S Franceschi 
email: sandro.franceschi@upmc.fr
  
I Kurkova 
email: irina.kourkova@upmc.fr
  
  
  
  
ASYMPTOTIC EXPANSION OF STATIONARY DISTRIBUTION FOR REFLECTED BROWNIAN MOTION IN THE QUARTER PLANE VIA ANALYTIC APPROACH

Keywords: Reflected Brownian motion in the quarter plane, Stationary distribution, Laplace transform, Asymptotic analysis, Saddle-point method, Riemann surface. Version of April 3, 2017

   

Asymptotic expansion of stationary distribution for reflected Brownian motion in the quarter plane via analytic approach

Introduction and main results

1.1. Context. Two-dimensional semimartingale reflecting Brownian motion (SRBM) in the quarter plane received a lot of attention from the mathematical community. Problems such as SRBM existence [START_REF] Reiman | A boundary property of semimartingale reflecting Brownian motions[END_REF][START_REF] Taylor | Existence and uniqueness of semimartingale reflecting Brownian motions in an orthant[END_REF], stationary distribution conditions [START_REF] Harrison | The diffusion approximation for tandem queues in heavy traffic[END_REF][START_REF] Harrison | Brownian models of open queueing networks with homogeneous customer populations[END_REF], explicit forms of stationary distribution in special cases [START_REF] Dai | Stationary distribution of a two-dimensional SRBM: geometric views and boundary measures[END_REF][START_REF] Dieker | Reflected Brownian motion in a wedge: sum-ofexponential stationary densities[END_REF][START_REF] Harrison | The diffusion approximation for tandem queues in heavy traffic[END_REF][START_REF] Harrison | Multidimensional reflected Brownian motions having exponential stationary distributions[END_REF][START_REF] Latouche | Product-form characterization for a two-dimensional reflecting random walk[END_REF], large deviations [START_REF] Avram | Explicit solutions for variational problems in the quadrant[END_REF][START_REF] Dai | Stationary distribution of a two-dimensional SRBM: geometric views and boundary measures[END_REF][START_REF] Majewski | Large Deviations of Stationary Reflected Brownian Motions[END_REF][START_REF] Majewski | Large deviations of the steady-state distribution of reflected processes with applications to queueing systems[END_REF] construction of Lyapunov functions [START_REF] Dupuis | Lyapunov functions for semimartingale reflecting Brownian motions[END_REF], and queueing networks approximations [START_REF] Harrison | The diffusion approximation for tandem queues in heavy traffic[END_REF][START_REF] Harrison | Brownian models of multiclass queueing networks: current status and open problems[END_REF][START_REF] Lieshout | Tandem Brownian queues[END_REF][START_REF] Lieshout | Asymptotic analysis of Lévy-driven tandem queues[END_REF][START_REF] Williams | On the Approximation of Queuing Networks in Heavy Traffic[END_REF] have been intensively studied in the literature. References cited above are non-exhaustive, see also [START_REF] Williams | Semimartingale reflecting Brownian motions in the orthant[END_REF] for a survey of some of these topics. Many results on two-dimensional SRBM have been fully or partially generalized to higher dimensions.

In this article we consider stationary SRBMs in the quarter plane and focus on the asymptotics of their stationary distribution along any path in R 2 + . Let Z(∞) = (Z 1 (∞), Z 2 (∞)) be a random vector that has the stationary distribution of the SRBM. In [START_REF] Dai | Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution[END_REF], Dai et Myazawa obtain the following asymptotic result: for a given directional vector c ∈ R 2 + they find the function f c (x) such that

lim x→∞ P( c | Z(∞) x) f c (x) = 1
where • | • is the inner product. In [START_REF] Dai | Stationary distribution of a two-dimensional SRBM: geometric views and boundary measures[END_REF] they compute the exact asymptotics of two boundary stationary measures on the axes associated with Z(∞). In this article we solve a harder problem arisen in [6, §8 p.196], the one to compute the asymptotics of

P(Z(∞) ∈ xc + B), as x → ∞,
where c ∈ R 2 + is any directional vector and B ⊂ R 2 + is a compact subset. Furthermore, our objective is to find the full asymptotic expansion of the density π(x 1 , x 2 ) of Z(∞) as x 1 , x 2 → ∞ and x 2 /x 1 → tan(α) for any given angle α ∈]0, π/2[. Our main tool is the analytic method developed by V. Malyshev in [START_REF] Malyshev | Asymptotic behavior of the stationary probabilities for twodimensional positive random walks[END_REF] to compute the asymptotics of stationary probabilities for discrete random walks in Z 2 + with jumps to the nearestneighbors in the interior and reflections on the axes. This method proved to be fruitful for the analysis of Green functions and Martin boundary [START_REF] Kourkova | Random walks in $Z_+^2$ with non-zero drift absorbed at the axes[END_REF][START_REF] Kurkova | Martin boundary and elliptic curves[END_REF], and also useful for studying some joining the shortest queue models [START_REF] Kurkova | Malyshev's Theory and JS-Queues. Asymptotics of Stationary Probabilities[END_REF]. The article [START_REF] Malyshev | Asymptotic behavior of the stationary probabilities for twodimensional positive random walks[END_REF] has been a part of Malyshev's global analytic approach to study discrete-time random walks in Z 2 + with four domains of spatial homogeneity (the interior of Z 2 + , the axes and the origin). Namely, in the book [START_REF] Malyshev | Sluchainye bluzhdaniya Uravneniya. Vinera-Khopfa v chetverti ploskosti[END_REF] he made explicit their stationary probability generating functions as solutions of boundary problems on the universal covering of the associated Riemann surface and studied the nature of these functions depending on parameters. G. Fayolle and R. Iasnogorodski [START_REF] Fayolle | Two coupled processors: The reduction to a Riemann-Hilbert problem[END_REF] determined these generating functions as solutions of boundary problems of Riemann-Hilbert-Carleman type on the complex plane. Fayolle, Iansogorodski and Malyshev merged together and deepened their methods in the book [START_REF] Fayolle | Random Walks in the Quarter-Plane[END_REF]. The latter is entirely devoted to the explicit form of stationary probabilities generating functions for discrete random walks in Z 2 + with nearest-neighbor jumps in the interior. The analytic approach of this book has been further applied to the analysis of random walks absorbed on the axes in [START_REF] Kourkova | Random walks in $Z_+^2$ with non-zero drift absorbed at the axes[END_REF]. It has been also especially efficient in combinatorics, where it allowed to study all models of walks in Z 2 + with small steps by making explicit the generating functions of the numbers of paths and clarifying their nature, see [START_REF] Raschel | Counting walks in a quadrant: a unified approach via boundary value problems[END_REF] and [START_REF] Kourkova | On the functions counting walks with small steps in the quarter plane[END_REF].

However, the methods of [START_REF] Fayolle | Random Walks in the Quarter-Plane[END_REF] and [START_REF] Malyshev | Asymptotic behavior of the stationary probabilities for twodimensional positive random walks[END_REF] seem to be essentially restricted to discrete-time models of walks in the quarter plane with jumps in the interior only to the nearest-neighbors. They can hardly be extended to discrete models with bigger jumps, even at distance 2, nevertheless some attempts in this direction have been done in [START_REF] Fayolle | About a possible analytic approach for walks in the quarter plane with arbitrary big jumps[END_REF]. In fact, while for jumps at distance 1 the Riemann surface associated with the random walk is the torus, bigger jumps lead to Riemann surfaces of higher genus, where the analytic procedures of [START_REF] Fayolle | Random Walks in the Quarter-Plane[END_REF] seem much more difficult to carry out. Up to now, as far as we know, neither the analytic approach of [START_REF] Fayolle | Random Walks in the Quarter-Plane[END_REF], nor the asymptotic results [START_REF] Malyshev | Asymptotic behavior of the stationary probabilities for twodimensional positive random walks[END_REF] have been translated to the continuous analogs of random walks in Z 2 + , such as SRBMs in R 2 + , except for some special cases in [START_REF] Baccelli | Analysis of models reducible to a class of diffusion processes in the positive quarter plane[END_REF] and in [START_REF] Foddy | Analysis of Brownian motion with drift, confined to a quadrant by oblique reflection (diffusions, Riemann-Hilbert problem)[END_REF]. This article is the first one in this direction. Namely, the asymptotic expansion of the stationary distribution density for SRBMs is obtained by methods strongly inspired by [START_REF] Malyshev | Asymptotic behavior of the stationary probabilities for twodimensional positive random walks[END_REF]. The aim of this work goes beyond the solution of this particular problem. It provides the basis for the development of the analytic approach of [START_REF] Fayolle | Random Walks in the Quarter-Plane[END_REF] for diffusion processes in cones of R 2 + which is continued in the next articles [START_REF] Franceschi | Tutte's invariant approach for Brownian motion reflected in the quadrant[END_REF] and [START_REF] Franceschi | Explicit expression for the stationary distribution of reflected brownian motion in a wedge[END_REF]. In [START_REF] Franceschi | Explicit expression for the stationary distribution of reflected brownian motion in a wedge[END_REF] the first author and K. Raschel make explicit Laplace transform of the invariant measure for SRBMs in the quarter plane with general parameters of the drift, covariance and reflection matrices. Following [START_REF] Fayolle | Random Walks in the Quarter-Plane[END_REF], they express it in an integral form as a solution of a boundary value problem and then discuss possible simplifications of this integral formula for some particular sets of parameters. The special case of orthogonal reflections from the axes is the subject of [START_REF] Franceschi | Tutte's invariant approach for Brownian motion reflected in the quadrant[END_REF]. Let us note that the analytic approach for SRBMs in R 2 + which is developed in the present paper and continued by the next ones [START_REF] Franceschi | Tutte's invariant approach for Brownian motion reflected in the quadrant[END_REF] and [START_REF] Franceschi | Explicit expression for the stationary distribution of reflected brownian motion in a wedge[END_REF], looks more transparent than the one for discrete models and deprived of many second order details. Last but not the least, contrary to random walks in Z 2 + with jumps at distance 1, it can be easily extended to diffusions in any cones of R 2 via linear transformations, as we observe in the concluding remarks, see Section 5.3. 1.2. Reflected Brownian motion in the quarter plane. We now define properly the twodimensional SRBM and present our results. Let

                     Σ = σ 11 σ 12 σ 12 σ 22 ∈ R 2×2 be a non-singular covariance matrix, µ = µ 1 µ 2 ∈ R 2 be a drift, R = (R 1 , R 2 ) =
r 11 r 12 r 21 r 22 ∈ R 2×2 be a reflection matrix.

Definition 1. The stochastic process Z(t) = (Z 1 (t), Z 2 (t)) is said to be a reflected Brownian motion with drift in the quarter plane R 2 + associated with data (Σ, µ, R) if Z(t) = Z 0 + W (t) + µt + RL(t) ∈ R 2 + , where (i) (W (t)) t∈R + is an unconstrained planar Brownian motion with covariance matrix Σ, starting from 0; (ii) L(t) = (L 1 (t), L 2 (t)); for i = 1, 2, L i (t) is a continuous and non-decreasing process that increases only at time t such as Z i (t) = 0, namely t 0 1 {Z i (s) =0} dL i (s) = 0 ∀t 0; (iii) Z(t) ∈ R 2 + ∀t 0. Process Z(t) exists if and only if r 11 > 0, r 22 > 0 and either r 12 , r 21 > 0 or r 11 r 22 -r 12 r 21 > 0 (see [START_REF] Taylor | Existence and uniqueness of semimartingale reflecting Brownian motions in an orthant[END_REF] and [START_REF] Reiman | A boundary property of semimartingale reflecting Brownian motions[END_REF] which obtain an existence criterion in any dimension). In this case the process is unique in distribution for each given initial distribution of Z 0 .

Columns R 1 and R 2 represent the directions where the Brownian motion is pushed when it reaches the axes, see Figure 1. Proposition 2. The reflected Brownian motion Z(t) associated with (Σ, µ, R) is well defined, and its stationary distribution Π exists and is unique if and only if the data satisfy the following conditions: r 11 > 0, r 22 > 0, r 11 r 22 -r 12 r 21 > 0,

r 22 µ 1 -r 12 µ 2 < 0, r 11 µ 2 -r 21 µ 1 < 0. (1) 
The proof and some more detailed statements can be found in [START_REF] Hobson | Recurrence and transience of reflecting Brownian motion in the quadrant[END_REF][START_REF] Williams | Recurrence classification and invariant measure for reflected Brownian motion in a wedge[END_REF][START_REF] Harrison | Reflected Brownian motion in the quadrant: tail behavior of the stationary distribution[END_REF]. From now on we assume that conditions (1) and (2) are satisfied. The stationary distribution Π is absolutely continuous with respect to Lebesgue measure as it is shown in [START_REF] Harrison | Brownian models of open queueing networks with homogeneous customer populations[END_REF] and [START_REF] Dai | Steady-state analysis of reflected Brownian motions: Characterization, numerical methods and queueing applications[END_REF]. We denote its density by π(x 1 , x 2 ).

1.3. Functional equation for the stationary distribution. Let A be the generator of (W t + µt) t 0 . For each f ∈ C 2 b (R 2 + ) (the set of twice continuously differentiable functions f on R 2 + such that f and its first and second order derivatives are bounded) one has

Af (z) = 1 2 2 i,j=1 σ i,j ∂ 2 f ∂z i ∂z j (z) + 2 i=1 µ i ∂f ∂z i (z).
Let us define for i = 1, 2, D i f (x) = R i |∇f that may be interpreted as generators on the axes. We define now ν 1 and ν 2 two finite boundary measures with their support on the axes: for any Borel set B ⊂ R 2 + ,

ν i (B) = E Π [ 1 0 1 {Z(u)∈B} dL i (u)].
By definition of stationary distribution, for all t 0,

E Π [f (Z(t))] = R 2 + f (z)Π(dz). A similar formula holds true for ν i : E Π [ t 0 f (Z(u))dL i (u)] = t R 2 + f (x)ν i (dx).
Therefore ν 1 and ν 2 may be viewed as a kind of boundary invariant measures. The basic adjoint relationship takes the following form:

for each f ∈ C 2 b (R 2 + ), R 2 + Af (z)Π(dz) + i=1,2 R 2 + D i f (z)ν i (dz) = 0. (3) 
The proof can be found in [START_REF] Harrison | Brownian models of open queueing networks with homogeneous customer populations[END_REF] in some particular cases and then has been extended to a general case, for example in [START_REF] Dai | Reflected Brownian motion in an orthant: numerical methods for steady-state analysis[END_REF]. We now define ϕ(θ) the two-dimensional Laplace transform of Π also called its moment generating function. Let

ϕ(θ) = E Π [exp( θ|Z )] = R 2 + exp( θ|z )Π(dz)
for all θ = (θ 1 , θ 2 ) ∈ C 2 such that the integral converges. It does of course for any θ with θ 1 0, θ 2 0. We have set θ|Z = θ 1 Z 1 + θ 2 Z 2 . Likewise we define the moment generating functions for ν 1 (θ 2 ) and ν 2 (θ 1 ) on C:

ϕ 2 (θ 1 ) = E Π [ 1 0 e θ 1 Z 1 t dL 2 (t)] = R 2 + e θ 1 z ν 2 (dz), ϕ 1 (θ 2 ) = E Π [ 1 0 e θ 2 Z 2 t dL 1 (t)] = R 2 + e θ 2 z ν 1 (dz).
Function ϕ 2 (θ 1 ) exists a priori for any θ 1 with θ 1 0. It is proved in [START_REF] Dai | Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution[END_REF] that it also does for θ 1 with θ 1 ∈ [0, 1 ], up to its first singularity 1 > 0, the same is true for ϕ 1 (θ 2 ). The following key functional equation (proven in [START_REF] Dai | Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution[END_REF]) results from the basic adjoint relationship (3).

Theorem 3. For any θ ∈ R 2 + such ϕ(θ) < ∞, ϕ 2 (θ 1 ) < ∞ and ϕ 1 (θ 2
) < ∞ we have the following fundamental functional equation:

γ(θ)ϕ(θ) = γ 1 (θ)ϕ 1 (θ 2 ) + γ 2 (θ)ϕ 2 (θ 1 ), (4) 
where

     γ(θ) = -1 2 θ|Σθ -θ|µ = -1 2 (σ 11 θ 2 1 + σ 22 θ 2 2 + 2σ 12 θ 1 θ 2 ) -(µ 1 θ 1 + µ 2 θ 2 ), γ 1 (θ) = R 1 |θ = r 11 θ 1 + r 21 θ 2 , γ 2 (θ) = R 2 |θ = r 12 θ 1 + r 22 θ 2 .
(5)

This equation holds true a priori for any θ = (θ 1 , θ 2 ) with θ 1 0, θ 2 0. It plays a crucial role in the analysis of the stationary distribution. 1.4. Results. Our aim is to obtain the asymptotic expansion of the stationary distribution density π(x) = π(x 1 , x 2 ) as x 1 , x 2 → ∞ and x 2 /x 1 → tan (α 0 ) for any given angle α 0 ∈ [0, π/2].

Notation. We write the asymptotic expansion

f (x) ∼ n k=0 g k (x) as x → x 0 if g k (x) = o(g k-1 (x)) as x → x 0 for all k = 1, . . . , n and f (x) -n k=0 g k (x) = o(g n (x)) as x → x 0 .
It will be more convenient to expand π(r cos α, r sin α) as r → ∞ and α → α 0 . We give our final results in Section 5, Theorems 22-25: we find the expansion of π(r cos α, r sin α) as r → ∞ and prove it uniform for α fixed in a small neighborhood O(α

0 ) ⊂]0, π/2[ of α 0 ∈]0, π/2[.
In this section, Theorem 4 below announces the main term of the expansion depending on parameters (µ, Σ, R) and a given direction α 0 . Next, in Section 1.5 we sketch our analytic approach following the main lines of this paper in order to get the full asymptotic expansion of π. We present at the same time the organization of the article. Now we need to introduce some notations. The quadratic form γ(θ) is defined in (4) via the covariance matrix Σ and the drift µ of the process in the interior of R 2 + . Let us restrict ourselves on θ ∈ R 2 . The equation γ(θ) = 0 determines an ellipse E on R 2 passing through the origin, its tangent in it is orthogonal to vector µ, see Figure 2. Stability conditions (1) and (2) imply the negativity of at least one of coordinates of µ, see [START_REF] Dai | Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution[END_REF]Lemma 2.1]. In this article, in order to shorten the number of pictures and cases of parameters to consider, we restrict ourselves to the case µ 1 < 0 and µ 2 < 0, (6) although our methods can be applied without any difficulty to other cases, we briefly sketch some different details at the end of Section 2.4. 

Note that θ(0) = s + 1 , θ(π/2) = s + 2 , and θ(α) is an isomorphism between [0, π/2] and A. Coordinates of θ(α) are given explicitly in (50). One can also construct θ(α) geometrically: first draw a ray r(α) on R 2 + that forms the angle α with θ 1 -axis, and then the straight line l(α) orthogonal to this ray and tangent to the ellipse. Then θ(α) is the point where l(α) is tangent to the ellipse, see Figure 3.

Secondly, consider the straight lines γ 1 (θ) = 0, γ 2 (θ) = 0 defined in (4) via the reflection matrix R. They cross the ellipse E in the origin. Furthermore, due to stability conditions (1) and (2) the line

γ 1 (θ) = 0 [resp. γ 2 (θ) = 0] intersects the ellipse at the second point θ * = (θ * 1 , θ * 2 ) (resp. θ * * = (θ * * 1 , θ * * 2 )) where θ * 2 > 0 (resp. θ * * 1 > 0)
. Stability conditions also imply that the ray γ 1 (θ) = 0 is always "above" the ray γ 2 (θ) = 0, see [START_REF] Dai | Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution[END_REF]Lemma 2.2]. To present our results, we need to define the images of these points via the so-called Galois automorphisms ζ and η of E. Namely, for point θ * = (θ * 1 , θ [START_REF] Majewski | Large Deviations of Stationary Reflected Brownian Motions[END_REF] and [START_REF] Majewski | Large deviations of the steady-state distribution of reflected processes with applications to queueing systems[END_REF].

Finally let s 0 = (0, -2 µ 22 σ 22 ) be the point of intersection of the ellipse E with θ 2 -axis and let s 0 = (-2 µ 11 σ 11 , 0) be the point of intersection of the ellipse with θ 1 -axis, see Figure 3. The following theorem provides the main asymptotic term of π(r cos α, r sin α). [START_REF] Dai | Stationary distribution of a two-dimensional SRBM: geometric views and boundary measures[END_REF]. Let {θ(α 0 ), s 0 } (resp. {s 0 , θ(α 0 )}) be the arc of the ellipse E with end points s 0 and θ(α 0 ) (resp. s 0 and θ(α 0 )) not passing through the origin. We have the following results.

(1) If ζθ * * / ∈ {θ(α 0 ), s 0 } and ηθ * / ∈ {s 0 , θ(α 0 )}, then there exists a constant c(α 0 ) such that

π(r cos α, r sin α) ∼ c(α 0 ) √ r exp -r e α | θ(α) r → ∞, α → α 0 . (8) 
The function c(α) varies continuously on [0, π/2], lim α→0 c(α) = lim α→π/2 c(α) = 0. (2) If ζθ * * ∈}θ(α 0 ), s 0 } and ηθ * / ∈ {s 0 , θ(α 0 ){, then with some constant c 1 > 0

π(r cos α, r sin α) ∼ c 1 exp -r e α | ζθ * * r → ∞, α → α 0 . (9) 
(3) If ζθ * * / ∈}θ(α 0 ), s 0 } and ηθ * ∈ {s 0 , θ(α 0 ){, then with some constant c 2 > 0 

π(r cos α, r sin α) ∼ c 2 exp -r e α | ηθ * r → ∞, α → α 0 . (10) 
π(r cos α, r sin α) ∼ c 1 exp -r e α | ζθ * * + c 2 exp -r e α | ηθ * r → ∞, α → α 0 . ( 11 
)
See Figure 4 for the different cases. (The arcs }a, b} or {a, b{ of E are those not passing through the origin where the left or the right end respectively is excluded).

Let us note that the exponents in Theorem 4 are the same as in the large deviation rate function found in [START_REF] Dai | Stationary distribution of a two-dimensional SRBM: geometric views and boundary measures[END_REF]Thm 3.2]. The same phenomenon is observed for discrete random walks, cf. [START_REF] Malyshev | Asymptotic behavior of the stationary probabilities for twodimensional positive random walks[END_REF] and [START_REF] Ignatyuk | The influence of boundaries in problems on large deviations. Rossi\uı skaya Akademiya Nauk. Moskovskoe[END_REF].

1.5. Sketch of the analytic approach. Organization of the paper. The starting point of our approach is the main functional equation (4) valid for any θ = (θ 1 , θ 2 ) ∈ C 2 with θ 1 0, θ 2 0. The function γ(θ 1 , θ 2 ) in the left-hand side is a polynomial of the second order of θ 1 and θ 2 . The algebraic function Θ 1 (θ 2 ) defined by γ(Θ 1 (θ 2 ), θ 2 ) ≡ 0 is 2-valued and its Riemann surface S θ 2 is of genus 0. The same is true about the 2-valued algebraic function Θ 2 (θ 1 ) defined by γ(θ 1 , Θ 2 (θ 1 )) = 0 and its Riemann surface S θ 1 . The surfaces S θ 1 and S θ 2 being equivalent, we will consider just one surface S defined by the equation γ(θ 1 , θ 2 ) = 0 with two different 2),(3), [START_REF] Dai | Steady-state analysis of reflected Brownian motions: Characterization, numerical methods and queueing applications[END_REF] coverings. Each point s ∈ S has two "coordinates" (θ 1 (s), θ 2 (s)), both of them are complex or infinite and satisfy γ(θ 1 (s), θ 2 (s)) = 0. For any point s = (θ 1 , θ 2 ) ∈ S, there exits a unique point s = (θ 1 , θ 2 ) ∈ S with the same first coordinate and there exists a unique point s = (θ 1 , θ 2 ) ∈ S with the same second coordinate. We say that s = ζs, i.e. s and s are related by Galois automorphism ζ of S that leaves untouched the first coordinate, and that s = ηs, i.e. s and s are related by Galois automorphism η of S that leaves untouched the second coordinate. Clearly ζ 2 = Id, η 2 = Id and the branch points of Θ 1 (θ 2 ) and of Θ 2 (θ 1 ) are fixed points of ζ and η respectively. The ellipse E is the set of points of S where both "coordinates" are real. The construction of S and definition of Galois automorphisms are carried out in Section 2.

Next, unknown functions ϕ 1 (θ 2 ) and ϕ 2 (θ 1 ) are lifted in the domains of S where {s ∈ S : θ 2 (s) 0} and {s ∈ S : θ 1 (s) 0} respectively. The intersection of these domains on S is non-empty, both ϕ 2 and ϕ 1 are well defined in it. Since for any s = (θ 1 (s), θ 2 (s)) ∈ S we have γ(θ 1 (s), θ 2 (s)) = 0, the main functional equation (4) implies:

γ 1 (θ 1 (s), θ 2 (s))ϕ 1 (θ 2 (s)) + γ 2 (θ 1 (s), θ 2 (s))ϕ 2 (θ 1 (s)) = 0 ∀s ∈ S, θ 1 (s) 0, θ 2 (s) 0.
Using this relation, Galois automorphisms and the facts that ϕ 1 and ϕ 2 depend just on one "coordinate" (ϕ 1 depends on θ 2 and ϕ 2 on θ 1 only), we continue ϕ 1 and ϕ 2 explicitly as meromorphic on the whole of S. This meromorphic continuation procedure is the crucial step of our approach, it is the subject of Section 3.1. It allows to recover ϕ 1 and ϕ 2 on the complex plane as multivalued functions and determines all poles of all its branches. Namely, it shows that poles of ϕ 1 and ϕ 2 may be only at images of zeros of γ 1 and γ 2 by automorphisms η and ζ applied several times. We are in particular interested in the poles of their first (main) branch, and more precisely in the most "important" pole (from the asymptotic point of view, to be explained below), that turns out to be at one of points ζθ * * or ηθ * defined above. The detailed analysis of the "main" poles of ϕ 1 and ϕ 2 is furnished in Section 3.2.

Let us now turn to the asymptotic expansion of the density π(x 1 , x 2 ). Its Laplace transform comes from the right-hand side of the main equation (4) divided by the kernel γ(θ 1 , θ 2 ). By inversion formula the density π(x 1 , x 2 ) is then represented as a double integral on {θ : θ 1 = θ 2 = 0}. In Section 4.1, using the residues of the function 1 γ(θ 1 ,•) or 1 γ(•,θ 2 ) we transform this double integral into a sum of two single integrals along two cycles on S, those where θ 1 (s) = 0 or θ 2 (s) = 0. Putting (x 1 , x 2 ) = re α we get the representation of the density as a sum of two single integrals along some contours on S:

π(re α ) = 1 2π √ det Σ I + θ 1 ϕ 2 (s)γ 2 (θ(s)) s e -r θ(s)|eα ds + I + θ 2 ϕ 1 (s)γ 1 (θ(s)) s e -r θ(s)|eα ds . ( 12 
)
We would like to compute their asymptotic expansion as r → ∞ and prove it to be uniform for α fixed in a small neighborhood O(α 0 ), α 0 ∈]0, π/2[. These two integrals are typical to apply the saddle-point method, see [START_REF] Fedoryuk | Asymptotic methods in analysis[END_REF][START_REF] Pemantle | Analytic combinatorics in several variables[END_REF]. The point θ(α) ∈ E defined above is the saddle-point for both of them, this is the subject of Section 4.2. The integration contours on S are then shifted to new ones Γ θ 1 ,α and Γ θ 2 ,α which are constructed in such a way that they pass through the saddle-point θ(α), follow the steepest-descent curve in its neighborhood O(θ(α)) and are "higher" than the saddle-point w.r.t. the level curves of the function θ(s) | e α outside O(θ(α)), see Section 4.3. Applying Cauchy Theorem, the density is finally represented as a sum of integrals along these new contours and the sum of residues at poles of the integrands we encounter deforming the initial ones:

π(re α ) = p∈P α res p ϕ 2 (θ 1 (s)) γ 2 (p) d(θ 1 (p)) e -r θ(p)|eα + p∈P α res p ϕ 1 (θ 2 (s)) γ 1 (p) d(θ 2 (p)) e -r θ(p)|eα 1 2π √ det Σ Γ θ 1 ,α ϕ 2 (s)γ 2 (θ(s)) s e -r θ(s)|eα ds + Γ θ 2 ,α ϕ 1 (s)γ 1 (θ(s)) s e -r θ(s)|eα ds . ( 13 
)
Here P α (resp. P α ) is the set of poles of the first order of ϕ 1 (resp. ϕ 2 ) that are found when shifting the initial contour I + θ 1 to the new one Γ θ 1 ,α (resp. I + θ 2 to Γ θ 2 ,α ), all of them are on the arc {s 0 , θ(α)} (resp. {θ(α), s 0 }) of ellipse E.

The asymptotic expansion of integrals along Γ θ 1 ,α and Γ θ 2 ,α is made explicit by the standard saddle-point method in Section 4.4. The set of poles P α ∪P α is analyzed in Section 4.5 . In Case (1) of Theorem 4 this set is empty, thus the asymptotic expansion of the density is determined by the saddle-point, its first term is given in Theorem 4. In Cases (2), (3) and (4) this set is not empty. The residues at poles over P α ∪ P α in [START_REF] Fayolle | About a possible analytic approach for walks in the quarter plane with arbitrary big jumps[END_REF] bring all more important contribution to the asymptotic expansion of π(re α ) than the integrals along Γ θ 1 ,α and Γ θ 2 ,α . Taking into account the monotonicity of function θ | e α on the arcs {s 0 , θ(α)} and on {θ(α), s 0 }, they can be ranked in order of their importance: clearly, the term associated with a pole p is more important than the one with p if p | e α < p | e α . In Case (2) (resp. (3)) the most important pole is ζθ * * (resp. ηθ * ), as announced in Theorem 4. In Case (4) the most important of them is among ζθ * * and ηθ * , as stated in Theorem 4 as well. The expansion of integrals in [START_REF] Fayolle | About a possible analytic approach for walks in the quarter plane with arbitrary big jumps[END_REF] along Γ θ 1 ,α and Γ θ 2 ,α via the saddle-point method provides all smaller asymptotic terms than those coming from the poles. Section 5 is devoted to the results: they are stated from two points of view in Sections 5.1 and 5.2 respectively. First, given an angle α 0 , we find the uniform asymptotic expansion of the density π(r cos(α), r sin(α)) as r → ∞ and α ∈ O(α 0 ) depending on parameters (Σ, µ, R): Theorems 22 -25 of Section 5.1 state it in all cases of parameters (1)-(4). Second, in Section 5.2, given a set parameters (Σ, µ, R), we compute the asymptotics of the density for all angles α 0 ∈]0, π/2[, see Theorems 26-28. Remark. The constants mentioned in Theorem 4 and all those in asymptotic expansions of Theorems 22-28 are specified in terms of functions ϕ 1 and ϕ 2 . In the present paper we leave unknown these functions in their initial domains of definition although we carry out explicitly their meromorphic continuation procedure and find all their poles. In [START_REF] Franceschi | Explicit expression for the stationary distribution of reflected brownian motion in a wedge[END_REF] the first author and K. Raschel make explicit these functions solving some boundary value problems. This determines the constants in asymptotic expansions in Theorems 4, 22-28 .

Future works. The case of parameters such that ζθ * * = θ(α) and ηθ * ∈ {s 0 , θ(α){ or the case such that ηθ * = θ(α) and ζθ * * ∈ {s 0 , θ(α){ are not treated in Theorem 4. Theorem 25 gives a partial result but not at all as satisfactory as in all other cases. In fact, in these cases the saddle-point θ(α) coincides with the "main" pole of ϕ 1 or ϕ 2 . The analysis is then reduced to a technical problem of computing the asymptotics of an integral whenever the saddle-point coincides with a pole of the integrand or approaches to it. We leave it for the future work.

In the cases α = 0 and α = π/2, the tail asymptotics of the boundary measures ν 1 and ν 2 has been found in [START_REF] Dai | Stationary distribution of a two-dimensional SRBM: geometric views and boundary measures[END_REF] and the constants have been specified in [START_REF] Franceschi | Explicit expression for the stationary distribution of reflected brownian motion in a wedge[END_REF]. It would be also possible to find the asymptotics of π(r cos α, r sin α) where r → ∞ and α → 0 or α → π/2. This problem is reduced to obtaining the asymptotics of an integral when the saddle-point θ(0) or θ(π/2) coincides with a branch point of the integrand ϕ 1 or ϕ 2 . It can be solved by the same methods as in [START_REF] Kourkova | Random walks in $Z_+^2$ with non-zero drift absorbed at the axes[END_REF] for discrete random walks.

Riemann surface S

2.1. Kernel γ(θ 1 , θ 2 ). The kernel of the main functional equation

γ(θ 1 , θ 2 ) = 1 2 (σ 11 θ 2 1 + σ 22 θ 2 2 + 2σ 12 θ 1 θ 2 ) + µ 1 θ 1 + µ 2 θ 2
can be written as

γ(θ 1 , θ 2 ) = ã(θ 2 )θ 2 1 + b(θ 2 )θ 1 + c(θ 2 ) = a(θ 1 )θ 2 2 + b(θ 1 )θ 2 + c(θ 1 ) where ã(θ 2 ) = 1 2 σ 11 , b(θ 2 ) = σ 12 θ 2 + µ 1 , c(θ 2 ) = 1 2 σ 22 θ 2 2 + µ 2 θ 2 , a(θ 1 ) = 1 2 σ 22 , b(θ 1 ) = σ 12 θ 1 + µ 2 , c(θ 1 ) = 1 2 σ 11 θ 2 1 + µ 1 θ 1 .
The equation γ(θ 1 , θ 2 ) ≡ 0 defines a two-valued algebraic function Θ 1 (θ 2 ) such that γ(Θ 1 (θ 2 ), θ 2 ) ≡ 0 and a two-valued algebraic function Θ 2 (θ 1 ) such that γ(θ 1 , Θ 2 (θ 1 ) ≡ 0. These functions have two branches:

Θ + 1 (θ 2 ) = -b(θ 2 )+ √ d(θ 2 ) 2ã(θ 2 ) , Θ - 1 (θ 2 ) = -b(θ 2 )- √ d(θ 2 ) 2ã(θ 2 )
, and

Θ + 2 (θ 1 ) = -b(θ 1 )+ √ d(θ 1 ) 2a(θ 1 ) , Θ - 2 (θ 1 ) = -b(θ 1 )- √ d(θ 1 ) 2a(θ 1 ) . where d(θ 2 ) = θ 2 2 (σ 2 12 -σ 11 σ 22 ) + 2θ 2 (µ 1 σ 12 -µ 2 σ 11 ) + µ 2 1 , d(θ 1 ) = θ 2 1 (σ 2 12 -σ 11 σ 22 ) + 2θ 1 (µ 2 σ 12 -µ 1 σ 22 ) + µ 2 2 . The discriminant d(θ 1 ) (resp. d(θ 2 )) has two zeros θ + 1 , θ - 1 (resp. θ + 2 and θ - 2 )
that are both real and of opposite signs:

θ - 1 = (µ 2 σ 12 -µ 1 σ 22 )- √ D 1 det Σ < 0, θ + 1 = (µ 2 σ 12 -µ 1 σ 22 )+ √ D 1 det Σ > 0, θ - 2 = (µ 1 σ 12 -µ 2 σ 11 )- √ D 2 det Σ < 0, θ + 2 = (µ 1 σ 12 -µ 2 σ 11 )+ √ D 2 det Σ > 0, with notations D 1 = (µ 2 σ 12 -µ 1 σ 22 ) 2 + µ 2 2 det Σ and D 2 = (µ 1 σ 12 -µ 2 σ 11 ) 2 + µ 2 1 det Σ. Then Θ 2 (θ 1 ) (resp. Θ 1 (θ 2 )
) has two branch points: θ - 1 and θ + 1 (resp θ - 2 and θ + 2 ). We can compute:

Θ ± 2 (θ - 1 ) = µ 1 σ 12 -µ 2 σ 11 + σ 12 σ 22 √ D 1 det Σ , Θ ± 2 (θ + 1 ) = µ 1 σ 12 -µ 2 σ 11 -σ 12 σ 22 √ D 1 det Σ , Θ ± 1 (θ - 2 ) = µ 2 σ 12 -µ 1 σ 22 + σ 12 σ 11 √ D 2 det Σ , Θ ± 1 (θ + 2 ) = µ 2 σ 12 -µ 1 σ 22 -σ 12 σ 11 √ D 2 det Σ . Furthermore, d(θ 1 ) (resp. d(θ 2 )) being positive on ]θ - 1 , θ + 1 [ (resp. ]θ - 2 , θ + 2 [) and negative on R \ [θ - 1 , θ + 1 ] (resp. R \ [θ - 2 , θ + 2 ]) , both branches Θ ± 2 (θ 1 ) (resp. Θ ± 1 (θ 2 )) take real values on [θ - 1 , θ + 1 ] (resp. [θ - 2 , θ + 2 ]) and complex values on R \ [θ - 1 , θ + 1 ] (resp. R \ [θ - 2 , θ + 2 ]). Figure 5. Functions Θ ± 2 (θ 1 ) and Θ ± along the contour R θ 2 = {s : θ 2 (s) ∈ R\]θ - 2 , θ + 2 [}.
This contour goes from s ∞ to s ∞ and back as well, but via s - 2 and s + 2 . Let E be the set of points of S where both coordinates θ 1 (s) and θ 2 (s) are real. Then 5 and7, it contains all branch points s ± 1 and s ± 2 . 2.3. Galois automorphisms η and ζ. Now we need to introduce Galois automorphisms on S. For any s ∈ S \ s ± 1 there is a unique

E = {s ∈ S : θ 1 (s) ∈ [θ - 1 , θ + 1 ]} = {s ∈ S : θ 2 (s) ∈ [θ - 2 , θ + 2 ]}. One can see E on Figures
s = s ∈ S \ s ± 1 such that θ 1 (s) = θ 1 (s ). Furthermore, if s ∈ S 1 θ 1 then s ∈ S 2
θ 1 and vice versa. On the other hand, whenever s = s - 

1 or s = s + 1 (i.e. θ 1 (s) = θ ± 1 is one of branch points of Θ 2 (θ 1 )) we have s = s . Also, since γ(θ 1 (s), θ 2 (s)) = 0,
2 (θ 1 ) at θ 1 = θ 1 (s) = θ 1 (s ). By Vieta's theorem we obtain θ 2 (s)θ 2 (s ) = c(θ 1 (s)) a(θ 1 (s)) . Similarly, for any s ∈ S \ s ± 2 , there exists a unique s = s ∈ S \ s ± 2 such that θ 2 (s) = θ 2 (s ). If s ∈ S 1 θ 2 then s ∈ S 2 θ 2 and vice versa. On the other hand, if s = s - 2 or s = s + 2 (i.e. θ 2 (s) = θ ± 2 is one of branch points of Θ 1 (θ 2 )) we have s = s . Moreover, since γ(θ 1 (s), θ 2 (s)) = 0, θ 1 (s) and θ 1 (s ) give both values of function Θ 1 (θ 2 ) at θ 2 = θ 2 (s) = θ 2 (s ). Again, by Vieta's theorem θ 1 (s)θ 1 (s ) = c(θ 2 (s)) ã(θ 2 (s))
. With the previous notations we now define the mappings ζ : S → S and η : S → S by

ζs = s if θ 1 (s) = θ 1 (s ), ηs = s if θ 2 (s) = θ 2 (s )
Following [START_REF] Malyshev | Sluchainye bluzhdaniya Uravneniya. Vinera-Khopfa v chetverti ploskosti[END_REF] we call them Galois automorphisms of S. Then ζ 2 = η 2 = Id, and

θ 2 (ζs) = c(θ 1 (s)) a(θ 1 (s)) 1 θ 2 (s) , θ 1 (ηs) = c(θ 2 (s)) ã(θ 2 (s)) 1 θ 1 (s) . Points s -
1 and s + 1 (resp. s - 2 and s + 2 ) are fixed points for ζ (resp. η). It is known that conformal automorphisms of a sphere (that can be identified to C ∪ ∞) are transformations of type z → az+b cz+d where a, b, c, d are any complex numbers satisfying ad -bc = 0. The automorphisms ζ and η, which are conformal automorphisms of S, have each two fixed points and are involutions (because ζ 2 = η 2 = Id). We can deduce from it that ζ (resp. η) is a symmetry w.r.t. the axis A 1 (resp. A 2 ) that passes through fixed points s - 1 and s + 1 (resp. s - 2 and s + 2 ). In other words ζ (resp. η) is a rotation of angle π, around D 1 (resp. A 2 ), see Figure 8. Let us draw the axis A orthogonal to the plane generated by the axes A 1 and A 2 and passing through the intersection point of A 1 and A 2 . We denote by β the angle between the axes A 1 and A 2 . Automorphisms ηζ and ζη are then rotations of angle 2β and -2β around the axis A. This axis goes through points s ∞ and s ∞ which are fixed points for ηζ and ζη, see Figure 8.

In the particular case Σ = Id, we have ηζ = ζη, the axes A 1 and A 2 are orthogonal. We deduce that β = π 2 and that ηζ and ζη are symmetries w.r.t. the axis A.

2.4. Domains of initial definition of ϕ 1 and ϕ 2 on S. We would like to lift functions ϕ 1 (θ 2 ) and ϕ 2 (θ 1 ) on S naturally as ϕ 1 (s) = ϕ 1 (θ 2 (s)) and ϕ 2 (s) = ϕ 2 (θ 1 (s)). But it can not be done for all s ∈ S, ϕ 1 (θ 2 ) and ϕ 2 (θ 1 ) being not defined on the whole of C. Nevertheless, we are able to do it for points s where θ 2 (s) or θ 1 (s) respectively have non-positive real parts. Therefore, in this section we study the domains on S where it holds true. For any θ 1 ∈ C with R(θ 1 ) = 0, Θ 2 (θ 1 ) takes two values Θ ± 2 (θ 1 ). Let us observe that under assumption that the second coordinate of the interior drift is negative, i.e µ 2 < 0 we have RΘ - 2 (θ 1 ) 0 and RΘ + 2 (θ 1 ) > 0. Furthermore RΘ - 2 (θ 1 ) = 0 only at θ 1 = 0, and then

Θ - 2 (θ 1 ) = 0. The domain ∆ 1 = {s ∈ S : Rθ 1 (s) < 0}
is simply connected and bounded by the contour

I θ 1 = {s : Rθ 1 (s) = 0}.
The contour I θ 1 can be represented as the union of I -

θ 1 ∪ I + θ 1 , where I - θ 1 = {s : Rθ 1 (s) = 0, Rθ 2 (s) 0}, I + θ 1 = {s : Rθ 1 (s) = 0, Rθ 2 (s) > 0}, see Figure 9. The contour I - θ 1 goes from s ∞ to s ∞ crossing the set of real points E at s 0 = (0, 0), while I + θ 1 goes from s ∞ to s ∞ crossing E at s 0 = (0, -2 µ 2 σ 22 )
where the second coordinate is positive. In the same way, under assumption that the first coordinate of the interior drift is negative, i.e. µ 1 < 0, for any

θ 2 ∈ C with R(θ 2 ) = 0, Θ 1 (θ 2 ) takes two values Θ ± 1 (θ 2 ), where RΘ - 1 (θ 2 ) 0 and RΘ + 1 (θ 2 ) > 0, moreover RΘ - 1 (θ 2 ) = 0 only at θ 2 = 0, and then Θ - 1 (θ 2 ) = 0. The domain ∆ 2 = {s ∈ S : Rθ 2 (s) < 0}
is simply connected and bounded by the contour I θ 2 = {s : Rθ 2 (s) = 0}. The contour I θ 2 can be represented as the union of I - real points E at s 0 = (0, 0), while I + θ 2 goes from s ∞ to s ∞ crossing E at s 0 = (-2 µ 1 σ 11 , 0), see Figure 9.

θ 2 ∪ I + θ 2 , where I - θ 2 = {s : Rθ 2 (s) = 0, Rθ 1 (s) 0}, I + θ 2 = {s : Rθ 2 (s) = 0, Rθ 1 (s) > 0}. The contour I - θ 2 goes from s ∞ to s ∞ crossing the set of
Assume now that the interior drift has both coordinates negative, i.e. [START_REF] Dai | Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution[END_REF]. From what said above, I - θ 1 \ s 0 ⊂ ∆ 2 and I - θ 2 \ s 0 ⊂ ∆ 1 . The intersection ∆ 1 ∩ ∆ 2 consists of two connected components, both bounded by I - θ 1 and I - θ 2 . The union ∆ 1 ∪ ∆ 2 is a connected domain, but not simply connected because of the point s 0 . The domain ∆ 1 ∪ ∆ 2 ∪ s 0 is open, simply connected and bounded by I + θ 1 and I + θ 2 , see Figure 9. We set ∆ = ∆ 1 ∪ ∆ 2 . Note that in the cases of stationary SRBM with drift µ having one of coordinates non-negative, the location of contours

I + θ 1 , I - θ 1 , I + θ 2 , I - θ 2 on S is different.
For example, assume that µ 2 > 0. Then RΘ - 2 (θ 1 ) < 0 and RΘ + 2 (θ 1 ) 0, the contour I - θ 1 goes from s ∞ to s ∞ crossing the set of real points E at s 0 = (0, -2 µ 2 σ 22 ) where the second coordinate is negative, while I + θ 1 goes from s ∞ to s ∞ crossing E at s 0 = (0, 0). In order to shorten the number of cases and pictures, we restrict ourselves in this paper to the case (6) of both coordinates of µ negative, although all our methods work in these other cases as well.

Parametrization of S.

It is difficult to visualize on three-dimensional sphere different points, contours, automorphisms and domains introduced above that will be used in future steps. For this reason we propose here an explicit and practical parametrisation of S. Namely we identify S to C ∪ {∞} and in the next proposition we explicitly define h θ 1 and h θ 2 two recoveries introduced in Section 2.2. Such a parametrisation allows to visualize better in two dimensions the sphere S ≡ C ∪ {∞} and all sets we are interested in, as we can see in Figure 10. Proposition 5. We set the following covering maps The equation γ(θ 1 (s), θ 2 (s)) = 0 is valid for any s ∈ S. Galois automorphisms can be written

h θ 1 : C ∪ {∞} ≡ S -→ C ∪ {∞} s -→ h θ 1 (s) = θ 1 (s) := θ + 1 +θ - 1 2 + θ + 1 -θ -
ζ(s) = 1 s , η(s) = e 2iβ
s , and ηζ (resp. ζη) is a rotation around s ∞ ≡ 0 of angle 2β (resp. -2β) according to counterclockwise direction.

Proof. We set

h θ 1 (s) = θ 1 (s) := θ + 1 +θ - 1 2 + θ + 1 -θ - 1 4 (s + 1 s ). One can notice that h θ 1 (1) = θ + 1 , h θ 1 (-1) = θ - 1 , h θ 1 (1) = 0, h θ 1 (-1) = 0.
This parametrization is practical because it leads to a similar rational recovery h θ 2 . In order to make the equation γ(θ 1 (s), θ 2 (s)) = 0 valid for any s ∈ S we naturally set

θ 2 (s) = Θ + 2 (θ 1 (s)) := -b(θ 1 (s)) + d(θ 1 (s)) 2a(θ 1 (s))
and we are going to show that θ 2 (s) =

θ + 2 +θ - 2 2 + θ + 2 -θ - 2 4
( s e iβ + e iβ s ) where β = arccos -σ 12 √ σ 11 σ 22 . We note that d(θ 1 (s)) is the opposite of the square of a rational fraction

d(θ 1 (s)) = -det Σ(θ 1 (s) -θ + 1 )(θ 1 (s) -θ - 1 ) = -det Σ( θ + 1 -θ - 1 4 ) 2 (-2 + (s + 1 s ))(2 + (s + 1 s )) = -det Σ( θ + 1 -θ - 1 4 ) 2 (s - 1 s ) 2 0.
Then we have

θ 2 (s) = Θ + 2 (θ 1 (s)) := -σ 12 θ + 1 +θ - 1 2 + θ + 1 -θ - 1 4 (s + 1 s ) -µ 2 + i √ det Σ( θ + 1 -θ - 1 4 )(s -1 s ) σ 22 . (14) 
Furthermore this parametrization leads to simple expressions for Galois automorphisms η and ζ. We derive immediately that θ

1 (s) = θ 1 ( 1 s ) and θ 2 ( 1 s ) = Θ - 2 (θ 1 (s)). Then we have ζ(s) = 1 s .
Next we search η as an automorphism of the form ηs = K s . Since θ 2 (s) is of the form θ 2 (s) = us + v s + w with constants u, v, w defined by ( 14), then

θ 2 (s) = θ 2 ( K s ) with K = u v . This leads to η(s) = K s with K = -σ 12 -i √ det Σ -σ 12 + i √ det Σ .
After setting It follows that ηζ and ζη are just rotations for angles 2β et -2β respectively. By symmetry considerations we can now rewrite

K = e 2iβ with β = arccos - σ 12 √ σ 11 σ 22 we have ζ(s) = 1 s , η(s) = e 2iβ
θ 2 (s) = √ uv( s √ K + √ K s ) + w = θ + 1 -θ - 1 4 σ 11 σ 22 ( s √ K + √ K s ) + -σ 12 ( θ + 1 +θ - 1 2
) -µ 2 σ 22

.

For i = 1, 2 we have θ + i -θ - i = 2 √ D i det Σ and σ 11 D 1 = σ 22 D 2 .
Then we obtain

θ + 1 -θ - 1 4 σ 11 σ 22 = θ + 2 -θ - 2 4
.

Moreover

-σ 12 ( θ + 1 +θ - 1 2 )-µ 2 σ 22 = Θ ± 2 (θ + 1 )+Θ ± 2 (θ - 1 ) 2 = θ + 2 +θ - 2 2
(the last equality follows from elementary geometric properties of an ellipse). It implies

h θ 2 (s) = θ 2 (s) = θ + 2 + θ - 2 2 + θ + 2 -θ - 2 4 ( s √ K + √ K s )
concluding the proof.

Figure 10 shows different sets we are interested in according to the parametrization we have just introduced. We have

θ 1 (1) = θ + 1 , θ 1 (-1) = θ - 1 , θ 2 (e iβ ) = θ + 2 et θ 2 (e i(π+β) ) = θ - 2 , θ 1 (0) = θ 2 (0) = ∞, θ 1 (∞) = θ 2 (∞) = ∞. Then we write s + 1 = 1, s - 1 = -1, s + 2 = e iβ , s - 2 = e i(π+β) , s ∞ = 0, s ∞ = ∞. It is easy to see that E = {s ∈ C| |s| = 1}, and R θ 1 = R, R θ 2 = e iβ R.
We can determine the equation of the analytic curves of pure imaginary points of θ i . We have

I θ 1 = {s ∈ S|θ 1 (s) ∈ iR}. If we write s = e iω with ω = a + ib ∈ C we find that (θ 1 (s)) = θ + 1 +θ - 1 2 + θ + 1 -θ - 1 2
cos(a) cosh(b). It follows that 

I θ 1 = {s = e iω ∈ S|ω = a + ib, a ∈ R, b ∈ R, cos(a) cosh(b) = θ + 1 + θ - 1 θ - 1 -θ + 1 }.
I θ 2 = {s = e iω ∈ S|ω = a + ib, a ∈ R, b ∈ R, cos(a) cosh(b) = θ + 2 + θ - 2 θ - 2 -θ + 2 }.
We can easily notice that

ζI - θ 1 = I + θ 1 , ζI + θ 1 = I - θ 1 and ηI - θ 2 = I + θ 2 , ηI + θ 2 = I - θ 2 .
3. Meromorphic continuation of ϕ 1 and ϕ 2 on S 3.1. Lifting of ϕ 1 and ϕ 2 on S and their meromomorphic continuation.

Lifting of ϕ 1 and ϕ 2 on S. Since the function θ 1 → ϕ 2 (θ 1 ) is holomorphic on the set {θ 1 ∈ C : θ 1 < 0} and continuous up to its boundary, we can lift it to ∆1 = {s ∈ S : θ 1 (s) 0} as

ϕ 2 (s) = ϕ 2 (θ 1 (s)), ∀s ∈ ∆1 .
In the same way we can lift ϕ 1 to ∆2 as

ϕ 1 (s) = ϕ 1 (θ 2 (s)), ∀s ∈ ∆2 .
Moreover, by definition of Galois automorphisms, functions ϕ 1 and ϕ 2 are invariant w.r.t. η and ζ respectively:

ϕ 2 (ζs) = ϕ 2 (θ 1 (ζs)) = ϕ 2 (θ 1 (s)) = ϕ 2 (s), ∀s ∈ ∆1 , ϕ 1 (ηs) = ϕ 1 (θ 2 (ηs)) = ϕ 1 (θ 2 (s)) = ϕ 1 (s), ∀s ∈ ∆2 . ( 15 
) Functions γ 1 and γ 2 can be lifted naturally on the whole of S as

γ 1 (s) = γ 1 (θ 1 (s), θ 2 (s)), γ 2 (s) = γ 2 (θ 1 (s), θ 2 (s)) ∀s ∈ S.
Since γ(θ 1 (s), θ 2 (s)) = 0, then the right-hand side in the main functional equation ( 4) equals zero for any θ = (θ 1 (s), θ 2 (s)) such that s ∈ ∆1 ∩ ∆2 . Thus we have

γ 1 (s)ϕ(s) + γ 2 (s)ϕ 2 (s) = 0, ∀s ∈ ∆1 ∩ ∆2 . ( 16 
)
Continuation of ϕ 1 and ϕ 2 on ∆.

Lemma 6. Functions ϕ 1 and ϕ 2 (defined on ∆2 and ∆1 respectively) can be meromorphically continued on ∆ ∪ {s 0 } by setting

ϕ 1 (s) = -γ 2 (s) γ 1 (s) ϕ 2 (s) if s ∈ ∆ 1 , and ϕ 2 (s) = -γ 1 (s) γ 2 (s) ϕ 1 (s) if s ∈ ∆ 2 . Furthermore, γ 1 (s)ϕ 1 (s) + γ 2 (s)ϕ 2 (s) = 0 ∀s ∈ ∆ ∪ {s 0 }, ( 17 
) ϕ 1 (s) = ϕ(ηs), ϕ 2 (s) = ϕ(ζs) ∀s ∈ ∆ ∪ {s 0 }. ( 18 
)
Proof. The open set ∆ 1 ∩ ∆ 2 is non-empty and bounded by the curve I - θ 1 ∪ I - θ 2 . Functional equation ( 16) is valid for s ∈ ∆ 1 ∩∆ 2 . It allows us to continue functions ϕ 1 and ϕ 2 as meromorphic on ∆ as stated in this lemma. The functional equation ( 16) is then valid on the whole of ∆, as well as the invariance formulas [START_REF] Franceschi | Explicit expression for the stationary distribution of reflected brownian motion in a wedge[END_REF].

The function ϕ 1 (s) is defined in a neighborhood O(s 0 ) of s 0 as ϕ 1 (θ 2 (s)) for any s ∈ ∆ 2 ∩O(s 0 ) and -γ 2 (s) γ 1 (s) ϕ 2 (θ 1 (s)) for any s ∈ ∆ 1 ∩ O(s 0 ). Furthermore, lim s→s 0 ,s∈∆ 2 ϕ 1 (s) = E π ( 1 0 dL 1 t )
by definition of the function ϕ 1 . It is easy to see that function γ 2 (s) γ 1 (s) has a removable singularity at s 0 and to compute lim s→s 0 γ 2 (s)

γ 1 (s) = r 12 µ 2 -r 22 µ 1 r 11 µ 2 -r 21 µ 1 . Hence lim s→s 0 ,s∈∆ 1 ϕ 1 (s) = lim s→s 0 ,s∈∆ 1 - γ 2 (s) γ 1 (s) ϕ 2 (θ 1 (s)) = r 22 µ 1 -r 12 µ 2 r 11 µ 2 -r 21 µ 1 E π ( 1 0 dL 2 t ).
For any s ∈ ∆ 1 ∩ ∆ 2 ∩ O(s 0 ), by ( 16) ϕ 1 (s) = -γ 2 (s) γ 1 (s) ϕ 2 (s), from where lim s→s 0 ,s∈∆ 2 ϕ 1 (s) = lim s→s 0 ,s∈∆ 1 ϕ 1 (s). Hence, function ϕ 1 (s) has a removable singularity at s 0 , and so is ϕ 2 (s) by the same arguments.

Functions ϕ 1 and ϕ 2 can be then of course continued to ∆. Moreover we have the following lemma.

Lemma 7. The domains ∆ ∪ ηζ ∆ and ∆ ∪ ζη ∆ are simply connected.

Proof. Since ηζ and ζη are just rotations for a certain angle 2β or -2β, it suffices to check that ηζI + θ 1 ⊂ ∆ and that ζηI + θ 2 ∈ ∆. In fact, ζI

+ θ 1 = I - θ 1 ⊂ ∆2 . Since η ∆2 = ∆2 , it follows that ηI - θ 1 ⊂ ∆2 ⊂ ∆.
By the same arguments ζηI + θ 2 ∈ ∆. One can refer to Figure 11. Now we would like to continue function ϕ 1 (resp. ϕ 2 ) on ηζ ∆ (resp. ζη ∆) as ϕ 1 (s) = G(s)ϕ 1 (ζηs) for all s ∈ ηζ ∆, where G(s) is a known function and ϕ 1 (ζηs) is well defined since ζηs ∈ ∆. We could then continue this procedure for (ηζ) 2 ∆, (ηζ) 3 ∆, (resp. (ζη) 2 ∆, (ζη) 3 ∆) etc and hence to define ϕ 1 (resp. ϕ 2 ) on the whole of S. Unfortunately, the domain ∆ is closed, from where it will be difficult to establish that the function is meromorphic. From the other hand, neither ∆ ∪ ηζ∆ nor (∆ ∪ s 0 ) ∪ ηζ(∆ ∪ s 0 ) are simply connected, there is a "gap" at s 0 . See figure 11. To avoid this technical complication, we will first continue ϕ 1 and ϕ 2 on a slightly bigger open domain ∆ defined as follows. Let

∆ 1 = {s : Rθ 1 (s) < }, ∆ 2 = {s : Rθ 2 (s) < } (19) 
and 12. The same is true about the contour Lemma 8. Functions ϕ 1 (s) and ϕ 2 (s) can be continued as meromorphic functions on ∆ . Moreover equation [START_REF] Franceschi | Tutte's invariant approach for Brownian motion reflected in the quadrant[END_REF] and the invariance formulas (18) remain valid.

∆ = ∆ 1 ∪ ∆ 2 ( 
I θ 1 = I ,- θ 1 ∪ I ,+ θ 1 where I ,- θ 1 , I ,+ θ 1 both go from s ∞ to s ∞ , I ,- θ 1 ⊂ ∆ 2 and I ,+ θ 1 ∩ ∆ = ∅. See Figure
I θ 2 = I ,- θ 2 ∪ I ,+ θ 2 limiting ∆ 2 , namely I ,- θ 2 ⊂ ∆ 1 and I ,+ θ 2 ∩ ∆ = ∅.
Proof. For any s ∈ ∆ 1 \ ∆, we have ζs ∈ ∆ 2 ⊂ ∆, except for s = s 0 , for which ζs 0 = s 0 . Anyway, function ϕ 2 (s) can be continued as meromorphic function on ∆ 1 /∆ as :

ϕ 2 (s) = ϕ 2 (ζs), ∀s ∈ ∆ 1 \ ∆.
Then ϕ 1 (s) can be continued on the same domain by [START_REF] Franceschi | Tutte's invariant approach for Brownian motion reflected in the quadrant[END_REF]:

ϕ 1 (s) = - γ 2 (s) γ 1 (s) ϕ 2 (s) ∀s ∈ ∆ 1 \ ∆.
Similarly, the formulas

ϕ 1 (s) = ϕ 1 (ηs), ϕ 2 (s) = - γ 1 (s) γ 2 (s) ϕ 1 (s) ∀s ∈ ∆ 2 \ ∆
determine the meromorphic continuation of ϕ 1 (s) and ϕ 2 (s) on ∆ 2 \ ∆.

Lemma 9. The domains ∆ ∩ηζ∆ and ∆ ∩ζη∆ are open simply connected domains. Function ϕ 1 (s) can be continued as meromorphic on ∆ ∪ ηζ∆ by the formula :

ϕ 1 (s) = γ 1 (ζηs)γ 2 (ηs) γ 2 (ζηs)γ 1 (ηs) ϕ 1 (ζηs), ∀s ∈ ηζ∆ continuation by rotation of 2β. ( 21 
)
Function ϕ 2 (s) can be continued as meromorphic on ∆ ∪ ζη∆ by the formula :

ϕ 2 (s) = γ 2 (ηζs)γ 1 (ζs) γ 1 (ηζs)γ 2 (ζs) ϕ 2 (ηζs), ∀s ∈ ζη∆ continuation by rotation of -2β. (22) 
Proof. We have shown in the proof of Lemma 7 that ηζI + θ 1 ⊂ ∆ ⊂ ∆ , and that ζηI + θ 2 ⊂ ∆ ⊂ ∆ . Since ζη and ηζ are just rotations, this implies that ∆ ∩ ηζ∆ and ∆ ∩ ζη∆ are non-empty open simply connected domains, and that ∆ ∪ ηζ∆ and ∆ ∪ ζη∆ are simply connected.

Let us take s ∈ ∆ ∩ ηζ∆ . Then ζηs ∈ ∆ ∩ ζη∆ and we can write by ( 17)

γ 1 (ζηs)ϕ 1 (ζηs) + γ 2 (ζηs)ϕ 2 (ζηs) = 0. (23) 
Furthermore, we have shown in the proof of Lemma 7 that ζηI + θ 2 ∈ ∆1 . It follows that for all small enough ζηI ,+ θ 2 ∈ ∆ 1 , and hence

∆ ∩ ζη∆ ⊂ ∆ 1 . Since ζ∆ 1 = ∆ 1 , then ζ(∆ ∩ ζη∆ ) ⊂ ∆ 1 ⊂ ∆ .
Then ζ(ζηs) = ηs ∈ ∆ and we can write [START_REF] Franceschi | Tutte's invariant approach for Brownian motion reflected in the quadrant[END_REF] and [START_REF] Franceschi | Explicit expression for the stationary distribution of reflected brownian motion in a wedge[END_REF] at this point as well:

γ 1 (ηs)ϕ 1 (ηs) + γ 2 (ηs)ϕ 2 (ηs) = 0. ( 24 
)
ϕ 1 (ηs) = ϕ 1 (s) (25) 
ϕ 2 (ηs) = ϕ 2 (ζηs).

(26) Combining ( 25) and [START_REF] Hobson | Recurrence and transience of reflecting Brownian motion in the quadrant[END_REF] we get ϕ 1 (s) = -γ 2 (ηs)ϕ 2 (ηs)/γ 1 (ηs) from where by ( 26)

ϕ 1 (s) = - γ 2 (ηs) γ 1 (ηs) ϕ 2 (ζηs). (27) 
Due to (23)

ϕ 2 (ζηs) = - γ 1 (ζηs) γ 2 (ζηs) ϕ 1 (ζηs). (28) 
Substituting ( 28) into [START_REF] Kourkova | On the functions counting walks with small steps in the quarter plane[END_REF], we obtain the formula (21) valid for any s ∈ ∆ ∩ ηζ∆ . By principle of analytic continuation this allows to continue ϕ 1 on ηζ∆ as meromorphic function. The proof is completely analogous for ϕ 2 .

We may now in the same way, using formulas ( 21) and ( 22), continue function ϕ 1 (s) (resp. ϕ 2 (s)) as meromorphic on (ηζ) 2 ∆ , (ηζ) 3 ∆ (resp. 

ϕ 1 (s) = γ 1 (ζηs)γ 2 (ηs) γ 2 (ζηs)γ 1 (ηs) ϕ 1 (ζηs), ∀s ∈ (ηζ) k ∆ , k = 1, 2 . . . , n, continuation by rotation of 2β. ( 29 
)
Function ϕ 2 (s) can be continued as meromorphic on ζη∆ , (ζη) 2 ∆ , • • • (ζη) n ∆ by the formulas :

ϕ 2 (s) = γ 2 (ηζs)γ 1 (ζs) γ 1 (ηζs)γ 2 (ζs) ϕ 2 (ηζs), ∀s ∈ (ζη) k ∆ , k = 1, 2, . . . n, continuation by rotation of -2β. (30) 
Proof. We proceed by induction on k = 1, 2, . . . n. For k = 1, this is the subject of the previous lemma. For any k = 2, . . . , n, assume the formula (29) for any s ∈ (ηζ) k-1 ∆. The domain

(ηζ) k-1 ∆ ∩ (ηζ) k ∆ = (ηζ) k-1 (∆ ∩ ηζ∆ ) is a
non empty open domain by Lemma 9, (ηζ) k-1 being just the rotation for the angle 2(k -1)β. The formula ( 29) is valid for any s ∈ (ηζ) k-1 ∆ ∩ (ηζ) k ∆ by induction assumption. Hence, by the principle of meromorphic continuation it is valid for any s ∈ (ηζ) k ∆ . The same is true for the formula [START_REF] Latouche | Product-form characterization for a two-dimensional reflecting random walk[END_REF].

Proceeding as in Lemma 10 by rotations, we will continue ϕ 1 soon on the first half of S, that is S 1 θ 2 , then the whole of S and go further, turning around S for the second time, for the third, etc up to infinity. In fact, each time we complete this procedure on one of two halves of S, we recover a new branch of the function ϕ 1 as function of θ 2 ∈ C. So, going back to the complex plane, we continue this function as multivalued and determine all its branches. The same is true for ϕ 2 if we proceed by rotations in the opposite direction. This procedure could be presented better on the universal covering of S, but for the purpose of the present paper it is enough to complete it only on one-half of S, that is to study just the first (main) branch of ϕ 1 and ϕ 2 . We summarize this result in the following theorem. We recall that S = S 1 θ 1 ∪ S 2 θ 1 and we denote by S 1 θ 1 the half that contains s 0 (and not s 0 , as ζs 0 = s 0 ). In the same way S = S 1 θ 2 ∪ S 2 θ 2 and we denote by S 1 θ 2 the half that contains s 0 (and not s 0 , as ηs 0 = s 0 ), see Figure 10.

Theorem 11. For any s ∈ S 1 θ 2 there exists n 0 such that (ζη) n s ∈ ∆. Let us define ϕ 1 (s) = γ 1 ((ζη) n s) . . . γ 1 (ζηs) γ 2 ((ζη) n s) . . . γ 2 (ζηs)

γ 2 (η(ζη) n-1 s) . . . γ 2 (ηs) γ 1 (ηζη) n-1 s) . . . γ 1 (ηs) ϕ 1 ((ζη) n s) (31) 
Then the function ϕ 1 (s) is meromorphic on S 1 θ 2 . For any s ∈ S 1 θ 1 , there exists n 0 such that (ηζ) n s ∈ ∆. Let us define ϕ 2 (s) = γ 2 ((ηζ) n s) . . . γ 2 (ηζs) γ 1 ((ηζ) n s) . . . γ 1 (ηζs)

γ 1 (ζ(ηζ) n-1 s) . . . γ 1 (ηs) γ 2 (ζηζ) n-1 s) . . . γ 2 (ζs) ϕ 1 ((ηζ) n s) (32) 
Then the function ϕ 2 (s) is meromorphic on S 1 θ 1 .

Proof. It is a direct corollary of Lemma 7 and Lemma 10.

3.2.

Poles of functions ϕ 1 and ϕ 2 on S. It follows from meromorphic continuation procedure that all poles of ϕ 1 (s) and ϕ 2 (s) on S are located on the ellipse E, they are images of zeros of γ 1 and γ 2 by automorphisms η and ζ applied several times. Then all poles of all branches of ϕ 2 (s)

(resp. ϕ 2 (s)) on C θ 1 (resp. C θ 2 ) are on the real segment [θ - 1 , θ + 1 ] (resp. [θ - 2 , θ + 2 ]
). Notations of arcs on E. Let us remind that we denote by {s 1 , s 2 } an arc of the ellipse E with ends at s 1 and s 2 not passing through the origin, see Theorem 4. From now on, we will denote in square brackets ]s 1 , s 2 [ or [s 1 , s 2 ] an arc of E going in the anticlockwise direction from s 1 to s 2 .

In order to compute the asymptotic expansion of stationary distribution density, we are interested in poles of ϕ 1 on the arc ]s 0 , s + 2 [ and in those of ϕ 2 on the arc ]s + 1 , s 0 [. To determine the main asymptotic term, we are particularly interested in the pole of ϕ 1 (θ 2 (s)) on ]s 0 , s + 2 [ closest to s 0 and in the one of ϕ 2 (θ 1 (s)) on ]s + 1 , s 0 [ closest to s 0 . We identify them in this section.

We remind that θ * is a zero of γ 1 (s) on E different from s 0 and that θ * * is a zero of γ 2 (s) on E different from s 0 . Their coordinates are 

θ * = 2 r 21 µ 1 -
Lemma 12.

(

) If θ * * ∈]s 0 , s + 1 [, then ζθ * * is a pole of ϕ 2 (θ 1 (s)) on ]s + 1 , s 0 [. (2) If θ * ∈]s + 2 , s 0 [, then ηθ * is a pole of ϕ 1 (θ 2 (s)) on ]s 0 , s + 2 [. Proof. By meromorphic continuation procedure ϕ 2 (ζθ * * ) = γ 2 (ηθ * * )γ 1 (θ * * )ϕ 2 (ηθ * * ) γ 2 (θ * * )γ 1 (ηθ * * ) . ( 1 
) 35 
Let us check that the numerator in ( 35) is non zero, this will prove the statement (1) the lemma.

It is clear that γ 1 (θ * * ) = 0 due to stability conditions (1) and ( 2). Suppose that γ 2 (ηθ * * ) = 0. This could be only if ηθ * * = θ * * ∈]s 0 , s + 1 [, thus θ * * = s - 2 where θ 2 (s - 2 ) < 0 and consequently ϕ 1 (ηθ * * ) < ∞. But by meromorphic continuation of ϕ 2 (θ 1 (s)) to the arc {s ∈ E : θ 2 (s) < 0} we have:

ϕ 2 (ηθ * * 1 ) = - γ 1 (ηθ * * )ϕ 1 (ηθ * * 2 ) γ 2 (ηθ * * )
, from where by [START_REF] Malyshev | Sluchainye bluzhdaniya Uravneniya. Vinera-Khopfa v chetverti ploskosti[END_REF] 

ϕ 2 (ζθ * * ) = - γ 1 (θ * * ) γ 2 (θ * * ) ϕ 1 (ηθ * * 2 ).
Then ζθ * * is clearly a pole of ϕ 2 , this finishes the proof of statement (1) of the lemma in this particular case. Otherwise γ 2 (ηθ * * ) = 0.

Let us finally check that ϕ 2 (ηθ * * ) = 0. Let us first observe that ϕ 2 (θ 1 (s)) = 0 for any s ∈ E with one of two coordinates non-positive. In fact, if the first coordinate θ 1 (s) of s is non-positive, then ϕ 2 (θ 1 (s)) = 0 by its definition. If s has the second coordinate θ 2 (s) non-positive, then ϕ 2 (θ 1 (s)) = -γ 1 (s) γ 2 (s) ϕ 1 (θ 2 (s)) where γ 1 (s) can not have zeros with the second coordinate nonpositive by stability conditions and neither ϕ 1 (θ 2 (s)) by its definition. Hence, ϕ 2 (θ 1 (s)) = 0 on the arc {s ∈ E : θ 1 (s) 0 or θ 2 (s) 0}.

It remains to consider the case where both coordinates of ηθ * * are positive, i.e. θ * * ∈]ηs 0 , s + 1 [ where the parameters are such that s 1,+ 2 > θ 2 (ηs 0 ) > 0 and to show that ϕ 2 (ηθ * * 1 ) = 0. Suppose the contrary, that ϕ 2 (ηθ * * ) = 0. Then there are zeros of ϕ 2 on ]ηs + 1 , s 0 [ and among these zeros there exists θ 0 the closest one to s 0 . By meromorphic continuation

ϕ 2 (θ 0 1 ) = γ 2 (ηζθ 0 )γ 1 (ζθ 0 )ϕ 2 (ηζθ 0 ) γ 2 (ζθ 0 1 )γ 1 (ηζθ 0 ) , (36) 
where ηζθ 0 ∈]θ 0 , s 0 ]. First of all, we note that ϕ 2 (ηζθ 0 ) = 0 if ηζθ 0 ∈ [θ 0 , s 0 [, since θ 0 is the closest zero to s 0 , and ϕ 2 (ηζθ 0 ) = 0 if ηζθ 0 ∈ [s 0 , s 0 ], because one of coordinates of ηζθ 0 is non-positive within this segment. Hence, ϕ 2 (ηζθ 0 ) = 0 for any point ηζθ 0 ∈]θ 0 , s 0 [. Furthermore, since ηζθ 0 ∈]θ 0 , s 0 [, then ηζθ 0 = θ * * and thus γ 2 (ηζθ 0 ) = 0 except for ηζθ 0 = s 0 . As for this particular case ηζθ 0 = s 0 , we would have ϕ 2 (θ 0 ) = -γ 1 (s 0 )ϕ 1 (s 0 )γ -1 2 (s 0 ) = 0, so that θ 0 = ζηs 0 can not be a zero of ϕ 2 .

The point ζθ 0 ∈ ζ[ηθ * * , s 0 ] = ζη[ηs 0 , θ * * ] that is the segment [ηs 0 , θ * * ] rotated for the angle -2β. Hence ζθ 0 is located on E below θ * * . Then γ 1 (ζθ 0 ) = 0 combined with γ 2 (θ * * ) = 0 is impossible by stability conditions (1) and (2). Thus γ 1 (ζθ 0 ) = 0. It follows from [START_REF] Malyshev | Asymptotic behavior of the stationary probabilities for twodimensional positive random walks[END_REF] that the first candidate for the closest pole of ϕ 2 to s 0 on ]s + 1 , s 0 [. Furthermore, θ * ∈]ηs + 1 , s 0 [, so that ζηθ * is the second candidate to be the closest pole of ϕ 2 to s 0 on ]s + 1 , s 0 [. We see at the picture that ζηθ * is closer to s 0 than ζη * * .

On the right figure the parameters are such that θ 1 (s + 2 ) < 0 and θ 2 (s + 1 ) < 0. We see θ * ∈ ]s + 2 , s 0 [, then ηθ * is immediately the closest pole of ϕ 1 to s 0 on ]s 0 , s + 2 [. Since θ * * ∈]s 0 , s + 1 [, then there are no poles of ϕ 2 on ]s + 1 , s 0 [. We will also need the following two lemmas.

Lemma 14.

(1) Assume that θ 2 (s + 1 ) > 0. Then for any s ∈]ηs + 1 , s 0 [ we have θ 2 (ζηs) > θ 2 (ηs).

(2) Assume that θ 1 (s + 2 ) > 0. Then for any s ∈]s 0 , ζs + 2 [ we have θ 1 (ηζs) > θ 1 (ζs). Proof. Since θ 2 (s + 1 ) > 0, then θ 2 (ζηs 0 )-θ 2 (ηs 0 ) > 0. Consider the function f (s) = θ 2 (ζs)-θ 2 (s) for s ∈ [s 0 , s + 1 ]. It depends continuously on s on this arc. We note that f (s 0 ) = θ 2 (ζηs 0 )θ 2 (ηs 0 ) > 0, f (s + 1 ) = 0. Furthermore, since s - 1 ∈ [s 0 , s + 1 ], then f (s) = 0 for all s ∈]s 0 , s 

(ηθ * ) = θ 1 (ζηθ * ) and θ 1 (ζθ * * ) < θ 1 (ηζθ * * ), θ 2 (ηθ * ) < θ 2 (ζηθ * ) and θ 2 (ζθ * * ) = θ 2 (ηζθ * * ).
Then θ 1 (ηθ * ) < θ 1 (ηζθ * * ), θ 2 (ηθ * ) < θ 2 (ηζθ * * ). This means that that ηθ * is the closest pole of ϕ 1 (θ 2 (s)) to s 0 , ηθ * = ηζθ * * , so that (b1) is impossible for ϕ 1 (θ 2 (s)), then we have (a1).

In the same way assumption (b1) leads to (a2). Thus (b1), (b2) can not hold true simultaneously, the lemma is proved.

Contribution of the saddle-point and of the poles to the asymptotic expansion

4.1. Stationary distribution density as a sum of integrals on S. By the functional equation (4) and the inversion formula of Laplace transform (we refer to [START_REF] Doetsch | Introduction to the Theory and Application of the Laplace Transformation[END_REF] and [START_REF] Brychkov | Multidimensional Integral Transformations[END_REF]), the density π(x 1 , x 2 ) can be represented as a double integral

π(x 1 , x 2 ) = 1 (2πi) 2 i∞ -i∞ i∞ -i∞ e -x 1 θ 1 -x 2 θ 2 ϕ(θ 1 , θ 2 )dθ 1 dθ 2 = -1 (2πi) 2 i∞ -i∞ i∞ -i∞ e -x 1 θ 1 -x 2 θ 2 γ 1 (θ)ϕ 1 (θ 2 ) + γ 2 (θ)ϕ 2 (θ 1 ) γ(θ) dθ 1 dθ 2 . ( 40 
)
We now reduce it to a sum of single integrals.

Lemma 16. For any

(x 1 , x 2 ) ∈ R 2 + π(x 1 , x 2 ) = I 1 (x 1 , x 2 ) + I 2 (x 1 , x 2 )
where

I 1 (x 1 , x 2 ) = 1 2πi i∞ -i∞ ϕ 2 (θ 1 )γ 2 (θ 1 , Θ + 2 (θ 1 ))e -x 1 θ 1 -x 2 Θ + 2 (θ 1 ) dθ 1 d(θ 1 ) (41) 
and

I 2 (x 1 , x 2 ) = 1 2πi i∞ -i∞ ϕ 1 (θ 2 )γ 1 (Θ + 1 (θ 2 ), θ 2 )e -x 1 Θ + 1 (θ 2 )-x 2 θ 2 dθ 2 d(θ 2 ) . ( 42 
)
Proof. By inversion formula ( 40)

π(x 1 , x 2 ) = -1 2πi i∞ -i∞ ϕ 2 (θ 1 )e -x 1 θ 1 1 2πi i∞ -i∞ γ 2 (θ) γ(θ) e -x 2 θ 2 dθ 2 dθ 1 + -1 2πi i∞ -i∞ ϕ 1 (θ 2 )e -x 2 θ 2 1 2πi i∞ -i∞ γ 1 (θ) γ(θ) e -x 1 θ 1 dθ 1 dθ 2 .
Now it suffices to show the following formulas

-1 2πi i∞ -i∞ γ 2 (θ)e -x 2 θ 2 γ(θ) dθ 2 = γ 2 (θ 1 , Θ + 2 (θ 1 )) d(θ 1 ) e -x 2 Θ + 2 (θ 1 ) , (43) 
-1 2πi i∞ -i∞ γ 1 (θ)e -x 1 θ 1 γ(θ) dθ 1 = γ 1 (Θ + 1 (θ 2 ), θ 2 ) d(θ 2 ) e -x 1 Θ + 1 (θ 2 ) . ( 44 
)
Let us prove [START_REF] Williams | On the Approximation of Queuing Networks in Heavy Traffic[END_REF]. For any

θ 1 ∈ iR \ {0}, the function γ(θ) = σ 22 2 (θ 2 -Θ + 2 (θ 1 ))(θ 2 -Θ - 2 (θ 1
)) has two zeros Θ + 2 (θ 1 ) and Θ - 2 (θ 1 ). Their real parts are of opposite signs: (Θ - 2 (θ 1 )) < 0 and (Θ + 2 (θ 1 )) > 0. Thus for any fixed

θ 1 ∈ iR \ {0}, function γ 2 (θ)e -x 2 θ 2 γ(θ)
of the argument θ 2 has two poles on the complex plane C θ 2 , one at Θ - 2 (θ 1 ) with negative real part and another one at

Θ + 2 (θ 1 ) with positive real part. Let us construct a contour C R = [-iR, iR] ∪ {Re it | t ∈] -π/2, π/2[} composed of
the purely imaginary segment [-iR, iR] and the half of the circle with radius R and center 0 on C θ 2 , see Figure 14. For R large enough Θ + 2 (θ 1 ) is inside the contour. The integral of γ 2 (θ)e -x 2 θ 2 γ(θ) over this contour taken in the counter-clockwise direction equals the residue at the unique pole of the integrand:

1 2πi C R γ 2 (θ)e -x 2 θ 2 γ(θ) dθ 2 = res θ 2 =Θ + 2 (θ 1 ) γ 2 (θ)e -x 2 θ 2 γ(θ) = γ 2 (θ 1 , Θ + 2 (θ 1 )) (σ 22 /2)(Θ + 2 (θ 1 ) -Θ - 2 (θ 1 )) e -x 2 Θ + 2 (θ 1 ) = γ 2 (θ 1 , Θ + 2 (θ 1 )) d(θ 1 ) e -x 2 Θ + 2 (θ 1 )
for all large enough R 0.

(45)

14. Contour C R on C θ 2 .
Let us take the limit of this integral as R → ∞:

lim R→∞ C R γ 2 (θ)e -x 2 θ 2 γ(θ) dθ 2 = -lim R→∞ iR -iR γ 2 (θ)e -x 2 θ 2 γ(θ) dθ 2 + lim R→∞ {Re it |t∈]-π 2 , π 2 [} γ 2 (θ)e -x 2 θ 2 γ(θ) dθ 2 . ( 46 
)
The last term equals

lim R→∞ {Re it |t∈]-π 2 , π 2 [} γ 2 (θ)e -x 2 θ 2 γ(θ) dθ 2 = lim R→∞ π 2 -π 2 γ 2 (θ 1 , Re it ) γ(θ 1 , Re it ) e -x 2 Re it iRe it dt. ( 47 
)
We note that sup

R>0 sup t∈]-π 2 , π 2 [ |iRe it γ 2 (θ 1 ,Re it ) γ(θ 1 ,Re it ) | < ∞ and sup R>0 sup t∈]-π 2 , π 2 [ |e -x 2 Re it | 1. Furthermore |e -x 2 Re it | = e -x 2 R cos t → 0 as R → ∞ for all t ∈] -π 2 , π 2 
[. Then by dominated convergence theorem the limit (47) equals 0 as R → ∞. Hence, due to (45) and ( 46)

γ 2 (θ 1 , Θ + 2 (θ 1 )) (σ 22 /2)(Θ + 2 (θ 1 ) -Θ - 2 (θ 1 )) e -x 2 Θ + 2 (θ 1 ) = lim R→∞ C R γ 2 (θ)e -x 2 θ 2 γ(θ) dθ 2 = i∞ -i∞ γ 2 (θ)e -x 2 θ 2 γ(θ) dθ 2 ,
that proves [START_REF] Williams | On the Approximation of Queuing Networks in Heavy Traffic[END_REF] for any θ 1 ∈ iR \ {0}. The proof of ( 44) is analogous. Note also that the integral

1 2πi i∞ -i∞ ϕ 2 (θ 1 )γ 2 (θ 1 , Θ + 2 (θ 1 ))e -x 1 θ 1 -x 2 Θ + 2 (θ 1 ) dθ 1 d(θ 1 )
is absolutely convergent. In fact sup

θ 1 ∈iR |ϕ 2 (θ 1 )| ν 2 (R 2 + ) by definition of ϕ 2 . It is elementary to see that sup θ 1 ∈iR |γ 2 (θ 1 , Θ + 2 (θ 1 ))d -1/2 (θ 1 )| < ∞. Furthermore, for any θ 1 ∈ iR, Θ + 2 (θ 1 ) = σ -1 22 (-µ 2 + d(θ 1 )
), thus for some constant c > 0 we have Θ + 2 (θ 1 ) > c| θ 1 |. Then the integral is absolutely convergent. This concludes the proof of formula [START_REF] Williams | Recurrence classification and invariant measure for reflected Brownian motion in a wedge[END_REF]. The proof of ( 42) is completely analogous.

Remark. These integrals are equal to those on the Riemann surface S along properly oriented contours I + θ 1 and I + θ 2 respectively. Thanks to the parametrization of Section 2.5 we have

dθ 1 d(θ 1 ) = dθ 2 d(θ 2 ) = ids s √ det Σ . ( 48 
)
Then we can write for x = (x 1 , x 2 ) ∈ R 2 + the density π(x 1 , x 2 ) as a sum of two integrals on S :

I 1 + I 2 = 1 2π √ det Σ I + θ 1 ϕ 2 (s)γ 2 (θ(s)) s e -θ(s)|x ds + 1 2π √ det Σ I + θ 2 ϕ 1 (s)γ 1 (θ(s)) s e -θ(s)|x ds. 4.2. Saddle-point. Let us fix α ∈]0, π/2[ and put (x 1 , x 2 ) = re α = r(cos(α), sin(α))
where α ∈]0, π/2[, Our aim now is to find the asymptotic expansion of π(r cos(α), r sin(α)), that is the one of the sum

I 1 + I 2 = 1 2π √ det Σ I + θ 1 ϕ 2 (s)γ 2 (θ(s)) s e -r θ(s)|eα ds + 1 2π √ det Σ I + θ 2 ϕ 1 (s)γ 1 (θ(s)) s e -r θ(s)|eα ds
(49) as r → ∞ and to prove that for any α 0 ∈]0, π/2[ this asymptotic expansion is uniform in a small neighborhood O(α 0 ) ∈]0, π/2[. These integrals are typical to apply the saddle-point method, see [START_REF] Fedoryuk | Asymptotic methods in analysis[END_REF] or [START_REF] Pemantle | Analytic combinatorics in several variables[END_REF]. Let us study the function θ(s) | e α on S and its critical points.

Lemma 17.

(i) For any α ∈]0, π/2[ function θ(s) | e α has two critical points on S denoted by θ + (α) and θ -(α). Both of them are on ellipse E, θ

+ (α) ∈]s + 1 , s + 2 [, θ -(α) ∈]s - 1 , s - 2 [. Both of them are non-degenerate.
(ii) The coordinates of θ + (α) = (θ + 1 (α), θ + 2 (α)) are given by formulas :

θ ± 1 (α) = µ 2 σ 12 -µ 1 σ 22 det Σ ± 1 det Σ D 1 1 + tan(α) 2 (σ 22 -tan(α)σ 12 ) 2 det Σ θ ± 2 (α) = µ 1 σ 12 -µ 2 σ 11 det Σ ± 1 det Σ D 2 1 + tan(α) 2 (σ 11 -tan(α)σ 12 ) 2 det Σ (50) where notations D 1 = (µ 2 σ 12 -µ 1 σ 22 ) 2 + µ 2 2 det Σ and D 2 = (µ 1 σ 12 -µ 2 σ 11 ) 2 + µ 2 1 det Σ are used.
With the parametrization of Section 2.5 the corresponding points on S are such that:

s ± (α) 2 = cos α(θ + 1 -θ - 1 ) + sin α(θ + 2 -θ - 2 )e iβ cos α(θ + 1 -θ - 1 ) + sin α(θ + 2 -θ - 2 )e -iβ . (iii) Function θ + (α) is an isomorphism between [0, π/2] and A = [s 1,+ , s 2,+ ], lim α→0 θ + (α) = s + 1 , lim α→π/2 θ + (α) = s + 2 . Function θ -(α) is an isomorphism between [0, π/2] and [s 1,-, s 2,-], lim α→0 θ -(α) = s - 1 , lim α→π/2 θ -(α) = s - 2 . (iv) Function θ(s) | e α is strictly increasing on the arc [θ -(α), θ + (α)] of E and strictly decreasing on the arc [θ + (α), θ -(α)]. Namely, θ + (α) is its maximum on E and θ -(α) is its minimum: θ + (α) = argmax s∈E θ(s) | e α θ -(α) = argmin s∈E θ(s) | e α .
Proof. Let us look for critical points with coordinates

(θ 1 , θ 2 ) of θ(s) | e α on S. Equa- tion (θ 1 cos(α) + θ 2 (θ 1 ) sin(α)) θ 1 = 0 implies tan(α) dθ 2 dθ 1 = -1. Substituting it into equation γ(θ 1 , θ 2 (θ 1 )
) θ 1 ≡ 0 and writing also γ(θ 1 , θ 2 ) ≡ 0 we get the system of two equations

-σ 11 θ 1 tan(α) + σ 22 θ 2 + σ 12 θ 1 -σ 12 θ 2 tan(α) -µ 1 tan(α) + µ 2 = 0 σ 11 θ 2 1 + σ 22 θ 2 2 + 2σ 12 θ 1 θ 2 + µ 1 θ 1 + µ 2 θ 2 = 0 from where we compute θ -(α) = (θ - 1 (α), θ - 2 (α)) and θ + (α) = (θ + 1 (α), θ + 2 (α))
explicitly as announced in (50). We check directly that d 2 θ 2 dθ 1 = 0 at these points, so they are non-degenerate critical points. It is also easy to see from (50) that θ - 1 (α) is strictly increasing from branch point θ - 1 to θ 1 (θ - 2 ) and that θ + 1 (α) is strictly decreasing from branch point θ + 1 to θ 1 (θ + 2 ) when α runs the segment [0, π/2]. In the same way θ - 2 (α) is strictly decreasing from θ 2 (θ - 1 ) to θ - 2 and θ + 2 (α) is strictly increasing from θ 2 (θ + 1 ) to θ + 2 when α runs the segment [0, π/2]. This proves assertions (i)-(iii).

Finally, since there are no critical points on E except for θ + (α) and θ

-(α), function θ(s) | e α is monotonous on the arcs [θ -(α), θ + (α)] and [θ + (α), θ -(α)]. In view of the inequality θ + (α) | e α > θ -(α) | e α , assertion (iv) follows.
Notation of the saddle-point. From now one we are interested in point θ + (α) that we denote by θ(α) for shortness. The steepest-descent contour γ α . The level curves {s : θ(s) | e α = θ(α) | e α } are orthogonal at θ(α) and subdivide its neighborhood into four sections. The curves of steepest descent {s : θ(s) | e α = 0} on S are orthogonal at θ(α) as well, see Lemma 1.3, Chapter IV in [START_REF] Fedoryuk | The saddle-point method. Izdat[END_REF]. One of them coincides with E. We denote the other one by γ α . The real part θ(s) | α is strictly increasing on γ α as s goes far away from θ(α), see [START_REF] Fedoryuk | Asymptotic methods in analysis[END_REF]Section 4.2]. The level curves of functions θ(s) | e α and θ(s) | e α are pictured in Figure 15.

Let z α,+ = (θ 1 (z α,+ ), θ 2 (z α,+ )) and z α,-= (θ 1 (z α,-), θ 2 (z α,-)) be the end points of γ α where θ 1 (z α,-) > 0 and θ 1 (z α,-) < 0. We can fix end points z α,-and z α,+ in such a way that ∀α ∈ O(α 0 ) and some small > 0 For technical reasons we choose small enough such that θ The contour Γ θ 2 ,α is constructed analogously with respect to

z α,± | e α = θ(α) | e α + .
1 (z α,± ) ∈]θ - 1 , θ + 1 [ and θ 2 (z α,± ) ∈ ]θ - 2 , θ + 2 [.
θ 2 -coordinate, Γ θ 2 ,α = Γ 3,- θ 2 ,α ∪ Γ 2,- θ 2 ,α ∪ Γ 1,- θ 2 ,α ∪ γ α ∪ Γ 1,+ θ 2 ,α ∪ Γ 2,+ θ 2 ,α ∪ Γ 3,+ θ 2 ,α ⊂ S 1 θ 2 . The curve of steepest descent γ α is common for Γ θ 1 ,α and Γ θ 2 ,α .
Let us recall that poles of ϕ 1 (s) and ϕ 2 (s) on S may occur only at E. Let us also recall the convention that an arc }a, b{ on E is the one with ends a and b which does not include s 0 = (0, 0). Notation of the sets of poles P α and P α . Let P α be the set of poles of the first order of the function ϕ 2 (θ 1 (s)) on the arc }θ(α), s 0 {. Let P α be the set of poles of the first order of the function ϕ 1 (θ 2 (s)) on the arc }θ(α), s 0 {.

Then the following lemma holds true.

Lemma 18. Let α 0 ∈]0, π/2[ be such that θ(α 0 ) is not a pole of ϕ 1 (θ 2 (s)) neither of ϕ 2 (θ 1 (s)). If P α ∪ P α is not empty, then for any α ∈ O(α 0 )

π(re α ) = p∈P α res p ϕ 2 (θ 1 (s)) γ 2 (p) d(θ 1 (p)) e -r θ(p)|eα + p∈P α res p ϕ (θ 2 (s)) γ 1 (p) d(θ 2 (p)) e -r θ(p)|eα + 1 2π √ det Σ Γ θ 1 ,α ϕ 2 (s)γ 2 (θ(s)) s e -r θ(s)|eα ds + Γ θ 2 ,α ϕ 1 (s)γ 1 (θ(s)) s e -r θ(s)|eα ds. (51) 
If P α ∪ P α is empty, representation (51) stays valid where the corresponding sums over p ∈ P α and p ∈ P α are omitted.

Proof. It follows from the assumption of the lemma that θ(α) is not a pole of ϕ 1 (θ 2 (s)) neither of ϕ 2 (θ 1 (s)) for any α in a small enough neighborhood O(α 0 ). Then we use the representation of the density (49) and apply Cauchy theorem shifting the contours to Γ θ 1 ,α and Γ θ 2 ,α .

In order to find the asymptotic expansion of the density π(r cos(α), r sin(α)), we have to evaluate now the contribution of the residues at poles in (51) and the one of integrals along shifted contours Γ θ 1 ,α and Γ θ 2 ,α . This is the subject of the next two sections. 4.4. Asymptotics of integrals along shifted contours Γ θ 1 ,α and Γ θ 2 ,α . To finish the construction of Γ θ 1 ,α and Γ θ 2 ,α , it remains to specify V (α). For that purpose we consider closer the function f α (s) = θ(s) | e α = θ 1 (s) cos α + θ 2 (s) sin α. Let us define the projection of this function on C θ 1 :

f α (θ 1 ) = θ 1 cos α + Θ + 2 (θ 1 ) sin α, θ 1 ∈ C θ 1 . Clearly f α (s) = f α (θ 1 (s)) = θ(s) | e α on S 1 θ 1 . Lemma 19. (i) For any fixed u ∈ [θ - 1 , θ + 1 ] the function v → (f α (u + iv)) is increasing on [0, ∞[ and decreasing on ] -∞, 0]. (ii) There exist constants d 1 0, d 2 > 0 and V > 0 such that: inf u∈[θ - 1 ,θ + 1 ] (f α (u + iv)) d 1 + d 2 sin(α)|v| ∀v V and ∀v -V, ∀α ∈]0, π/2[. (52) 
Proof. We compute :

(f α (u + iv)) = cos(α)u + sin(α) σ 22 (-σ 12 u -µ 2 + d(u + iv))
with the discriminant d(u

+ iv) = (det Σ)(u + iv -θ - 1 )(θ + 1 -u -iv). Then d(u + iv) = √ det Σ |(u + iv -θ - 1 )(θ + 1 -u -iv)| cos( ω -(u + iv) + ω + (u + iv) 2 )
where ω -(u + iv) et ω + (u + iv) are defined as ω -(u + iv) = arg(θ + 1 -u -iv) and ω + (u + iv) = arg(u + iv -θ - 1 ), see Figure 17. We have

cos( ω -(u + iv) + ω + (u + iv) 2 ) = 1 2 cos(ω -(u + iv) + ω + (u + iv)) + 1 2 = 1 2 cos(ω -(u + iv)) cos(ω + (u + iv)) - 1 2 sin(ω -(u + iv)) sin(ω + (u + iv)) + 1 2 = (u -θ - 1 )(θ + 1 -u) -v(-v) 2|(u + -θ - 1 )(θ + 1 -u -iv)| + 1 2 .
Thus

(f α (u + iv)) = cos(α)u + sin(α) σ 22 -σ 12 u -µ 2 + 1 2 (u -θ - 1 )(θ + 1 -u) + v 2 + |(u + iv -θ - 1 )(θ + 1 -u -iv)|
Both statements of the lemma follow directly from this representation. We may now choose V (α) and such that

V (α) = max V, θ(α) | e α + -d 1 d 2 sin(α) (53) 
in accordance with notations of Lemma 19. This concludes the construction of Γ θ 1 ,α and Γ θ 2 ,α . The asymptotic expansion of integrals along these contours is given in the following lemma. The main contribution comes from the integrals along γ α , while all other parts of integrals are proved to be exponentially negligible by construction.

Lemma 20. Let α 0 ∈]0, π/2[ and O(α 0 ) a small enough neighborhood of α 0 . Then when r → ∞ uniformly for α ∈ O(α 0 ) we have

1 2π √ det Σ Γ θ 1 ,α ϕ 2 (s)γ 2 (θ(s)) s e -r θ(s)|eα ds ∼ k l=0 c l θ 1 (α) r l √ r e -r θ(α)|eα , (54) 
1 2π √ det Σ Γ θ 2 ,α ϕ 1 (s)γ 1 (θ(s)) s e -r θ(s)|eα ds ∼ k l=0 c l θ 2 (α) r l √ r e -r θ(α)|eα . ( 55 
)
The constants c l θ 1 (α), c l θ 2 (α), l = 0, 1, 2, . . . depend continuously of α and can be made explicit in terms of functions ϕ 1 and ϕ 2 and their derivatives at θ(α). Namely

c 0 θ 1 (α) = 1 √ 2π det Σ ϕ 2 (s(α))γ 2 (θ(α)) s(α) f α (s(α)) , c 0 θ 2 (α) = 1 √ 2π det Σ ϕ 1 (s(α))γ 1 (θ(α)) s(α) f α (s(α)) .
Proof. By Lemma 19 (i) and by (48) for any r > 0.

Γ 1,± θ 1 ,α ϕ 2 (θ 1 (s))γ 2 (s) s √ det Σ exp -r θ(s)|eα d s 2V (α) sup s∈Γ 1,± θ 1 ,α ϕ 2 (θ 1 (s))γ 2 (s) d(θ 1 (s)) e -r θ(α)|eα -r . ( 56 
)
The length of Γ ± θ 2 ,α being smaller than (θ + 1 -θ - 1 ), by Lemma 19 (ii) and by (48) for any r > 0

Γ 2,± θ 1 ,α ϕ 2 (θ 1 (s))γ 2 (s) s √ det Σ exp -r θ(s)|eα d s (θ + 1 -θ - 1 ) sup s∈Γ 2,± θ 2 ,α ϕ 2 (θ 1 (s))γ 2 (s) d(θ 1 (s))
e -r(d 1 +d 2 sin(α)V (α))

(57) where due to the choice (53) of V (α) e -r(d 1 +d 2 sin(α)V (α)) e -r θ(α)|eα -r .

(58)

Finally note that for any s ∈ Γ 3,±

θ 1 ,α γ 2 (s) d(θ 1 (s)) = r 1,2 θ 1 (s) d(θ 1 (s)) + r 22 -b(θ 1 (s)) + d(θ 1 (s)) 2a(θ 1 (s)) d(θ 1 (s))
where θ 1 (s) = 0, θ 1 (s) V . Then there exists a constant D > 0 such that |γ 2 (s)d -1/2 (θ 1 (s))| D for any s ∈ Γ 3,± θ 1 ,α and any α ∈]0, π/2[. Moreover |ϕ 2 (θ 1 (s))| ν 1 (R + ) for any s ∈ I θ 1 . Thus by Lemma 19 (ii) and by (48)

Γ 3,± θ 1 ,α ϕ 2 (θ 1 (s))γ 2 (s) s √ det Σ exp -r θ(s)|eα d s 2Dν 1 (R + ) ∞ V (α) e -r(d 1 +d 2 sin(α)v) dv 2Dν 1 (R + ) 1 c sin(α)V (α) e -r(d 1 +d 2 sin(α)V (α)) 2Dν 1 (R + ) 1 c sin(α)V (α) e -r θ(α)|eα -r . ( 59 
)
The contours Γ i,± θ 1 ,α for i = 1, 2 being far away from poles of ϕ 2 and zeros of d(θ 1 (s)) for all α ∈ O(α 0 ), sup α∈O(α 0 ) sup s∈Γ i,± θ 1 ,α

ϕ 2 (θ 1 (s))γ 2 (s) √ d(θ 1 (s))
< ∞ for i = 1, 2, and of course sup α∈O(α 0 ) (sin(α)V (α)) -1 and sup α∈O(α 0 ) V (α) are finite as well. It follows that for some constant C > 0 , any r > 0 and any α ∈ O(α 0 )

Γ 1,± θ 1 ,α ∪Γ 2,± θ 1 ,α ∪Γ 3,± θ 1 ,α ϕ 2 (θ 1 (s))γ 2 (s) s √ det Σ e -r θ(s)|eα d s Ce -r θ(α)|eα -r . (60) 
As for the contour γ α of the steepest descent of the function θ(s) | e α , we apply the standard saddle-point method, see e.g. Theorem 1.7, Chapter IV in [START_REF] Fedoryuk | The saddle-point method. Izdat[END_REF]: for any k > 0 when r → ∞, uniformly ∀α ∈ O(α 0 ),

1 2π √ det Σ γα ϕ 2 (s)γ 2 (θ(s)) s e -r θ(s)|eα d s ∼ k l=0 c l θ 1 (α) r l √ r e -r θ(α)|eα , (61) 
where c 0 θ 1 (α) is given explicitly in the statement of the lemma and all other constants c l θ 1 (α) can be written in terms of the same functions and their derivatives at θ(α). Thus (54) is proved and the proof of (55) for the integral over Γ θ 2 ,α is absolutely analogous. 4.5. Contribution of poles into the of π(r cos(α), r sin(α)). Once Lemma 20 established the asymptotics of integrals along shifted contours Γ θ 1 ,α and Γ θ 2 ,α , let us come back to Lemma 18 and evaluate the contribution to the density of residues at poles over P α ∪ P α . There are two possibilities:

(i) P α ∪ P α is empty, then the asymptotics of the density is determined by the saddle-point via Lemma 20. (ii) P α ∪ P α is not empty. Then due to monotonicity of the function θ(s) | e α on E, see Lemma 17 (iv), for any p ∈ P α ∪ P α we have θ(p) | e α < θ(α) | e α . Hence all residues at poles p ∈ P α ∪ P α bring more important contribution to the asymptotic expansion as r → ∞ than integrals over Γ θ 1 ,α and Γ θ 2 ,α . First of all, we would like to distinguish the set of parameters (Σ, µ, R) under which (i) or (ii) hold true. Secondly, under (ii), we would like to find the most important pole from the asymptotic point of view. Let us look closer at the arc {s 0 , θ(α)}. Under parameters such that θ 1 (s + 2 ) < 0 we have s 0 ∈]s + 1 , s + 2 [, see Figure 18, the left picture. Then for some α ∈]0, π/2[ θ(α ) = s 0 . This arc written in square brackets in the anticlockwise direction is ]s 0 , θ(α)[ for any α ∈]α , π/2[ and the function θ(s) | e α is increasing when s runs from s 0 to θ(α). For any α ∈ [0, α [ this arc is written ]θ(α), s 0 [ and the function θ(s) | e α is decreasing when s runs from θ(α) so s 0 . Under parameters such that θ 1 (s + 2 ) 0, we have s 0 ∈]s + 1 , s + 2 [, see Figure 18 the right picture, from where this arc is written ]θ(α), s 0 [ for any α ∈]0, π/2[. The function θ(s) | e α is decreasing when s runs from θ(α) to s 0 .

Figure 18. The arc

A = [s + 1 , s 2 +] if θ 1 (s + 2 ) < 0, θ 2 (s + 1 ) < 0 on the left picture, if θ 1 (s +
2 ) > 0, θ 2 (s + 1 ) > 0 on the right picture If P α is empty then the statement (b) is proved. Assume that P α is not empty. Then there exist poles of ϕ 1 (θ 2 (s)) on the arc }θ(α), s 0 {. Since function ϕ 1 (θ 2 (s)) is initially well defined and holomorphic at all points with the second coordinate negative, then θ 2 (α) > 0 and the arc is ]s 0 , θ(α)[ when written in the anticlockwise direction. Let θ p be a pole of ϕ 1 (θ 2 (s)) which is the closest to s 0 . Then by Lemma 13 either γ 1 (ηθ p ) = 0 or parameters are such that θ 1 (s + 2 ) > 0, ζηθ p ∈]s 0 , ζs + 2 [ and γ 2 (ζηθ p ) = 0. In the first case ηθ p = θ * is a zero of γ 1 different from s 0 . This implies θ p = ηθ * ∈]s 0 , θ(α)[ which is impossible by assumptions. In the second case ζηθ p = θ * * where ηθ p = ζθ * * ∈ ζ]s 0 , ζs + 2 [= ]s + 2 , s 0 [⊂]θ(α), s 0 [. Thus θ p = ηζθ * * is the closest pole to s 0 . Hence, the closest pole of the first order coincides with it or is further away from s 0 . Since the function < θ(s) | e α > is increasing on ]s 0 , θ(α)[ when s is running from s 0 to θ(α), we derive 5. Asymptotic expansion of the density π(r cos(α), r sin(α)), r → ∞, α ∈ O(α 0 ) 5.1. Given angle α 0 , asymptotic expansion of the density as a function of parameters (Σ, µ, R). We are now ready to formulate and prove the results. In this section we fix an angle α 0 ∈]0, π/2[ and give the asymptotic expansion of the density of stationary distribution depending on parameters (Σ, µ, R), and more precisely on the position of zeros of γ 1 and γ 2 on ellipse E.

In the first theorem parameters (Σ, µ, R) are such that the asymptotic expansion is determined by the saddle-point.

Theorem 22. Let α 0 ∈]0, π/2[, O(α 0 ) is a small enough neighborhood of α 0 . Assume that ζθ * * ∈ {θ(α 0 ), s 0 }, ηθ * ∈ {θ(α 0 ), s 0 )}. Then there exist constants c l (α), l = 0, 1, 2, . . ., such that for any k > 0:

π(r cos(α), r sin(α)) ∼ k l=0 c l (α) r l √ r e -r θ(α)|eα , as r → ∞, uniformly for α ∈ O(α 0 ). (68) 
Constants c l (α) l = 0, 1, 2, . . . depend continuously on α and can be expressed in terms of functions ϕ 1 and ϕ 2 and their derivatives at θ(α). Namely

c 0 (α) = c 0 θ 1 (α) + c 0 θ 2 (α) (69) 
where c 0 θ 1 (α) and c 0 θ 2 (α) are defined in Lemma 20. Proof. By Lemma 17 (iii) θ(α) depends continuously on α, then ζθ * * ∈ {θ(α), s 0 }, ηθ * ∈ {θ(α), s 0 } for all α ∈ O(α 0 ). By Theorem 21 (a) the sets P α and P α are both empty, furthermore, θ(α) is not a pole of ϕ 1 and neither of ϕ 2 . Then by Lemma 18 the density equals the sum of integrals along shifted contours Γ θ 1 ,α and Γ θ 2 ,α the asymptotics of which is found in Lemma 20, c l (α) = c l θ 1 (α) + c l θ 2 (α), l = 0, 1, 2, . . .. In the second theorem parameters (Σ, µ, R) are such that the most important terms of the asymptotic expansion come from the poles of ϕ 1 or ϕ 2 and the smaller ones come from the saddle-point.

Theorem 23. Let α 0 ∈]0, π/2[, O(α 0 ) is a small enough neighborhood of α 0 . Assume that ζθ * * ∈}θ(α 0 ), s 0 } or ηθ * ∈}θ(α 0 ), s 0 }. Assume also that θ(α 0 ) is not a pole of ϕ 1 (θ 2 (s)) neither of ϕ 2 (θ 1 (s)). Then for any k > 0 when r → ∞, uniformly for α ∈ O(α 0 ) we have π(r cos(α), r sin(α)) ∼ Proof. Point θ(α 0 ) being not a pole of ϕ 1 neither of ϕ 2 , one can choose O(α 0 ) small enough such that θ(α) is not a pole of no one of these functions and P α ∪P α = P α 0 ∪P α 0 for all α ∈ O(α 0 ). By assumptions ζθ * * ∈}θ(α 0 ), s 0 } or ηθ * ∈}θ(α 0 ), s 0 }, then by Theorem 21 (b), (c) or (d) P α 0 ∪ P α 0 is not empty. Finally by virtue of Lemma 18 and Lemma 20 the representation (70) holds true.

p∈P α 0 res p ϕ 2 (θ 1 (s)) γ 2 (p) d(θ 1 (p)) e -r θ(p)|eα + p∈P α 0 res p ϕ 1 (θ 2 (s)) γ 1 (p) d(θ 2 (p)) e -r θ(p)|eα + k l=0 c l (α) r l √ r e -r θ(α)|eα . ( 70 
Let us study the main asymptotic term. Statements (i), (ii) and (iii) for α = α 0 follow directly from Theorem 21 (b), (c) and (d). They remain valid for any α ∈ O(α 0 ) due to the continuity of the functions α → θ(p) | e α for any p ∈ P α 0 ∪ P α 0 .

Remark. Under parameters such that ζθ * * ∈}θ(α 0 ), s 0 }, ηθ * ∈}θ(α 0 ), s 0 } and ζθ * * | e α 0 = ηθ * | e α 0 (case (iii)), for any fixed angle α < α 0 , the main asymptotic term is at ηθ * and the second one is at ζθ * * ; for any fixed angle α > α 0 the pole ζθ * * provides the main asymptotic term and ηθ * gives the second one. If r → ∞ and α → α 0 , both of these terms should be taken into account.

In Theorem 23 θ(α 0 ) is assumed not to be a pole of ϕ 1 and neither of ϕ 2 , that is why Lemma 18 applies. Nevertheless, it may happen (for a very few angles and under some sets of parameters) that θ(α 0 ) is a pole of one of these functions. In this case the following theorem holds true.

Theorem 24. Let α 0 ∈]0, π/2[. Assume that ζθ * * ∈}θ(α 0 ), s 0 } or ηθ * ∈}θ(α 0 ), s 0 )}.

Assume also that θ(α 0 ) is a pole of ϕ 1 (θ 2 (s)) or of ϕ 2 (θ 1 (s)).

Then for any δ > 0 there exists a small enough neighborhood O(α 0 ) such that π(r cos(α), r sin(α)) ∼

p∈P α 0 res p ϕ 2 (θ 1 (s)) γ 2 (p) d(θ 1 (p)) e -r θ(p)|eα + p∈P α 0 res p ϕ 1 (θ 2 (s)) γ 1 (p) d(θ 2 (p)) e -r θ(p)|eα + o(e -r( θ(α)|eα -δ) ) r → ∞, uniformly ∀α ∈ O(α 0 ) (71) 
Furthermore, the main term in this expansion is the same as in Theorem 23, cases (i), (ii) and (iii).

Proof. For any δ > 0 one can choose τ ∈}s 0 , θ(α 0 ){ and τ ∈}s 0 , θ(α 0 ){ close enough to θ(α 0 ) so that P α 0 ⊂}s 0 , τ { and P α 0 ⊂}s 0 , τ "{. Furthermore τ and τ can be chosen close enough to α 0 so that θ(α 0 ) | e α 0 -τ | e α 0 < δ/4 and θ(α 0 ) | e α 0 -τ | e α 0 < δ/4. Then by continuity of the functions α → θ(α) | e α , α → τ | e α , α → τ | e α one can fix a small enough neighborhood O(α 0 ) such that

+ 1 2π √ det Σ Γ θ 1 ,α ϕ 2 (s)γ 2 (θ(s)) s e -r θ(s)|eα ds + 1 2π √ det Σ Γ θ 2 ,α
(ii) Assumption ηθ * = {s 0 , θ(α 0 )} is equivalent to the one that γ 1 (ηθ(α 0 )) < 0 or θ 2 (α 0 ) 0. Assumption ηθ * * ∈ {s 0 , θ(α 0 ){ is equivalent to the one that γ 1 (ηθ(α 0 )) > 0 and θ 2 (α 0 ) > 0.

5.2. Given parameters (Σ, µ, R), density asymptotics for all angles α 0 ∈]0, π/2[. In this section we state the asymptotics of the density for all angles α 0 ∈]0, π/2[ once parameters (Σ, µ, R) are fixed. Theorems 26 -28 below are direct corollaries of Theorems 22 -25 and elementary geometric properties of ellipse E and straight lines γ 1 (θ) = 0 and γ 2 (θ) = 0, therefore we do not give their proofs. To shorten the presentation, we restrict ourselves to the main term in the formulations of the results, although of course further terms of the expansions could be written. The different cases of Theorem 26 are illustrated by Figures 19202122232425 The symmetric theorem for the case θ 1 (s + 2 ) 0, θ 2 (s + 1 ) > 0 holds.

Concluding remarks.

Let us remark that the approach of this article applies to the SRBM in any cone of R 2 . Thanks to a linear transformation T ∈ R 2×2 , it is easy to transform Z(t), a reflected Brownian motion of parameters (Σ, µ, R) in a cone into T Z(t) a reflected Brownian motion of parameters (T ΣT t , T µ, T R) in the quarter plane. For example if the initial cone is the set {(x, y)|x 0 and y ax} for some a > 0, we may just take T = 1 -1 a 0 1 . The process T Z(t) lives in a quarter plane. Then the approach of this article applies and its results can be converted to the initial cone by the inverse linear transformation. The analytic approach for discrete random walks is essentially restricted to those with jumps to the nearest neighbors in the interior of the quarter plane. Since a linear transformation can not generally keep the length of jumps, this procedure does not work in the discrete case. That is why the analytic approach in R 2 has a more general scope of applications.

To conclude this article, we sketch the way of recovering the asymptotic results of Dai and Miyazawa [START_REF] Dai | Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution[END_REF] via the approach of this article. Given a directional vector c = (c 1 , c 2 ) ∈ R 2 + , thanks to the representation of Lemma 16 we obtain 

P( c | Z(∞) R) = x 1 0, x 2 0 c 1 x 1 +c 2 x 2 R π(x 1 , x 2 )dx 1 dx 2 = x 1 0, x 2 0 c 1 x 1 +c 2 x 2 R I 1 (x 1 , x 2 )dx 1 dx 2 + x 1 0, x 2 0 c 1 x 1 +c 2 x 2 R

Figure 1 .

 1 Figure 1. Drift µ and reflection vectors R 1 and R 2

Figure 2 .

 2 Figure 2. Ellipse E, straight lines γ 1 (θ) = 0, γ 2 (θ) = 0, points θ * , θ * * , ηθ * , ζθ * * Let us call s + 1 = (θ 1 (s + 1 ), θ 2 (s + 1 )) ∈ E the point of the ellipse with the maximal first coordinate: θ 1 (s + 1 ) = sup{θ 1 : γ(θ 1 , θ 2 ) = 0}. Let us call s + 2 the point of the ellipse with the maximal second coordinate. Let A be the arc of the ellipse with endpoints s + 1 , s + 2 not passing through the origin, see Figure 3. For a given angle α ∈ [0, π/2] let us define the point θ(α) on the arc A as θ(α) = argmax θ∈A θ | e α where e α = (cos α, sin α).(7)

Figure 3 .

 3 Figure 3. Arc A and point θ(α) on E

( 4 )

 4 Let ζθ * * ∈}θ(α 0 ), s 0 } and ηθ * ∈ {s 0 , θ(α 0 ){. If ζθ * * | e α 0 < ηθ * | e α 0 , then the asymptotics (9) is valid with some constant c 1 > 0. If ζθ * * | e α 0 > ηθ * | e α 0 , then the asymptotics (10) is valid with some constant c 2 > 0. If ζθ * * | e α 0 = ηθ * | e α 0 , then then with some constants c 1 > 0 and c 2 > 0

Figure 4 .

 4 Figure 4. Cases (1),(2),(3),[START_REF] Dai | Steady-state analysis of reflected Brownian motions: Characterization, numerical methods and queueing applications[END_REF] 
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 67 Figure 6. Construction of the Riemann surface S

Figure 8 .

 8 Figure 8. Axes A 1 , A 2 and A of Galois automorphisms ζ, η and ζη respectively

1 4(Figure 9 .

 19 Figure 9. Pure imaginary points of S

  s and then ηζ(s) = e 2iβ s, ζη(s) = e -2iβ s.

Figure 10 .

 10 Figure 10. Parametrization of S

Figure 11 .

 11 Figure 11. ∆ and ηζ∆

Figure 12 .

 12 Figure 12. I ,- θ 1 and I ,+ θ 1

  (ζη) 2 ∆ , (ζη) 3 ∆ ) etc proceeding each time by rotation for the angle 2β [resp. -2β]. Namely we have the following lemma. Lemma 10. For any n 1 the domains ∆ ∪ηζ∆ ∪• • •∪(ηζ) n ∆ and ∆ ∪ζη∆ ∪• • • (ζη) n ∆ are open simply connected domains. Function ϕ 1 (s) can be continued as meromorphic subsequently on ηζ∆ , (ηζ) 2 ∆ , • • • (ηζ) n ∆ by the formulas :

Figure 13 .

 13 Figure 13. On the left figure : ηθ * is the closest pole of ϕ 1 to s 0 on ]s 0 , s + 2 [, ζηθ * is the closest pole of ϕ 2 to s 0 on ]s + 1 , s 0 [. On the right figure: ηθ * is the closest pole of ϕ 1 to s 0 on ]s 0 , s + 2 [, there are no poles of ϕ 2 on ]s + 1 , s 0 [

Figure 15 .

 15 Figure 15. Level sets of θ(s) | e α and θ(s) | e α

Figure 16 .

 16 Figure 16. Contour Γ θ 1 ,α on parametrized S and projected on C θ 1 .

Figure 17 .

 17 Figure 17. ω -(u + iv) et ω + (u + iv)

  ) | e α ηζθ * * | e α .But byLemma 14 θ 1 (ηζθ * * ) > θ 1 (ζθ * * ), θ 2 (ηζθ * * ) = θ 2 (ζθ * * ) from where ηζθ * * | e α > ζθ * * | e α . Thus, whenever P α is non empty,min p∈P α θ(p) | e α > ζθ * * | e α .This inequality combined with (65) finishes the proof of (b).The proof of (c) is symmetric. (d) Since θ * 2 = ηθ * 2 > 0 and θ * * 1 = ζθ * * 1 > 0 by stability conditions (1) and (2), then θ(α) has both coordinates positive. The corresponding arcs written in the anticlockwise direction are ]θ(α), s 0[⊂]s + 1 , s 0 [ and ]s 0 , θ(α)[⊂]s 0 , s + 2 [. By Lemma 13 ζθ * * is a pole of ϕ 2 (θ 1 (s)) on the first of these arcs while ηθ * is a pole of ϕ 1 (θ 2 (s)) on the second one. Then one of the statements of Lemma 15 (i), (ii) or (iii) holds true.Under the statement (i), taking into account the monotonicity of the function θ(s) | e α on the arcs, we derive immediately that min p∈P α θ(p) | e α = ζθ * * | e α , and this minimum is achieved on the unique element p = ζθ * * . We derive also that min p∈P α θ(p) | e α = ηθ * | e α and this minimum is achieved on the unique element p = ηθ * . Thus, under the statement (i) of Lemma 15, the theorem is immediate.Assume now (ii) of Lemma 15. Again by monotonicity of θ(s) | e α we deduce min p∈P α θ(p) | e α = ζθ * * | e α where the minimum is achieved at the unique element ζθ * * . Under (ii) all poles of ϕ 1 (θ 2 (s)) on ]s 0 , θ(α)[ are not closer to s 0 than ηζθ * * , so that either P α is empty or min p∈P α θ(p) | e α ηζθ * * | e α . By Lemma 14 θ 1 (ηζθ * * ) > θ 1 (ζθ * * ), θ 2 (ηζθ * * ) = θ 2 (ζθ * * ) from where ηζθ * * | e α > ζθ * * | e α . Hence min p∈P α θ(p) | e α > ζθ * * | e α , and finally min p∈P α∪P α θ(p) | e α = ζθ * * | e α (66) where the minimum is achieved on the unique element ζθ * * . From the other hand, the pole ηθ * ∈]s 0 , θ(α)[ of ϕ 1 (θ 2 (s)) in this case is not closer to s 0 than ηζθ * * . Then the inequality ηθ * | e α ηζθ * * | e α > ζθ * * | e α (67) is valid. Under the statement (iii) of Lemma 15, by symmetric arguments, min p∈P α∪P α θ(p) | e α = ηθ * | e α where the minimum is achieved on the unique element ηθ * , while ηθ * | e α < ζθ * * | e α . The concludes the proof of the lemma.

)

  Constants c l (α) l = 0, 1, 2, . . . are the same as in Theorem 22. Furthermore (i) If ζθ * * ∈}θ(α 0 ), s 0 } and ηθ * ∈}θ(α 0 ), s 0 }, then the main term in the expansion (70) is at p = ζθ * * . (ii) If If ζθ * * ∈}θ(α 0 ), s 0 } and ηθ * ∈}θ(α 0 ), s 0 }, then the main term in (70) is at p = ηθ * . (iii) Let ζθ * * ∈}θ(α 0 ), s 0 } and ηθ * ∈}θ(α 0 ), s 0 }. If ζθ * * | e α 0 < ηθ * | e α 0 , then the main term in (70) is at p = ζθ * * . If ζθ * * | e α 0 > ηθ * | e α 0 , then main term in (70) is at p = ηθ * . If ζθ * * | e α 0 = ηθ * | e α 0 , then two the most important terms in the expansion (70) are at p = ζθ * * and at p = ηθ * .

  .
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 262121012120 Let θ 1 (s + 2 ) > 0, θ 2 (s + 1 ) > 0. (i) Let γ 2 (s + 1 ) 0 and γ 1 (s + 2 ) 0 Then for any α 0 ∈]0, π/2[ we have :π(r cos α, r sin α) ∼ c(α 0 ) √ r exp(-r θ(α) | e α ), r → ∞, α → α 0 ,(77)where the constant c(α 0 ) depends continuously onα 0 ∈]0, π/2[ and lim α 0 →0 c(α 0 ) = lim α 0 →π/2 c(α 0 ) = 0. (ii) Let γ 2 (s + 1 ) > 0 and γ 1 (s + 2 ) 0. (iia) Let γ 2 (ζs +2 ) 0 or equivalently dΘ + Then for any α 0 ∈]0, π/2[ we haveπ(r cos α, r sin α) ∼ d 1 exp(-r ζθ * * | e α ), r → ∞, α → α 0 ,(78)with some constantd 1 > 0. (iib) Let γ 2 (ζs + 2 ) < 0 or equivalently A * * ≡ dΘ + Define α 1 = arctan(-1/A * * ) ∈ ]0, π/2[. Then for any α 0 ∈]0, α 1 [ we have (78) and for any α ∈]α 1 , π/2[ we have (77). (iii) Let γ 2 (s + 1 ) < 0 and γ 1 (s + 2 ) 0. (iiia) Let γ 1 (ηs + 1 ) 0 or equivalently dΘ + Then for any α 0 ∈]0, π/2[ we have π(r cos α, r sin α) ∼ d 2 exp(-r ηθ * | e α ), r → ∞, α → α 0 , (79) with some constant d 2 > 0. (iiib) Let γ 1 (ηs + 1 ) < 0 or equivalently A * ≡ dΘ + Define α 2 = arctan(-A * ) ∈ ]0, π/2[. Then for any α 0 ∈]0, α 2 [ we have (77) and for any α ∈]α 2 , π/2[ we have (79). (iv) Let γ 2 (s + 1 ) > 0 and γ 1 (s + 2 ) > 0. (iva) Let θ 1 (ζθ * * ) θ 1 (ηθ * ) and θ 2 (ζθ * * ) θ 2 (ηθ * ) where at least one of inequalities is strict. Then for any α 0 ∈]0, π/2[ we have (78). (ivb) Let θ 1 (ζθ * * ) θ 1 (ηθ * ) and θ 2 (ζθ * * ) θ 2 (ηθ * ) where at least one of inequalities is strict. Then for any α ∈]0, π/2[ we have (79). (ivc) Let θ 1 (ζθ * * ) θ 1 (ηθ * ) and θ 2 (ζθ * * ) θ 2 (ηθ * ) where at least one of the inequalities is strict. Let us define β 0 = arctan θ 1 (ζθ * * )-θ 1 (ηθ * ) θ 2 (ηθ * )-θ 2 (ζθ * * ) Then for any α 0 ∈]0, β 0 [ we have (78), for any α 0 ∈]β 0 , π/2[ we have (79) and for α 0 = β 0 we have π(r cos α, r sin α) ∼ d 1 exp(-r ζθ * * | e α ) + d 2 exp(-r ηθ * | e α ), r → ∞, α → α 0 .(80)(ivd) Let θ 1 (ζθ * * ) θ 1 (ηθ * ) and θ 2 (ζθ * * ) θ 2 (ηθ * ). Let us define angles α 1 and α 2 as in (ii) and (iii). Then 0 < α 1 α 2 < π/2; for any α 0 ∈]0, α 1 [ we have (78) , for any α 0 ∈]α 1 , α 2 [ we have (77) and for any α 0 ∈]α 2 , π/2[ we have (79).

Theorem 27 .

 27 Let θ 1 (s + 2 ) 0, θ 2 (s + 1 ) 0.

(i) Let γ 2 2 (θ 1 ) dθ 1 θ * * 1 . 1 (θ 2 ) dθ 2 θ * 2 . 1 0. 2 (θ 1 ) dθ 1 θ * * 1 < 0 . 1 (θ 2 ) dθ 2 θ * 2 .

 22112121012 (s + 1 ) 0 and γ 1 (s + 2 ) 0 Then for any α 0 ∈]0, π/2[ the asymptotics (77) is valid. (ii) Let γ 2 (s + 1 ) > 0 and γ 1 (s + 2 ) 0. Let A * * ≡ dΘ + Then α 1 = arctan(-1/A * * ) ∈ ]0, π/2[. For any α 0 ∈]0, α 1 [ the asymptotics (78) is valid and and for any α ∈]α 1 , π/2[ the asymptotics (77) holds true.(iii) Let γ 2 (s + 1 ) < 0 and γ 1 (s + 2 ) 0.Let A * ≡ dΘ + Then α 2 = arctan(-A * ) ∈]0, π/2[.For any α 0 ∈]0, α 2 [ the asymptotics (77) is valid and for any α ∈]α 2 , π/2[ the asymptotics (79) holds true. (iv) Let γ 2 (s + 1 ) > 0 and γ 1 (s + 2 ) > 0. Then either θ 1 (ζθ * * ) < θ 1 (ηθ * ) and θ 2 (ζθ * * ) > θ 2 (ηθ * ), or θ 1 (ζθ * * ) > θ 1 (ηθ * ) and θ 2 (ζθ * * ) < θ 2 (ηθ * ), or finally θ 1 (ζθ* * ) = θ 1 (ηθ * ) and θ 2 (ζθ * * ) = θ 2 (ηθ * ). (iva) Let θ 1 (ζθ * * ) < θ 1 (ηθ * ) and θ 2 (ζθ * * ) > θ 2 (ηθ * ). Let us define β 0 = arctan θ 1 (ζθ * * )-θ 1 (ηθ * ) θ 2 (ηθ * )-θ 2 (ζθ * * )Then for any α 0 ∈]0, β 0 [ we have (78), for any α 0 ∈]β 0 , π/2[ we have (79) and forα 0 = β 0 we have (80). (ivb) Let θ 1 (ζθ * * ) > θ 1 (ηθ * ) and θ 2 (ζθ * * ) < θ 2 (ηθ * ) or θ 1 (ζθ * * ) = θ 1 (ηθ * ) and θ 2 (ζθ * * ) = θ 2 (ηθ * )Let us define angles α 1 and α 2 as in (ii) and (iii). Then 0 < α 1 α 2 < π/2; for any α 0 ∈]0, α 1 [ we have (78) , for any α 0 ∈]α 1 , α 2 [ we have (77) and for any α 0 ∈]α 2 , π/2[ we have (79).Theorem 28. Let θ 1 (s + 2 ) > 0, θ 2 (s + 1 ) 0. (i) Let γ 2 (s + 1 )0 and γ 1 (s + 2 ) 0 Then for any α 0 ∈]0, π/2[ the asymptotics (77) is valid. (ii) Let γ 2 (s + 1 ) > 0 and γ 1 (s + 2 ) 0. (iia) Let γ 2 (ζs + 2 Then for any α 0 ∈]0, π/2[ the asymptotics (78) is valid. (iib) Let γ 2 (ζs + 2 ) < 0 or equivalently A * * ≡ dΘ + Define α 1 = arctan(-1/A * * ) ∈ ]0, π/2[. Then for any α 0 ∈]0, α 1 [ we have (78) and for any α ∈]α 1 , π/2[ we have (77). (iii) Let γ 2 (s + 1 ) < 0 and γ 1 (s + 2 ) 0. Let A * ≡ dΘ + Then α 2 = arctan(-A * ) ∈]0, π/2[.For any α 0 ∈]0, α 2 [ the asymptotics (77) is valid and for any α ∈]α 2 , π/2[ the asymptotics (79) holds true. (iv) Let γ 2 (s + 1 ) > 0 and γ 1 (s + 2 ) > 0. Then either θ 1 (ζθ * * ) θ 1 (ηθ * ) and θ 2 (ζθ * * ) θ 2 (ηθ * ), or θ 1 (ζθ * * ) < θ 1 (ηθ * ) and θ 2 (ζθ * * ) > θ 2 (ηθ * ), or θ 1 (ζθ * * ) > θ 1 (ηθ * ) and θ 2 (ζθ * * ) < θ 2 (ηθ * ), or finally θ 1 (ζθ * * ) = θ 1 (ηθ * ) and θ 2 (ζθ * * ) = θ 2 (ηθ * ). (iva) Let θ 1 (ζθ * * ) θ 1 (ηθ * ) and θ 2 (ζθ * * ) θ 2 (ηθ * ) where at least one of inequalities is strict. Then for any α 0 ∈]0, π/2[ we have (78). (ivb) Let θ 1 (ζθ * * ) < θ 1 (ηθ * ) and θ 2 (ζθ * * ) > θ 2 (ηθ * ). Let us defineβ 0 = arctan θ 1 (ζθ * * )-θ 1 (ηθ * ) θ 2 (ηθ * )-θ 2 (ζθ * * )Then for any α 0 ∈]0, β 0 [ we have (78), for any α 0 ∈]β 0 , π/2[ we have (79) and for α 0 = β 0 we have (80). (ivc) Let θ 1 (ζθ * * ) > θ 1 (ηθ * ) and θ 2 (ζθ * * ) < θ 2 (ηθ * ) or θ 1 (ζθ * * ) = θ 1 (ηθ * ) and θ 2 (ζθ * * ) = θ 2 (ηθ * ) Let us define angles α 1 and α 2 as in (ii) and (iii). Then 0 < α 1 α 2 < π/2; for any α 0 ∈]0, α 1 [ we have (78) , for any α 0 ∈]α 1 , α 2 [ we have (77) and for any α 0 ∈]α 2 , π/2[ we have (79).
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  r 11 µ 2 r 2 21 σ 11 -2r 11 r 21 σ 12 + r 2 11 σ 22

					-r 21 , r 11 ,
	θ * * = 2	r 12 µ 2 -r 22 µ 1 22 σ 11 -2r 22 r 12 σ 12 + r 2 r 2 12 σ 22	r 22 , -r 12	(33)
	Their images by automorphisms η and ζ have the following coordinates:
	ηθ * =	-	r 11 σ 11 r 21	(σ 22 θ * 2 + 2µ 2 ), θ * 2 ,
	ζθ * * =	θ * * 1 , -	r 22 σ 22 r 12	(σ 11 θ * * 1 + 2µ 1 ) .

  Then one of the following three assertions holds true :(i) The closest pole of ϕ 2 (θ 1 (s)) to s 0 on ]s + 1 , s 0 [ is ζθ * * , the closest pole of ϕ 1 (θ 2 (s)) to s 0 on ]s 0 , s + 2 [ is ηθ * , both of them are of the first order.(ii) The closest pole of ϕ 2 (θ 1 (s)) to s 0 on ]s + 1 , s 0 [ is ζθ * * , it is of the first order. The closest pole of ϕ 1 (θ 2 (s)) to s 0 on ]s 0 , s + 2 [ is ηζθ * * where θ 1 (ηζθ * * ) > θ 1 (ζθ * * ). (iii) The closest pole of ϕ 2 (θ 1 (s)) to s 0 on ]s + 1 , s 0 [ is ζηθ * where θ 2 (ζηθ * ) > θ 2 (ηθ * ). The closest pole of ϕ 1 (θ 2 (s)) to s 0 on ]s 0 , s + 2 [ is ηθ * , it is of the first order. The case (ii) is illustrated on Figure 13.Proof. By Lemma 12 there exist poles of the function ϕ 1 (θ 2 (s)) on ]s 0 , s + is the closest pole to s 0 and it is of the first order. By the same lemma under parameters such that θ 1 (s + 2 ) > 0 and θ * * ∈]s 0 , ζs + 2 [, either ηθ * or ηζθ * * is the closest pole to s 0 . By Lemma 13, if γ 1 (ζθ * ) = 0, pole ηθ * is of the first order. Condition γ 1 (ζθ * ) = 0 is equivalent to ζθ * = θ * * . This means just that pole ηθ * is different from ηζθ * * which is another candidate for the closest pole to s 0 . By Lemma 14 θ 1 (ηζθ * * ) > θ 1 (ζθ * * ) To summarize, one of two following statements holds true: (a1) Point ηθ * is the closest pole of ϕ 1 (θ 2 (s)) to s 0 on ]s 0 , s + 2 [ and it is of the first order; (b1) The parameters are such that θ 1 (s + 2 ) > 0 and θ * * ∈]s 0 , ζs + 2 [. Point ηζθ * * is the closest pole of ϕ 1 (θ 2 (s)) to s 0 on ]s 0 , s + 2 [ and θ 1 (ηζθ * * ) > θ 1 (ζθ * * ). By Lemmas 12, 13, 14 and the same considerations, one of the following statements about ϕ 2 (θ 1 ) holds true:(a2) Pole ζθ * * is the closest pole of ϕ 2 (θ 1 (s)) to s 0 on ]s + 1 , s 0 [and it is of the first order. (b2) The parameters are such that θ 2 (s + 1 ) > 0, θ * ∈]ηs + 1 , s 0 [, point ζηθ * is the closest pole of ϕ 2 (θ 1 (s)) to s 0 on ]s + 1 , s 0 [ and θ 2 (ζηθ * ) > θ 2 (ηθ * ) Let us finally prove that (b1) and (b2) can not hold true simultaneously. Assume that θ 2 (s + 1 ) > 0, θ * ∈]ηs + 1 , s 0 [, θ 1 (s + 2 ) > 0, θ * * ∈]s 0 , ζs + 2 [ and e.g. (b2), that is ζηθ * is the closest pole to s 0 . Note that in this case ζθ * * ∈]s + 2 , s 0 [. Then ζηθ * is closer to s 0 than the pole ζθ * * on this segment or coincides with it. Hence θ 1 (ζηθ * ) θ 1 (ζθ * * ) and θ 2 (ζηθ * ) θ 2 (ζθ * * ). By Lemma 14 θ 1

1,+ ]. Hence f (s) > 0 for all s ∈]s 0 , s + 1 ], from where θ 2 (ζηs)-θ 2 (ηs) = f (ηs) > 0 for any s ∈ η]s 0 , s + 1 ] = [ηs + 1 , s 0 [. The proof in the other case is symmetric. Lemma 15. Assume that γ 2 (s) has a zero θ * * ∈]s 0 , s + 1 [ and γ 1 (s) has a zero θ * ∈]s + 2 , s 0 [. 2 [. By Lemma 13 under parameters such that θ 1 (s + 2 ) 0 or θ 1 (s + 2 ) > 0 and θ * * ∈]s 0 , ζs + 2 [, ηθ *
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ϕ 2 (θ 0 1 ) = 0. Thus there exist no zeros of ϕ 2 on ]ηs 1,+ , s 0 [ and finally ϕ 2 (ηθ * * ) = 0. Therefore the numerator in [START_REF] Malyshev | Sluchainye bluzhdaniya Uravneniya. Vinera-Khopfa v chetverti ploskosti[END_REF] is non zero, hence ζθ * * is a pole of ϕ 2 .

The reasoning for θ * is the same.

Lemma 13.

(i) Assume that θ p ∈]s + 1 , s 0 [ is a pole of ϕ 2 (θ 1 ) and it is the closest pole to s 0 . If the parameters (Σ, µ) are such that θ 2 (s + 1 ) 0, or the parameters (Σ, µ, R) are such that θ 2 (s + 1 ) > 0 but ηζθ p ∈]ηs + 1 , s 0 [, then γ 2 (ζθ p ) = 0 where ζθ p ∈]s + 1 , s 0 [ and θ p is a pole of the first oder.

If the parameters (Σ, µ, R) are such that θ 2 (s + 1 ) > 0 and ηζθ p ∈]ηs + 1 , s 0 [, then either γ 2 (ζθ p ) = 0 where ζθ p ∈]s 0 , s + 1 [ or γ 1 (ηζθ p ) = 0. Furthermore, in this case, if γ 2 (ζθ p ) and γ 1 (ηζθ p ) do not equal zero simultaneously, then θ p is a pole of the first order. (ii) Assume that θ p ∈]s 0 , s + 2 [ is a pole of ϕ 1 (θ 2 ) and it is the closest pole to s 0 . If the parameters (Σ, µ) are such that θ 1 (s + 2 ) 0, or the parameters (Σ, µ, R) are such that θ 1 (s + 2 ) > 0 but ζηθ p ∈]s 0 , ζs + 2 [, then γ 1 (ηθ p ) = 0 where ηθ p ∈]s 0 , s + 2 [ and θ p is a pole of the first oder.

If the parameters (Σ, µ, R) are such that θ 1 (s + 2 ) > 0 and ζηθ p ∈]s 0 , ηs + 1 , [, then either γ 1 (ηθ p ) = 0 where ηθ p ∈]s + 2 , s 0 [ or γ 2 (ζηθ p ) = 0. Furthermore, in this case, if γ 1 (ηθ p ) and γ 2 (ζηθ p ) do not equal zero simultaneously, then θ p is a pole of the first order.

Proof. Due to meromorphic continuation procedure we have

where ηζθ p ∈]θ 

from where by (37)

Since ϕ 1 (ηζθ p 2 ) is finite for for any ηζθ p ∈ [s 0 , s 0 ] by its initial definition, the formula (39) implies that γ 2 (ζθ p ) = 0 and the pole θ p is of the first order.

If parameters (Σ, µ, R) are such that θ 2 (s + 1 ) > 0 and ηζθ p ∈]ηs + 1 , s 0 [, then either ηζθ p ∈ [s 0 , s 0 ] or ηζθ p ∈]s 0 , θ p [. In the first case we have [START_REF] Reiman | A boundary property of semimartingale reflecting Brownian motions[END_REF] as previously from where γ 2 (ζθ p ) = 0 and the pole ζθ p is of the first order. Let us turn to the second case ηζθ p ∈]θ p , s 0 [ for which we will use the formula [START_REF] Pemantle | Analytic combinatorics in several variables[END_REF]. The pole θ p being the closest to s 0 , then ηζθ p can not be a pole of ϕ 2 on ]θ p , s 0 [. It can neither be a pole of ϕ 2 on [s 0 , s 0 ], since this function is initially well defined on this segment. Hence in formula [START_REF] Pemantle | Analytic combinatorics in several variables[END_REF] 37) that either γ 2 (ζθ p ) = 0 or γ 1 (ηζθ p ) = 0 and if these two equalities do not hold simultaneously, then pole θ p must be of the first order.

The proof in the case (ii) is symmetric.

Figure 13 gives two illustrations of Lemmas 12 and 13.

On the left figure the parameters are such that θ 1 (s + 2 ) > 0 and θ 2 (s + 1 ) > 0. Let us look at zeros θ * of γ 1 and θ * * of γ 2 different from s 0 . We see θ * ∈]s + 2 , s 0 [, then ηθ * is the first candidate for the closest pole of ϕ 1 to s 0 on ]s 0 , s + 2 [. We also see θ * * ∈ [s 0 , ζs + 2 ], then there are no other candidates. Hence the closest pole of ϕ 1 to s

The important conclusion is that in all cases, the pole p of ϕ 2 on the arc {s 0 , θ(α)} with the smallest θ(p) | e α is the closest to s 0 . In the same way we can consider the arc {s 0 , θ(α)} and find out, due to monotonicity of the function θ(s) | e α , that the pole of ϕ 1 with the smallest θ(p) | e α is the closest to s 0 . We know from Lemmas 12-15 the way that these poles are related to zeros of γ 1 and γ 2 . Now we summarize this information in the following theorem.

Theorem 21.

(a) Let ζθ * * ∈ {θ(α), s 0 }, ηθ * ∈ {θ(α), s 0 )}. Then P α and P α are both empty, θ(α) is not a pole of ϕ 1 and neither of ϕ 

This minimum over P α ∪ P α is achieved at exactly two elements p = ζθ * * and p = ηθ * which are poles of the first order of ϕ 1 and ϕ 2 respectively.

Proof. (a) Let θ 1 (s + 2 ) < 0 and let α > α defined above. Then θ 1 (α) < 0 and all points of the arc {θ(α), s 0 { have the first coordinate negative, so that function ϕ 2 (θ 1 (s)) is initially well defined at them and holomorphic. Let now θ 1 (s + 2 ) < 0 and α ∈]0, α [ or θ 1 (s + 2 ) 0. Then θ 1 (α) > 0 and the arc {θ(α), s 0 } written in the anticlockwise direction is [θ(α), s 0 ]. Assume that ϕ 2 (θ 1 (s)) has poles on [θ(α), s 0 [ and θ p is the closest to s 0 . Then by Lemma 13 either γ 2 (ζθ p ) = 0 or parameters are such that θ 2 (s + 1 ) > 0, ηζθ p ∈]ηs + 1 , s 0 [ and γ 1 (ηζθ p ) = 0. In the first case ζθ p = θ * * is a zero of γ 2 different from s 0 . This implies θ p = ζθ * * ∈ [θ(α)s 0 [ which is impossible by assumptions. In the second case ηζθ p = θ * is a zero of γ 1 different from s 0 . This implies ), s 0 { that contradicts the assumptions as well. Hence ϕ 2 (θ 1 (s)) has no poles on the open arc }θ(α), s 0 { and neither at θ(α), P α is empty, The reasoning for P α is the same.

(b) By stability conditions ( 1) and ( 2)

2 ) < 0 the angle α must be smaller than α and the arc }θ(α), s 0 { should be written ]θ(α), s 0 [. By Lemma 12 there exist poles of function ϕ 2 (θ 1 (s)) on this arc and ζθ * * is one among them. By Lemma 13 ζθ * * can not be the closest pole to s 0 only if the parameters are such that θ 2 (s + 1 ) > 0 and for some ), s 0 { that is impossible by assumptions. Hence by Lemma 13 ζθ * * is the closest pole to s 0 of ϕ 2 (θ 1 (s)) and it is of the first order. The function θ(s) | e α being decreasing on ]θ(α), s 0 [ when s runs the arc in the anticlockwise direction, thus

and the minimum is achieved on the unique element ζθ * * . of the main term is the same as in Theorem 23.

It remains to study the cases of parameters such that (O1) ζθ * * = θ(α 0 ) and ηθ * ∈ {s 0 , θ(α 0 ){ (O2) ηθ * = θ(α 0 ) and ζθ * * ∈ {s 0 , θ(α 0 ){. By Lemma 12 this means that θ(α 0 ) is a pole of one of functions ϕ 1 or ϕ 2 . Since in both cases ηθ * ∈ {s 0 , θ(α){, ζθ * * ∈ {s 0 , θ(α){, we derive by the same reasoning as in Theorem 21 (a) that P α 0 ∪ P α 0 is empty. The following theorem is valid.

Theorem 25. Assume that α 0 is such that the assumptions on parameters (O1) or (O2) are valid. Then for any δ > 0 there exists a small enough neighborhood O(α 0 ) such that π(r cos(α), r sin(α)) = o(e -r( θ(α)|eα -δ) ) r → ∞, uniformly ∀α ∈ O(α 0 ).

(76)

Proof. We choose τ and τ according to (72) and proceed exactly as in the proof of Theorem 24.

Remark. In Theorems 24 and 25 θ(α 0 ) is a pole of one of the functions ϕ 1 or ϕ 2 , hence at least one of the integrals (49) can not be shifted to Γ θ 1 ,α 0 or Γ θ 2 ,α 0 going through θ(α 0 ). Furthermore, although for any α ∈ O(α 0 ), α = α 0 , this shift is possible, the uniform asymptotic expansion by the saddle-point method as in Lemma 20 does not stay valid, that is why we are not able to specify small asymptotic terms in Theorem 24 neither to obtain a more precise result in Theorem 25. This should be possible if we consider the double asymptotics r → ∞ and α → α 0 and apply the (more advanced) saddle-point method in the special case when the saddle-point is approaching a pole of the integrand. We do not do it in the present paper.

Remark. Assumptions of theorems 22 -25 are expressed in terms of positions on ellipse E of points ζθ * * and ηθ * that are images of zeros of γ 1 and γ 2 on E by Galois automorphisms. They can be also expressed in terms of the following simple inequalities. Under parameters such that θ 1 (α 0 ) > 0, we have ζθ * * = {s 0 , θ(α 0 )} iff θ * * = {s 0 , ζθ(α 0 )} that is equivalent to γ 2 (ζθ(α)) < 0. Under parameters such that θ 1 (α 0 ) 0, we have always ζθ * * = {s 0 , θ(α 0 )} because θ 1 (ζθ * * ) > 0 by stability conditions, in this case we have also γ 2 (ζθ(α 0 )) 0. We come to the following conclusions.

(i) Assumption ζθ * * = {s 0 , θ(α 0 )} is equivalent to the one that γ 2 (ζθ(α 0 )) < 0 or θ 1 (α 0 ) 0. Assumption ζθ * * ∈ {s 0 , θ(α 0 ){ is equivalent to the one that γ 2 (ζθ(α 0 )) > 0 and θ 1 (α 0 ) > 0.