 (k -1) which holds for all j 2 ) 3. [f ((R 1 + a, r j2 + a), (π k-1 1 , π k-1

2

))] 2 ⊆ X k-1 j2 (by P 1 j2 (k -1)).

Hence

f 1 ([f ((r i1 + a, R 2 + a), (π k-1 1 , π k-1 2 
))] 1 , [f ((r i1 + a, R 2 + a), (π k-1

1 , π k-1 2 
))] 2 , π

(k) 1 ) ⊆ f 1 (X k-1 i1 , R 2 + a + ε, π 1 (k)) = X k i1
We have thus proved P 1 i1 (k):

(f (r i1 + a, R 2 + a, (π k 1 , π k 2 ))) 1 ⊆ X k i1
This completes the proof of ∀i 1 ∈ I 1 , P 1 i1 (k) ∧ P 2 i1 (k) We prove ∀i 2 ∈ I 2 , P 1 i2 (k) ∧ P 2 i2 (k) similarly, which achieves the proof of P (k). The proof of (f ((r i1 + a, R 2 + a), (π k1 1 , π k1 2 ))) 1 ⊆ X k1 i1 (a, π 1 ) ⊆ R 1 is similar.

10 Appendix: Robustness Experiments

We now perform the same simulations as in Figure 6, except that the environment temperature is not fixed at 10 • C but follows scenarios of soft winter (Figure 8) and spring (Figure 9). The environment temperature is plotted in green in the figures. The spring scenario is taken from [START_REF] Kim G Larsen | Online and Compositional Learning of Controllers with Application to Floor Heating[END_REF], and the soft winter scenario is the winter scenario of [START_REF] Kim G Larsen | Online and Compositional Learning of Controllers with Application to Floor Heating[END_REF] with 5 additional degrees. We see that our controller, which is designed for T env = 10 • C still satisfies the properties of attainability and stability. These simulations are very close those obtained in [START_REF] Kim G Larsen | Online and Compositional Learning of Controllers with Application to Floor Heating[END_REF]. 

Fig. 1 .

 1 Fig. 1. Mapping of tile s2,3 to R via pattern π2,3, and mapping of tile s3,1 via π3,1.

  R 1 can be seen as a product of n 1 closed intervals of the form [ , m]. Consider a non negative real parameter a. Let (R 1 +a) denote the corresponding product of n 1 intervals of the form [ -a, m + a]. 5 We define (R 2 + a) similarly. Finally, we define R + (a, a) as (R 1 + a) × (R 2 + a).

Fig. 2 .

 2 Fig. 2. Tiling of R + (a, a) induced by tiling R of R.

Fig. 3 .

 3 Fig. 3. Simulations of the centralized reachability controller for three different initial conditions plotted in the state space plane (left); simulation of the centralized reachability controller for the initial condition (12, 12) plotted within time (right).

Fig. 4 .

 4 Fig. 4. Illustration of ¬P rop(a, i1, π1) with i1 = 1, |π1| = 1 = 3 (left), and P rop(a, i1, π1) (rigth).

  e. S = [12, 22] × [12, 22]. This means that any element of S can be driven to R within 8 macro-steps of length (at most) 10, i.e., within 8 × 10 = 80 units of time. Since each unit of time is of duration τ = 5s, any trajectory starting from S reaches R within 80 × 5 = 400s. The trajectory is then guaranteed to always stay (at each discrete time t) in R + (ε, ε) = [17, 23.5] × [17, 23.5].

Fig. 5 .

 5 Fig. 5. Simulations of the distributed reachability controller for three different initial conditions plotted in the state space plane (left); simulation of the distributed reachability controller for the initial condition (12, 12) plotted within time (right).

Fig. 8 .

 8 Fig. 8. Simulation of the Seluxit case study in the soft winter scenario.

Fig. 9 .

 9 Fig. 9. Simulation of the Seluxit case study in the spring scenario.

This separability technique is made possible because the difference equation x1(t + 1) = f1(x1(t), x2(t), u1) (see Section 2.1) does not involve the control mode u2.

Actually, we will consider in the examples that (R1 + a) is a product of intervals of the form [ -a, m] where the interval is extended only at its lower end, but the method is strictly identical.

If x(t) ∈ R, then x(t) ∈ ri,j for some (i, j) ∈ I1 × I2, hence x(t + k) = f (x, πi,j) ∈ R for some k ≤ K.

safety constraints. We are currently investigating an extension of the method to systems with non linear dynamics and varying parameters. 9 Appendix: Proof of Lemma 1

and by P 2 i1 (k) X k i1 ⊆ R 1 + a + ε and similarly for P 1 i2 (k) and P 2 i2 (k). We are going to show by induction on k the property P (k):

1 and π k 2 are of the form u 1 and u 2 . We have:

Let us now suppose that k > 1 and that P (k -1) holds. Let us prove P (k). Properties P 2 i1 (k) and P 2 i2 (k) are true for all i 1 , i 2 because, by construction, the sequence X k i1 (resp. X k i2 ) satisfies P rop(a, i 1 , π 1 ) (resp. P rop(a, i 2 , π 2 )). Let us prove P 1 i1 (k) and P 1 i2 (k):

)), (π

))] 1 ,

[f ((r i1 + a, R 2 + a), (π k-1

))] 2 , π 1 (k)).