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ASYMPTOTIC EXPANSION OF STATIONARY DISTRIBUTION FOR
REFLECTED BROWNIAN MOTION IN THE QUARTER PLANE

VIA ANALYTIC APPROACH

S. FRANCESCHI AND I. KURKOVA

Abstract. Brownian motion in R2
+ with covariance matrix Σ and drift µ in the interior and

reflection matrix R from the axes is considered. The asymptotic expansion of the stationary
distribution density along all paths in R2

+ is found and its main term is identified depending
on parameters (Σ, µ, R). For this purpose the analytic approach of Fayolle, Iasnogorodski and
Malyshev in [12] and [32], restricted essentially up to now to discrete random walks in Z2

+ with
jumps to the nearest-neighbors in the interior is developed in this article for diffusion processes
on R2

+ with reflections on the axes.
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1. Introduction and main results

1.1. Context. Two-dimensional semimartingale reflecting Brownian motion (SRBM) in the
quarter plane received a lot of attention from the mathematical community. Problems as its
existence [39, 35], stationary distribution conditions [18, 21], explicit forms of stationary distri-
bution in special cases [22, 9, 18, 8], large deviations [1, 8], queueing networks approximations
[18, 20, 29, 30, 42] and many other ones have been intensively studied in the literature, see also
[41] for a survey on it. A recent series by Sarantsev [38, 37, 36], . . . deals with multidimensional
obliquely reflected Brownian motion in cones. The rate of convergence to the stationary distri-
bution, the construction of Lyapunov functions, some tail estimates are obtained among other
results. In [4] the authors construct obliquely reflected Brownian motions in all bounded simply
connected planar domains with general reflection vector fields on the boundary.

In this article we consider stationary SRBMs in the quarter plane and focus on the asymptotics
of their stationary distribution along any path in R2

+. Let Z(∞) = (Z1(∞), Z2(∞)) be a random
vector that has the stationary distribution of the SRBM. In [7], Dai et Myazawa obtain the
following asymptotic result: for a given directional vector c ∈ R2

+ they find the function fc(x)
such that

lim
x→∞

P(〈c | Z(∞)〉 > x)

fc(x)
= 1

Key words and phrases. Reflected Brownian motion in the quarter plane; Stationary distribution; Laplace
transform; Asymptotic analysis; Saddle-point method; Riemann surface.
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where 〈· | ·〉 is the inner product. In [8] they compute the exact asymptotics of two boundary
stationary measures on the axes associated with Z(∞). In this article we solve a harder problem
arisen in [7, §8 p.196], the one to compute the asymptotics of P(Z(∞) ∈ xc + B) as x → ∞,
where c ∈ R2

+ is any directional vector and B ⊂ R2
+ is a compact subset. Furthermore, our

objective is to find the full asymptotic expansion of the density π(x1, x2) of Z(∞) as x1, x2 →∞
and x2/x1 → tan(α) for any given angle α ∈]0, π/2[.

Our main tool is the analytic method developed by V. Malyshev in [32] to compute the
asymptotic of stationary probabilities for discrete random walks in Z2

+ with jumps to the nearest-
neighbors in the interior and reflections on the axes. That paper has been a part of a more
ambitious Malyshev’s analytic approach [31] to study discrete-time random walks in Z2

+ with
four domains of spatial homogeneity (the interior of Z2

+, the axes and the origin): he made
explicit its stationary probability generating functions as solutions of boundary problems on the
universal covering of the Riemann surface associated with this walk and studied the nature of
these functions depending on parameters. G. Fayolle and R. Iasnogorodski [11] determined these
generating functions as solutions of boundary problems of Riemann-Hilbert-Carleman type on
the complex plane. Fayolle, Iansogorodski and Malyshev merged together and deepened their
methods in the book [12]. It is entirely devoted to the explicit form of stationary probabilities
generating functions for discrete random walks in Z2

+ with nearest-neighbor jumps in the interior.
The analytic approach of the book [12] has been further applied to the analysis of random walks
absorbed on the axes by [25] and especially efficient in combinatorics, where it allowed to study all
models of walks in Z2

+ with small steps by making explicit the generating functions of the numbers
of paths and clarifying their nature in [34] and [26]. Malyshev’s older asymptotic methods of
[32] have been further fruitful for the analysis of Green functions and Martin boundary [27], [25],
and also for the study of joining the shortest queue models [28].

However, the methods of [12] and [32] seemed to be essentially restricted to discrete-time
models of walks in the quarter plane with jumps in the interior only to the nearest-neighbors,
they hardly could be extended to discrete models with bigger jumps, even at distance 2 (see
[13] for the attempts in this direction). In fact, while for jumps at distance 1 the Riemann
surface associated with the random walk is the torus, bigger jumps lead to Riemann surfaces
of higher genus, where the analytic procedures of [12] seem much more difficult to carry out.
Up to now, as far as we know, neither the analytic approach of [12], nor the asymptotic results
[32] have been translated to the continuous analogs of random walks in Z2

+, as SRBMs in R2
+,

except for some special cases in [2] and in [16]. This article is the first one in this direction.
Namely, the asymptotic expansion of the stationary distribution density for SRBM will be found
by methods strongly inspired by [32]. The aim of this article goes beyond the solution of this
particular problem. It serves a starting point for the development of the analytic approach of
[12] for diffusion processes in cones of R2

+ reflected from the boundaries to the interior. In [17]
the first author of this article and K. Raschel make explicit Laplace transform of stationary
distribution for SRBMs in the quarter plane reflected orthogonally from the axes. In the next
paper in preparation the same Laplace transform will be computed in the case of general reflection
matrix from the boundaries following the book [12]. It turns out, that the analytic approach can
be extended successfully to diffusions on R2

+ and looks even more transparent and deprived of
many second order details. Last but not the least, contrary to random walks in Z2

+ with jumps at
distance 1, it can be easily extended to diffusions in any cones of R2 via linear transformations,
as we observe in the concluding remarks, see Section 5.3.
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1.2. Reflected Brownian motion in the quarter plane. We now define properly the two-
dimensional SRBM and present our results. Let

Σ =

(
σ11 σ12

σ12 σ22

)
∈ R2×2 be a non-singular covariance matrix,

µ =

(
µ1

µ2

)
∈ R2 be a drift,

R = (R1, R2) =

(
r11 r12

r21 r22

)
∈ R2×2 be a reflection matrix.

Definition 1. The stochastic process Z(t) = (Z1(t), Z2(t)) is said to be a reflected Brownian
motion with drift in the quarter plane R2

+ associated with data (Σ, µ,R) if

Z(t) = Z0 +W (t) + µt+RL(t) ∈ R2
+,

where
(i) (W (t))t∈R+ is an unconstrained planar Brownian motion with covariance matrix Σ, start-

ing from 0;
(ii) L(t) = (L1(t), L2(t)); for i = 1, 2, Li(t) is a continuous and non-decreasing process that

increases only at time t such as Zi(t) = 0, namely
∫ t

0 1{Zi(s) 6=0}dL
i(s) = 0 ∀t > 0;

(iii) Z(t) ∈ R2
+ ∀t > 0.

Process Z(t) exists if and only if r11 > 0, r22 > 0 and either r12, r21 > 0 or r11r22− r12r21 > 0.
In this case the process is unique in distribution for each given initial distribution of Z0.

Columns R1 and R2 represent the directions where the Brownian motion is pushed when it
reaches the axes, see Figure 1.

Figure 1. Drift µ and reflection vectors R1 and R2

Proposition 2. The reflected Brownian motion Z(t) associated with (Σ, µ,R) is well defined,
and its stationary distribution Π exists and is unique if and only if the data satisfy the following
conditions:

r11 > 0, r22 > 0, r11r22 − r12r21 > 0, (1)

r22µ1 − r12µ2 < 0, r11µ2 − r21µ1 < 0. (2)

See [23], [40] and [19] for more precisions and proofs. From now on we assume that conditions
(1) and (2) are satisfied. The stationary distribution Π is absolutely continuous with respect to
Lebesgue measure as it is shown in [21] and [5]. We denote its density by π(x1, x2).
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1.3. Functional equation for the stationary distribution. Let A be the generator of (Wt+
µt)t>0. For each f ∈ C2

b (R2
+) (the set of twice continuously differentiable functions f on R2

+ such
that f and its first and second order derivatives are bounded) one has

Af(z) =
1

2

2∑
i,j=1

σi,j
∂2f

∂z1∂z2
(z) +

2∑
i=1

µi
∂f

∂zi
(z).

Let us define for i = 1, 2,
Dif(x) = 〈Ri|∇f〉

that may be interpreted as generators on the axes. We define now ν1 and ν2 two finite boundary
measures with support on the axes: for any Borel set B ⊂ R2

+,

νi(B) = EΠ[

∫ 1

0
1{Z(u)∈B}dL

i(u)].

By definition of stationary distribution, for all t > 0, EΠ[f(Z(t))] =
∫
R2

+
f(z)Π(dz). A similar

formula holds true for νi: EΠ[
∫ t

0 f(Z(u))dLi(u)] = t
∫
R2

+
f(x)νi(dx). Therefore ν1 and ν2 may

be viewed as a kind of boundary invariant measures. The basic adjoint relationship takes the
following form: for each f ∈ C2

b (R2
+),∫

R2
+

Af(z)Π(dz) +
∑
i=1,2

∫
R2

+

Dif(z)νi(dz) = 0. (3)

The proof can be found in [21] or in [6]. This relationship characterizes the stationary distribu-
tion. We now define ϕ(θ) the two-dimensional Laplace transform of Π also called its moment
generating function. Let

ϕ(θ) = EΠ[exp(〈θ|Z〉)] =

∫∫
R2

+

exp(〈θ|z〉)Π(dz)

for all θ = (θ1, θ2) ∈ C2 such that the integral converges. It does of course for any θ with
< θ1 6 0,< θ2 6 0. We have set 〈θ|Z〉 = θ1Z

1 +θ2Z
2. Likewise we define the moment generating

functions for ν1(θ2) and ν2(θ1) on C:

ϕ2(θ1) = EΠ[

∫ 1

0
eθ1Z

1
t dL2(t)] =

∫
R2

+

eθ1zν2(dz), ϕ1(θ2) = EΠ[

∫ 1

0
eθ2Z

2
t dL1(t)] =

∫
R2

+

eθ2zν1(dz).

Function ϕ2(θ1) exists a priori for any θ1 with < θ1 6 0. It is proved in [7] that it also does for
θ1 with < θ1 ∈ [0, ε1], up to its first singularity ε1 > 0, the same is true for ϕ1(θ2). The following
key functional equation (proven in [7]) results from the basic adjoint relationship (3).

Theorem 3. For any θ ∈ R2
+ such ϕ(θ) <∞, ϕ2(θ1) <∞ et ϕ1(θ2) <∞ we have the following

fundamental functional equation:

γ(θ)ϕ(θ) = γ1(θ)ϕ1(θ2) + γ2(θ)ϕ2(θ1), (4)

where 
γ(θ) = −1

2〈θ|σθ〉 − 〈θ|µ〉 = −1
2(σ11θ

2
1 + σ22θ

2
2 + 2σ12θ1θ2)− (µ1θ1 + µ2θ2),

γ1(θ) = 〈R1|θ〉 = r11θ1 + r21θ2,

γ2(θ) = 〈R2|θ〉 = r12θ1 + r22θ2.

(5)

This equation holds true a priori for any θ = (θ1, θ2) with < θ1 6 0,< θ2 6 0. It plays a crucial
role in the analysis of the stationary distribution.
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1.4. Results. Our aim is to obtain the asymptotic expansion of the stationary distribution
density π(x) = π(x1, x2) as x1, x2 →∞ and x2/x1 → tan (α0) for any given angle α0 ∈ [0, π/2].

Notation. We write the asymptotic expansion f(x) ∼
∑n

k=0 gk(x) as x → x0 if gk(x) =
o(gk−1(x)) as x→ x0 for all k = 1, . . . , n and f(x)−

∑n
k=0 gk(x) = o(gn(x)) as x→ x0.

It will be more convenient to expand π(r cosα, r sinα) as r → ∞ and α → α0. We give our
final results in Section 5, Theorems 22–25: we find the expansion of π(r cosα, r sinα) as r →∞
and prove it uniform for α fixed in a small neighborhood O(α0) ⊂]0, π/2[ of α0 ∈]0, π/2[.

In this section, Theorem 4 below announces the main term of the expansion depending on
parameters (µ,Σ, R) and a given direction α0. Next, in Section 1.5 we sketch our analytic
approach following the main lines of this paper in order to get the full asymptotic expansion of
π. We present at the same time the organization of the article.

Now we need to introduce some notations. The quadratic form γ(θ) is defined in (4) via the
covariance matrix Σ and the drift µ of the process in the interior of R2

+. Let us restrict ourselves
on θ ∈ R2. The equation γ(θ) = 0 determines an ellipse E on R2 passing through the origin, its
tangent in it is orthogonal to vector µ, see Figure 2. Stability conditions imply the negativity of
at least one of coordinates of µ. In this article, in order to shorten the number of pictures and
cases of parameters to consider, we restrict ourselves to the case

µ1 < 0 and µ2 < 0, (6)

although our methods can be applied without any difficulty to other cases.

Figure 2. Ellipse E , straight lines γ1(θ) = 0, γ2(θ) = 0, points θ∗, θ∗∗, ηθ∗, ζθ∗∗

Let us call s+
1 = (θ1(s+

1 ), θ2(s+
1 )) ∈ E the point of the ellipse with the maximal first coordinate:

θ1(s+
1 ) = sup{θ1 : γ(θ1, θ2) = 0}. Let us call s+

2 the point of the ellipse with the maximal second
coordinate. Let A be the arc of the ellipse with endpoints s+

1 , s
+
2 not passing through the origin,

see Figure 3. For a given angle α ∈ [0, π/2] let us define the point θ(α) on the arc A as

θ(α) = argmaxθ∈A〈θ | eα〉 where eα = (cosα, sinα). (7)

Note that θ(0) = s+
1 , θ(π/2) = s+

2 , and θ(α) is an isomorphism between [0, π/2] and A. Coordi-
nates of θ(α) are given explicitly in (46). One can also construct θ(α) geometrically: first draw
a ray r(α) on R2

+ that forms the angle α with θ1-axis, and then the straight line l(α) orthogonal
to this ray and tangent to the ellipse. Then θ(α) is the point where l(α) is tangent to the ellipse,
see Figure 3.



6 S. FRANCESCHI AND I. KURKOVA

Figure 3. Arc A and point θ(α) on E

Secondly, consider the straight lines γ1(θ) = 0, γ2(θ) = 0 defined in (4) via the reflection
matrix R. They cross the ellipse E in the origin. Furthermore, due to stability conditions (1)
and (2) the line γ1(θ) = 0 [resp. γ2(θ) = 0] intersects the ellipse at the second point θ∗ = (θ∗1, θ

∗
2)

(resp. θ∗∗ = (θ∗∗1 , θ
∗∗
2 )) where θ∗2 > 0 (resp. θ∗∗1 > 0). Stability conditions also imply that

the ray γ1(θ) = 0 is always "above" the ray γ2(θ) = 0, see [7, Lemma 2.2]. To present our
results, we need to define the images of these points via the so-called Galois automorphisms ζ
and η of E . Namely, for point θ∗ = (θ∗1, θ

∗
2) ∈ E there exists a unique point ηθ∗ = (ηθ∗1, θ

∗
2) ∈ E

that has the same second coordinate. Clearly, θ∗1 and ηθ∗1 are two roots of the second degree
equation γ(·, θ∗2) = 0. In the same way for point θ∗∗ = (θ∗∗1 , θ

∗∗
2 ) ∈ E there exists a unique point

ζθ∗∗ = (θ∗∗1 , ζθ
∗∗
2 ) ∈ E with the same first coordinate. Points θ∗∗2 and ζθ∗∗2 are two roots of the

second degree equation γ(θ∗∗1 , ·) = 0. Points θ∗, θ∗∗, ηθ∗ and ζθ∗∗ are pictured on Figure 2. Their
coordinates are made explicit in (30) and (31).

Finally let s′0 = (0,−2µ22σ22
) be the point of intersection of the ellipse E with θ2-axis and and

let s′′0 = (−2µ11σ11
, 0) be the point of intersection of the ellipse with θ1-axis, see Figure 3. The

following theorem provides the main asymptotic term of π(r cosα, r sinα).

Theorem 4. Let α0 ∈]0, π/2[. Let θ(α) be defined in (7). Let {θ(α0), s′0} (resp. {s′′0, θ(α0)}) be
the arc of the ellipse E with end points s′0 and θ(α0) (resp. s′′0 and θ(α0)) not passing through
the origin. We have the following results.

(1) If ζθ∗∗ /∈ {θ(α0), s′0} and ηθ∗ /∈ {s′′0, θ(α0)}, then there exists a constant c(α0) such that

π(r cosα, r sinα) ∼ c(α0)√
r

exp
(
− r〈eα | θ(α)〉

)
r →∞, α→ α0. (8)

The function c(α) varies continuously on [0, π/2], limα→0 c(α) = limα→π/2 c(α) = 0.
(2) If ζθ∗∗ ∈}θ(α0), s′0} and ηθ∗ /∈ {s′′0, θ(α0){, then with some constant c1 > 0

π(r cosα, r sinα) ∼ c1 exp
(
− r〈eα | ζθ∗∗〉

)
r →∞, α→ α0. (9)

(3) If ζθ∗∗ /∈}θ(α0), s′0} and ηθ∗ ∈ {s′′0, θ(α0){, then with some constant c2 > 0

π(r cosα, r sinα) ∼ c2 exp
(
− r〈eα | ηθ∗〉

)
r →∞, α→ α0. (10)

(4) Let ζθ∗∗ ∈}θ(α0), s′0} and ηθ∗ ∈ {s′′0, θ(α0){. If 〈ζθ∗∗ | eα0〉 < 〈ηθ∗ | eα0〉, then the
asymptotics (9) is valid with some constant c1 > 0. If 〈ζθ∗∗ | eα0〉 > 〈ηθ∗ | eα0〉, then the
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asymptotics (10) is valid with some constant c2 > 0. If 〈ζθ∗∗ | eα0〉 = 〈ηθ∗ | eα0〉, then
then with some constants c1 > 0 and c2 > 0

π(r cosα, r sinα) ∼ c1 exp
(
− r〈eα | ζθ∗∗〉

)
+ c2 exp

(
− r〈eα | ηθ∗〉

)
r →∞, α→ α0. (11)

See Figure 4 for the different cases. (The arcs }a, b} or {a, b{ of E are those not passing
through the origin where the left or the right end respectively is excluded).

Figure 4. Cases (1),(2),(3),(4)

Let us notice that the exponents in Theorem 4 are the same as in the large deviation rate
function found in [8, Thm 3.2]. The same phenomenon is observed for discrete random walks,
cf. [32] and [24].

1.5. Sketch of the analytic approach. Organization of the paper. The starting point of
our approach is the main functional equation (4) valid for any θ = (θ1, θ2) ∈ C2 with < θ1 6 0,
< θ2 6 0. The function γ(θ1, θ2) in the left-hand side is a polynomial of the second order of θ1

and θ2. The algebraic function Θ1(θ2) defined by γ(Θ1(θ2), θ2) ≡ 0 is 2-valued and its Riemann
surface Sθ2 is of genus 0. The same is true about the 2-valued algebraic function Θ2(θ1) defined
by γ(θ1,Θ2(θ1)) = 0 and its Riemann surface Sθ1 . The surfaces Sθ1 and Sθ2 being equivalent,
we will consider just one surface S defined by the equation γ(θ1, θ2) = 0 with two different
coverings. Each point s ∈ S has two “coordinates” (θ1(s), θ2(s)), both of them are complex or
infinite and satisfy γ(θ1(s), θ2(s)) = 0. For any point s = (θ1, θ2) ∈ S, there exits a unique point
s′ = (θ1, θ

′
2) ∈ S with the same first coordinate and there exists a unique point s′′ = (θ′′1 , θ2) ∈ S

with the same second coordinate. We say that s′ = ζs, i.e. s′ and s are related by Galois
automorphism ζ of S that leaves untouched the first coordinate, and that s′′ = ηs, i.e. s′′ and s
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are related by Galois automorphism η of S that leaves untouched the second coordinate. Clearly
ζ2 = Id, η2 = Id and the branch points of Θ1(θ2) and of Θ2(θ1) are fixed points of ζ and
η respectively. The ellipse E is the set of points of S where both “coordinates” are real. The
construction of S and definition of Galois automorphisms are carried out in Section 2.

Next, unknown functions ϕ1(θ2) and ϕ2(θ1) are lifted in the domains of S where {s ∈ S :
< θ2(s) 6 0} and {s ∈ S : < θ1(s) 6 0} respectively. The intersection of these domains on S is
non-empty, both ϕ2 and ϕ1 are well defined in it. Since for any s = (θ1(s), θ2(s)) ∈ S we have
γ(θ1(s), θ2(s)) = 0, the main functional equation (4) implies:

γ1(θ1(s), θ2(s))ϕ1(θ2(s)) + γ2(θ1(s), θ2(s))ϕ2(θ1(s)) = 0 ∀s ∈ S,< θ1(s) 6 0,< θ2(s) 6 0.

Using this relation, Galois automorphisms and the facts that ϕ1 and ϕ2 depend just on one“coordinat”
(ϕ1 depends on θ2 and ϕ2 on θ1 only), we continue ϕ1 and ϕ2 explicitly as meromorphic on the
whole of S. This meromorphic continuation procedure is the crucial step of our approach, it is
the subject of Section 3.1. It allows to recover ϕ1 and ϕ2 on the complex plane as multivalued
functions and determines all poles of all its branches. Namely, it shows that poles of ϕ1 and ϕ2

may be only at images of zeros of γ1 and γ2 by automorphisms η and ζ applied several times.
We are in particular interested in the poles of their first (main) branch, and more precisely in the
most ”important” pole (from the asymptotic point of view, to be explained below), that turns
out to be at one of points ζθ∗∗ or ηθ∗ defined above. The detailed analysis of the "main" poles
of ϕ1 and ϕ2 is furnished in Section 3.2.

Let us now turn to the asymptotic expansion of the density π(x1, x2). Its Laplace transform
comes from the right-hand side of the main equation (4) divided by the kernel γ(θ1, θ2). By
inversion formula the density π(x1, x2) is then represented as a double integral on {θ : < θ1 =
< θ2 = 0}. In Section 4.1, using the residues of the function 1

γ(θ1,·) or 1
γ(·,θ2) we transform this

double integral into a sum of two single integrals along two cycles on S, those where < θ1(s) = 0
or < θ2(s) = 0. Putting (x1, x2) = reα we get the representation of the density as a sum of two
single integrals along some contours on S:

π(reα) =
1

2π
√

det Σ

( ∫
I+θ1

ϕ2(s)γ2(θ(s))

s
e−r〈θ(s)|eα〉ds+

∫
I+θ2

ϕ1(s)γ1(θ(s))

s
e−r〈θ(s)|eα〉ds

)
. (12)

We would like to compute their asymptotic expansion as r →∞ and prove it to be uniform for
α fixed in a small neighborhood O(α0), α0 ∈]0, π/2[.

These two integrals are typical to apply the saddle-point method, see [15, 33]. The point
θ(α) ∈ E defined above is the saddle-point for both of them, this is the subject of Section 4.2.
The integration contours on S are then shifted to these new ones Γθ1,α and Γθ2,α which are
constructed in such a way that they pass through the saddle-point θ(α), follow the steepest-
descent curve in its neighborhood O(θ(α)) and are “higher” than the saddle-point w.r.t. the level
curves of the function 〈θ(s) | eα〉 outside O(θ(α)), see Section 4.3. Applying Cauchy Theorem,
the density is finally represented as a sum of integrals along these new contours and the sum of
residues at poles of the integrands we encounter deforming the initial ones:

π(reα) =
∑
p∈P ′α

respϕ2(θ1(s))
γ2(p)√
d(θ1(p))

e−r〈θ(p)|eα〉 +
∑
p∈P ′′α

respϕ1(θ2(s))
γ1(p)√
d̃(θ2(p))

e−r〈θ(p)|eα〉

1

2π
√

det Σ

(∫
Γθ1,α

ϕ2(s)γ2(θ(s))

s
e−r〈θ(s)|eα〉ds+

∫
Γθ2,α

ϕ1(s)γ1(θ(s))

s
e−r〈θ(s)|eα〉ds

)
. (13)

Here P ′α (resp. P ′′α) is the set of poles of the first order of ϕ1 (resp. ϕ2) that are found when
shifting the initial contour I+

θ1
to the new one Γθ1,α (resp. I+

θ2
to Γθ2,α), all of them are on the

arc {s′0, θ(α)} (resp. {θ(α), s′′0}) of ellipse E .
The asymptotic expansion of integrals along Γθ1,α and Γθ2,α is made explicit by the standard

saddle-point method in Section 4.4. The set of poles P ′α∪P ′′α is analyzed in Section 4.5 . In Case
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(1) of Theorem 4 this set is empty, thus the asymptotic expansion of the density is determined
by the saddle-point, its first term is given in Theorem 4. In Cases (2), (3) and (4) this set is
not-empty. The residues at poles over P ′α∪P ′′α in (13) bring all more important contribution to
the asymptotic expansion of π(reα) than the integrals along Γθ1,α and Γθ2,α. Taking into account
the monotonicity of function 〈θ | eα〉 on the arcs {s′′0, θ(α)} and on {θ(α), s′0}, they can be ranked
in order of their importance: clearly, the term associated with a pole p′ is more important than
the one with p′′ if 〈p′ | eα〉 < 〈p′′ | eα〉. In Case (2) (resp. (3)) the most important pole is ζθ∗∗
(resp. ηθ∗), as announced in Theorem 4. In Case (4) the most important of them is among ζθ∗∗
and ηθ∗, as stated in Theorem 4 as well. The expansion of integrals in (13) along Γθ1,α and Γθ2,α
via the saddle-point method provides all smaller asymptotic terms than those coming from the
poles. Section 5 is devoted to the results: they are stated from two points of view in Sections
5.1 and 5.2 respectively. Firstly, given an angle α0, we find the uniform asymptotic expansion
of the density π(r cos(α), r sin(α)) as r →∞ and α ∈ O(α0) depending on parameters (Σ, µ,R):
Theorems 22 –25 of Section 5.1 state it in all cases of parameters (1)–(4). In Section 5.2, given a
set parameters (Σ, µ,R), we compute the asymptotics of the density for all angles α0 ∈]0, π/2[.

Future works. The case of parameters such that ζθ∗∗ = θ(α) and ηθ∗ 6∈ {s′0, θ(α){ or the
case such that ηθ∗ = θ(α) and ζθ∗∗ 6∈ {s′′0, θ(α){ are not treated in Theorem 4. Theorem 25
gives a partial result but not at all as satisfactory as in all other cases. In fact, in these cases
the saddle-point θ(α) coincides with the “main” pole of ϕ1 or ϕ2. The analysis is then reduced
to a technical problem of computing the asymptotics of an integral whenever the saddle-point
coincides with a pole of the integrand or approaches to it. We leave it for the future work.

In the cases α = 0 and α = π/2, the tail asymptotics of the boundary measures ν1 and ν2 has
been found in [8]. It would be also possible to find the asymptotics of π(r cosα, r sinα) where
r → ∞ and α → 0 or α → π/2. This problem is reduced to obtaining the asymptotics of an
integral when the saddle-point θ(0) or θ(π/2) coincides with a branch point of the integrand ϕ1

or ϕ2. It can be solved by the same methods as in [25] for discrete random walks.
The constants mentioned in Theorem 4 and all those in asymptotic expansions of Theorems

22–24 will be specified in terms of functions ϕ1 and ϕ2. But these functions are unknown in their
initial domains of definition, although we carry out explicitly their meromorphic continuation
procedure and find all their poles. In the next paper we are going to obtain ϕ1 and ϕ2 as solutions
of boundary problems translating the analytic approach of [12] to SRBMs. This will determine
the constants in Theorem 4.

2. Riemann surface S

2.1. Kernel γ(θ1, θ2). The kernel of the main functional equation

γ(θ1, θ2) =
1

2
(σ11θ

2
1 + σ22θ

2
2 + 2σ12θ1θ2) + µ1θ1 + µ2θ2

can be written as

γ(θ1, θ2) = ã(θ2)θ2
1 + b̃(θ2)θ1 + c̃(θ2) = a(θ1)θ2

2 + b(θ1)θ2 + c(θ1)

where
ã(θ2) = 1

2σ11, b̃(θ2) = σ12θ2 + µ1, c̃(θ2) = 1
2σ22θ

2
2 + µ2θ2,

a(θ1) = 1
2σ22, b(θ1) = σ12θ1 + µ2, c(θ1) = 1

2σ11θ
2
1 + µ1θ1.

The equation γ(θ1, θ2) ≡ 0 defines a two-valued algebraic function Θ1(θ2) such that γ(Θ1(θ2), θ2) ≡
0 and a two-valued algebraic function Θ2(θ1) such that γ(θ1,Θ2(θ1) ≡ 0. These functions have
two branches:

Θ+
1 (θ2) =

−b̃(θ2)+
√
d̃(θ2)

2ã(θ2) , Θ−1 (θ2) =
−b̃(θ2)−

√
d̃(θ2)

2ã(θ2) ,

and

Θ+
2 (θ1) =

−b(θ1)+
√
d(θ1)

2a(θ1) , Θ−2 (θ1) =
−b(θ1)−

√
d(θ1)

2a(θ1) .
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where
d̃(θ2) = θ2

2(σ2
12 − σ11σ22) + 2θ2(µ1σ12 − µ2σ11) + µ2

1,
d(θ1) = θ2

1(σ2
12 − σ11σ22) + 2θ1(µ2σ12 − µ1σ22) + µ2

2.

The discriminant d(θ1) (resp. d̃(θ2)) has two zeros θ+
1 , θ−1 (resp. θ+

2 and θ−2 ) that are both real
and of opposite signs:

θ−1 = (µ2σ12−µ1σ22)−
√
D1

det Σ < 0, θ+
1 = (µ2σ12−µ1σ22)+

√
D1

det Σ > 0,

θ−2 = (µ1σ12−µ2σ11)−
√
D2

det Σ < 0, θ+
2 = (µ1σ12−µ2σ11)+

√
D2

det Σ > 0,
with notations D1 = (µ2σ12 − µ1σ22)2 + µ2

2 det Σ and D2 = (µ1σ12 − µ2σ11)2 + µ2
1 det Σ. Then

Θ2(θ1) (resp. Θ1(θ2)) has two branch points: θ−1 and θ+
1 (resp θ−2 and θ+

2 ). On can compute:

Θ±2 (θ−1 ) =
µ1σ12 − µ2σ11 + σ12

σ22

√
D1

det Σ
, Θ±2 (θ+

1 ) =
µ1σ12 − µ2σ11 − σ12

σ22

√
D1

det Σ
,

Θ±1 (θ−2 ) =
µ2σ12 − µ1σ22 + σ12

σ11

√
D2

det Σ
, Θ±1 (θ+

2 ) =
µ2σ12 − µ1σ22 − σ12

σ11

√
D2

det Σ
.

Furthermore, d(θ1) (resp. d̃(θ2)) being positive on ]θ−1 , θ
+
1 [ (resp. ]θ−2 , θ

+
2 [) and negative on

R \ [θ−1 , θ
+
1 ] (resp. R \ [θ−2 , θ

+
2 ]) , both branches Θ±2 (θ1) (resp. Θ±1 (θ2)) take real values on

[θ−1 , θ
+
1 ] (resp. [θ−2 , θ

+
2 ]) and complex values on R \ [θ−1 , θ

+
1 ] (resp. R \ [θ−2 , θ

+
2 ]).

Figure 5. Functions Θ±2 (θ1) and Θ±1 (θ2) on [θ−1 , θ
+
1 ] and [θ−2 , θ

+
2 ]

2.2. Construction of the Riemann surface S. We now construct the Riemann surface S of
the algebraic function Θ2(θ1). For this purpose we take two Riemann spheres C1

θ1
∪ {∞} and

C2
θ1
∪ {∞′}, say S1

θ1
and S2

θ1
, cut along ([−∞(′), θ−1 ] ∪ [θ+

1 ,∞(′)]), and we glue them together
along the borders of these cuts, joining the lower border of the cut on S1

θ1
to the upper border

of the same cut on S2
θ1

and vice versa. This procedure can be viewed as gluing together two
half-spheres, see Figure 6. The resulting surface S is homeomorphic to a sphere (i.e., a compact
Riemann surface of genus 0) and is projected on the Riemann sphere C ∪ {∞} by a canonical
covering map hθ1 : S → C ∪ {∞}. In a standard way, we can lift the function Θ2(θ1) to S, by
setting Θ2(s) = Θ+

2 (hθ1(s)) if s ∈ S1
θ1
⊂ S and Θ2(s) = Θ−2 (hθ1(s)) if s ∈ S2

θ1
⊂ S.

In a similar way one constructs the Riemann surface of the function Θ1(θ2), by gluing together
two copies S1

θ2
and S2

θ2
of the Riemann sphere S cut along ([−∞(′), θ−2 ] ∪ [θ+

2 ,∞(′)]). We obtain
again a surface homeomorphic to a sphere where we lift function Θ1(θ2).

Since the Riemann surfaces of Θ1(θ2) and Θ2(θ1) are equivalent, we can and will work on
a single Riemann surface S, with two different covering maps hθ1 , hθ2 : S → C ∪ {∞}. Then,
for s ∈ S, we set θ1(s) = hθ1(s) and θ2(s) = hθ2(s). We will often represent a point s ∈ S
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Figure 6. Construction of the Riemann surface S

by the pair of its coordinates (θ1(s), θ2(s)). These coordinates are of course not independent,
because the equation γ(θ1(s), θ2(s)) = 0 is valid for any s ∈ S. One can see S with points

s±1 = (θ±1 ,
µ1σ12−µ2σ11∓σ12σ22

√
D1

det Σ ), s±2 = (
µ2σ12−µ1σ22∓σ12σ11

√
D2

det Σ , θ±2 ), s∞ = (∞,∞), s∞′ = (∞′,∞′)
on Figure 7. It is the union of S1

θ1
and S2

θ1
glued along the contourRθ1 = {s : θ1(s) ∈ R\]θ−1 , θ

+
1 [}

that goes from s∞ to s∞′ via s−1 and back to s∞ via s+
1 . It is also the union of S1

θ2
and S2

θ2
glued

along the contour Rθ2 = {s : θ2(s) ∈ R\]θ−2 , θ
+
2 [}. This contour goes from s∞ to s∞′ and back

as well, but via s−2 and s+
2 . Let E be the set of points of S where both coordinates θ1(s) and

θ2(s) are real. Then

E = {s ∈ S : θ1(s) ∈ [θ−1 , θ
+
1 ]} = {s ∈ S : θ2(s) ∈ [θ−2 , θ

+
2 ]}.

On can see E on Figures 5 and 7, it contains all branch points s±1 and s±2 .

2.3. Galois automorphisms η and ζ. Now we need to introduce Galois automorphisms on
S. For any s ∈ S \ s±1 there is a unique s′ 6= s ∈ S \ s±1 such that θ1(s) = θ1(s′). Furthermore,
if s ∈ S1

θ1
then s′ ∈ S2

θ1
and vice versa. On the other hand, whenever s = s−1 or s = s+

1 (i.e.
θ1(s) = θ±1 is one of branch points of Θ2(θ1)) we have s = s′. Also, since γ(θ1(s), θ2(s)) = 0,
θ2(s) and θ2(s′) are the two values of function Θ2(θ1) at θ1 = θ1(s) = θ1(s′). By Vieta’s theorem
we obtain θ2(s)θ2(s′) = c(θ1(s))

a(θ1(s)) .
Similarly, for any s ∈ S \ s±2 , there exists a unique s′′ 6= s ∈ S \ s±2 such that θ2(s) = θ2(s′′).

If s ∈ S1
θ2

then s′ ∈ S2
θ2

and vice versa. On the other hand, if s = s−2 or s = s+
2 (i.e. θ2(s) = θ±2

is one of branch points of Θ1(θ2)) we have s = s′′. Moreover, since γ(θ1(s), θ2(s)) = 0, θ1(s) and
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Figure 7. Points of S with θ1(s) or θ2(s) real

θ1(s′′) give the two values of function Θ1(θ2) at θ2 = θ2(s) = θ2(s′′). Again, by Vieta’s theorem
θ1(s)θ1(s′′) = c̃(θ2(s))

ã(θ2(s)) .
With the previous notations we now define the mappings ζ : S→ S and η : S→ S by{

ζs = s′ if θ1(s) = θ1(s′),
ηs = s′′ if θ2(s) = θ2(s′′)

Following [31] we call them Galois automorphisms of S. Then ζ2 = η2 = Id, and

θ2(ζs) = c(θ1(s))
a(θ1(s))

1
θ2(s) , θ1(ηs) = c̃(θ2(s))

ã(θ2(s))
1

θ1(s) .

Points s−1 and s+
1 (resp. s−2 and s+

2 ) are fixed points for ζ (resp. η).
It is known that conformal automorphisms of a sphere (that can be identified to C ∪∞) are

transformations of type z 7→ az+b
cz+d where a, b, c, d are any complex numbers satisfying ad−bc 6= 0.

The automorphisms ζ and η, which are conformal automorphisms of S, have each two fixed points
and are involutions (because ζ2 = η2 = Id). We can deduce from it that ζ (resp. η) is a symmetry
w.r.t. the axis A1 (resp. A2) that passes through fixed points s−1 and s+

1 (resp. s−2 and s+
2 ).

In other words ζ (resp. η) is a rotation of angle π, around D1 (resp. A2), see Figure 8. Let
us draw the axis A orthogonal to the plan generated by the axes A1 and A2 and passing by
the intersection point of A1 and A2. We denote by β the angle between the axes A1 and A2.
Automorphisms ηζ and ζη are then rotations of angle 2β and −2β around the axis A. This axis
goes through points s∞ and s∞′ which are fixed points for ηζ and ζη, see Figure 8.

In the particular case Σ = Id, we have ηζ = ζη, the axes A1 and A2 are orthogonal. We
deduce that β = π

2 and that ηζ and ζη are symmetries w.r.t. the axis A.

2.4. Domains of initial definition of ϕ1 and ϕ2 on S. We would like to lift functions ϕ1(θ2)
and ϕ2(θ1) on S naturally as ϕ1(s) = ϕ1(θ2(s)) and ϕ2(s) = ϕ2(θ1(s)). But it can not be done
for all s ∈ S, ϕ1(θ2) and ϕ2(θ1) being not defined on the whole of C. Nevertheless, we are able
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Figure 8. Axes A1, A2 and A of Galois automorphisms ζ, η and ζη respectively

to do it for points s where θ2(s) or θ1(s) respectively have non-positive real parts. Therefore, in
this section we study the domains on S where it holds true.

Let us observe that for any θ1 ∈ C with R(θ1) = 0, Θ2(θ1) takes two values Θ±2 (θ1), where,
under assumption (6), RΘ−2 (θ1) 6 0 and RΘ+

2 (θ1) > 0, furthermore RΘ−2 (θ1) = 0 only at
θ1 = 0, and then Θ−2 (θ1) = 0. The domain

∆1 = {s ∈ S : Rθ1(s) < 0}

is simply connected and bounded by the contour Iθ1 = {s : Rθ1(s) = 0}.
The contour Iθ1 can be represented as the union of I−θ1 ∪ I

+
θ1

, where I−θ1 = {s : Rθ1(s) =

0,Rθ2(s) 6 0}, I+
θ1

= {s : Rθ1(s) = 0,Rθ2(s) > 0}, see Figure 9.
The contour I−θ1 goes from s∞ to s∞′ crossing the set of real points E at s0 = (0, 0), while I+

θ1
goes from s∞ to s∞′ crossing E at s′0 = (0,−2 µ2

σ22
).

In the same way, under (6), for any θ2 ∈ C with R(θ2) = 0, Θ1(θ2) takes two values Θ±1 (θ2),
where RΘ−1 (θ2) 6 0 and RΘ+

1 (θ2) > 0, moreover RΘ−1 (θ2) = 0 only at θ2 = 0, and then
Θ−1 (θ2) = 0. The domain

∆2 = {s ∈ S : Rθ2(s) < 0}

is simply connected and bounded by the contour Iθ2 = {s : Rθ2(s) = 0}. The contour Iθ2
can be represented as the union of I−θ2 ∪ I

+
θ2

, where I−θ2 = {s : Rθ2(s) = 0,Rθ1(s) 6 0},
I+
θ2

= {s : Rθ2(s) = 0,Rθ1(s) > 0}. The contour I−θ2 goes from s∞ to s∞′ crossing the set of
real points E at s0 = (0, 0), while I+

θ2
goes from s∞ to s∞′ crossing E at s′′0 = (−2 µ1

σ11
, 0), see

Figure 9.
From what said above, I−θ1 \ s0 ⊂ ∆2 and I−θ2 \ s0 ⊂ ∆1. The intersection ∆1 ∩ ∆2 consists

of two connected components, both bounded by I−θ1 and I−θ2 . The union ∆1 ∪∆2 is a connected
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domain, but not simply connected because of the point s0. The domain ∆1 ∪∆2 ∪ s0 is open,
simply connected and bounded by I+

θ1
and I+

θ2
, see Figure 9. We set ∆ = ∆1 ∪∆2.

Note that in the cases of stationary SRBM with drift µ having one of coordinates non-negative,
the location of contours I+

θ1
, I−θ1 , I

+
θ2
, I−θ2 on S is different. In order to shorten the number of

cases and pictures, we restrict ourselves in this paper to the case of both coordinates negative,
although all our methods work in these other cases as well.

Figure 9. Pure imaginary points of S

2.5. Parametrization of S. It is difficult to visualize on three-dimensional sphere different
points, contours, automorphisms and domains introduced above that will be used in future
steps. For this reason we propose here an explicit and practical parametrisation of S. Namely
we identify S to C ∪ {∞} and in the next proposition we explicitly define hθ1 and hθ2 two
recoveries introduced in Section 2.2. Such a parametrisation allows to visualize better in two
dimensions the sphere S ≡ C∪{∞} and all sets we are interested in, as we can see in Figure 10.

Proposition 5. We set the following covering maps
hθ1 : C ∪ {∞} ≡ S −→ C ∪ {∞}

s 7−→ hθ1(s) = θ1(s) :=
θ+1 +θ−1

2 +
θ+1 −θ

−
1

4 (s+ 1
s )

and
hθ2 : C ∪ {∞} ≡ S −→ C ∪ {∞}

s 7−→ hθ2(s) = θ2(s) :=
θ+2 +θ−2

2 +
θ+2 −θ

−
2

4 ( s
eiβ

+ eiβ

s ),

where
β = arccos− σ12√

σ11σ22
.

The equation γ(θ1(s), θ2(s)) = 0 is valid for any s ∈ S. Galois automorphisms can be written

ζ(s) = 1
s , η(s) = e2iβ

s ,
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and ηζ (resp. ζη) is a rotation around s∞ ≡ 0 of angle 2β (resp. −2β) according to counter-
clockwise direction.

Proof. We set hθ1(s) = θ1(s) :=
θ+1 +θ−1

2 +
θ+1 −θ

−
1

4 (s + 1
s ). One can notice that hθ1(1) = θ+

1 ,
hθ1(−1) = θ−1 , h′θ1(1) = 0, h′θ1(−1) = 0. This parametrization is practical because it leads to
a similar rational recovery hθ2 . In order to make the equation γ(θ1(s), θ2(s)) = 0 valid for any
s ∈ S we naturally set

θ2(s) = Θ+
2 (θ1(s)) :=

−b(θ1(s)) +
√
d(θ1(s))

2a(θ1(s))

and we are going to show that θ2(s) =
θ+2 +θ−2

2 +
θ+2 −θ

−
2

4 ( s
eiβ

+ eiβ

s ) where β = arccos− σ12√
σ11σ22

.
We note that d(θ1(s)) is the opposite of the square of a rational fraction

d(θ1(s)) = −det Σ(θ1(s)− θ+
1 )(θ1(s)− θ−1 ) = −det Σ(

θ+
1 − θ

−
1

4
)2(−2 + (s+

1

s
))(2 + (s+

1

s
))

= −det Σ(
θ+

1 − θ
−
1

4
)2(s− 1

s
)2 6 0.

Then we have

θ2(s) = Θ+
2 (θ1(s)) :=

−σ12
θ+1 +θ−1

2 +
θ+1 −θ

−
1

4 (s+ 1
s )− µ2 + i

√
det Σ(

θ+1 −θ
−
1

4 )(s− 1
s )

σ22
. (14)

Furthermore this parametrization leads to simple expressions for Galois automorphisms η and
ζ. We derive immediately that θ1(s) = θ1(1

s ) and θ2(1
s ) = Θ−2 (θ1(s)). Then we have

ζ(s) =
1

s
.

Next we search η as an automorphism of the form ηs = K
s . Since θ2(s) is of the form θ2(s) =

us+ v
s +w with constants u, v, w defined by (14), then θ2(s) = θ2(Ks ) with K = u

v . This leads to

η(s) =
K

s
with K =

−σ12 − i
√

det Σ

−σ12 + i
√

det Σ
.

After setting
K = e2iβ with β = arccos− σ12√

σ11σ22

we have

ζ(s) = 1
s , η(s) = e2iβ

s

and then

ηζ(s) = e2iβs, ζη(s) = e−2iβs.

It follows that ηζ and ζη are just rotations for angles 2β et −2β respectively. By symmetry
considerations we can now rewrite

θ2(s) =
√
uv(

s√
K

+

√
K

s
) + w =

θ+
1 − θ

−
1

4

√
σ11

σ22
(
s√
K

+

√
K

s
) +
−σ12(

θ+1 +θ−1
2 )− µ2

σ22
.

For i = 1, 2 we have θ+
i −θ

−
i = 2

√
Di

det Σ and σ11D1 = σ22D2. Then we obtain θ+1 −θ
−
1

4

√
σ11
σ22

=
θ+2 −θ

−
2

4 .

Moreover −σ12(
θ+1 +θ−1

2
)−µ2

σ22
=

Θ±2 (θ+1 )+Θ±2 (θ−1 )
2 =

θ+2 +θ−2
2 (the last equality follows from elementary

geometric properties of an ellipse). It implies

hθ2(s) = θ2(s) =
θ+

2 + θ−2
2

+
θ+

2 − θ
−
2

4
(
s√
K

+

√
K

s
)
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concluding the proof. �

Figure 10. Parametrization of S

Figure 10 shows different sets we are interested in according to the parametrization we have
just introduced. We have θ1(1) = θ+

1 , θ1(−1) = θ−1 , θ2(eiβ) = θ+
2 et θ2(ei(π+β)) = θ−2 , θ1(0) =

θ2(0) = ∞, θ1(∞) = θ2(∞) = ∞. Then we write s+
1 = 1, s−1 = −1, s+

2 = eiβ , s−2 = ei(π+β),
s∞ = 0, s∞′ =∞. It is easy to see that

E = {s ∈ C| |s| = 1},
and

Rθ1 = R, Rθ2 = eiβR.

We can determine the equation of the analytic curves of pure imaginary points of θi. We have
Iθ1 = {s ∈ S|θ1(s) ∈ iR}. If we write s = eiω with ω = a + ib ∈ C we find that <(θ1(s)) =
θ+1 +θ−1

2 +
θ+1 −θ

−
1

2 cos(a) cosh(b). It follows that

Iθ1 = {s = eiω ∈ S|ω = a+ ib, a ∈ R, b ∈ R, cos(a) cosh(b) =
θ+

1 + θ−1
θ−1 − θ

+
1

}.

Similarly we have

Iθ2 = {s = eiω ∈ S|ω = a+ ib, a ∈ R, b ∈ R, cos(a) cosh(b) =
θ+

2 + θ−2
θ−2 − θ

+
2

}.

We can easily notice that

ζI−θ1 = I+
θ1
, ζI+

θ1
= I−θ1 et ηI−θ2 = I+

θ2
, ηI+

θ2
= I−θ2 .

3. Meromorphic continuation of ϕ1 and ϕ2 on S

3.1. Lifting of ϕ1 and ϕ2 on S and their meromomorphic continuation.
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Lifting of ϕ1 and ϕ2 on S. Since the function θ1 → ϕ2(θ1) is holomorphic on the set {θ1 ∈ C :
<θ1 < 0} and continuous up to its boundary, we can lift it to ∆̄1 = {s ∈ S : <θ1(s) 6 0} as

ϕ2(s) = ϕ2(θ1(s)), ∀s ∈ ∆̄1.

In the same way we can lift ϕ1 to ∆̄2 as

ϕ1(s) = ϕ1(θ2(s)), ∀s ∈ ∆̄2.

Moreover, by definition of Galois automorphisms, functions ϕ1 and ϕ2 are invariant w.r.t. η and
ζ respectively:

ϕ2(ζs) = ϕ2(θ1(ζs)) = ϕ2(θ1(s)) = ϕ2(s), ∀s ∈ ∆̄1,

ϕ1(ηs) = ϕ1(θ2(ηs)) = ϕ1(θ2(s)) = ϕ1(s), ∀s ∈ ∆̄2. (15)
Functions γ1 and γ2 can be lifted naturally on the whole of S as

γ1(s) = γ1(θ1(s), θ2(s)), γ2(s) = γ2(θ1(s), θ2(s)) ∀s ∈ S.

Since γ(θ1(s), θ2(s)) = 0, then the right-hand side in the main functional equation (4) equals
zero for any θ = (θ1(s), θ2(s)) such that s ∈ ∆̄1 ∩ ∆̄2. Thus we have

γ1(s)ϕ(s) + γ2(s)ϕ2(s) = 0, ∀s ∈ ∆̄1 ∩ ∆̄2. (16)

Continuation of ϕ1 and ϕ2 on ∆.

Lemma 6. Functions ϕ1 and ϕ2 (defined on ∆̄2 and ∆̄1 respectively) can be meromorphically
continued on ∆ ∪ {s0} by setting

ϕ1(s) = −γ2(s)
γ1(s)ϕ2(s) if s ∈ ∆1,

and
ϕ2(s) = −γ1(s)

γ2(s)ϕ1(s) if s ∈ ∆2.

Furthermore,
γ1(s)ϕ1(s) + γ2(s)ϕ2(s) = 0 ∀s ∈ ∆ ∪ {s0}, (17)

ϕ1(s) = ϕ(ηs), ϕ2(s) = ϕ(ζs) ∀s ∈ ∆ ∪ {s0}. (18)

Proof. The open set ∆1 ∩ ∆2 is non-empty and bounded by the curve I−θ1 ∪ I
−
θ2
. Functional

equation (16) is valid for s ∈ ∆1∩∆2. It allows us to continue functions ϕ1 and ϕ2 as meromorphic
on ∆ as stated in this lemma. The functional equation (16) is then valid on the whole of ∆, as
well as the invariance formulas (3.1).

The function ϕ1(s) is defined in a neighborhood O(s0) of s0 as ϕ1(θ2(s)) for any s ∈ ∆2∩O(s0)

and −γ2(s)
γ1(s)ϕ2(θ1(s)) for any s ∈ ∆1 ∩ O(s0). Furthermore,

lim
s→s0,s∈∆2

ϕ1(s) = Eπ(

∫ 1

0
dL1

t )

by definition of the function ϕ1. It is easy to see that function γ2(s)
γ1(s) has a removable singularity

at s0 and to compute lims→s0
γ2(s)
γ1(s) = r12µ2−r22µ1

r11µ2−r21µ1 . Hence

lim
s→s0,s∈∆1

ϕ1(s) = lim
s→s0,s∈∆1

−γ2(s)

γ1(s)
ϕ2(θ1(s)) =

r22µ1 − r12µ2

r11µ2 − r21µ1
Eπ(

∫ 1

0
dL2

t ).

For any s ∈ ∆1 ∩ ∆2 ∩ O(s0), by (16) ϕ1(s) = −γ2(s)
γ1(s)ϕ2(s), from where lims→s0,s∈∆2 ϕ1(s) =

lims→s0,s∈∆1 ϕ1(s). Hence, function ϕ1(s) has a removable singularity at s0, and so is ϕ2(s) by
the same arguments.

�

Functions ϕ1 and ϕ2 can be then of course continued to ∆̄. Moreover we have the following
lemma.

Lemma 7. The domains ∆̄ ∪ ηζ∆̄ and ∆̄ ∪ ζη∆̄ are simply connected.
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Proof. Since ηζ and ζη are just rotations for a certain angle 2β or −2β, it suffices to check that
ηζI+

θ1
⊂ ∆̄ and that ζηI+

θ2
∈ ∆̄. In fact, ζI+

θ1
= I−θ1 ⊂ ∆̄2. Since η∆̄2 = ∆̄2, it follows that

ηI−θ1 ⊂ ∆̄2 ⊂ ∆̄. By the same arguments ζηI+
θ2
∈ ∆̄. One can refer to Figure 11. �

Figure 11. ∆ and ηζ∆

Now we would like to continue function ϕ1 (resp. ϕ2) on ηζ∆̄ (resp. ζη∆̄) as ϕ1(s) =
G(s)ϕ1(ζηs) for all s ∈ ηζ∆̄, where G(s) is a known function and ϕ1(ζηs) is well defined since
ζηs ∈ ∆̄. We could then continue this procedure for (ηζ)2∆̄, (ηζ)3∆̄, (resp. (ζη)2∆̄, (ζη)3∆̄)
etc and hence to define ϕ1 (resp. ϕ2) on the whole of S. Unfortunately, the domain ∆̄ is closed,
from where it will be difficult to establish that the function is meromorphic. From the other
hand, neither ∆ ∪ ηζ∆ nor (∆ ∪ s0) ∪ ηζ(∆ ∪ s0) are simply connected, there is a “gap” at s′′0.
See figure 11. To avoid this technical complication, we will first continue ϕ1 and ϕ2 on a slightly
bigger open domain ∆ε defined as follows. Let

∆ε
1 = {s : Rθ1(s) < ε}, ∆ε

2 = {s : Rθ2(s) < ε} (19)

and
∆ε = ∆ε

1 ∪∆ε
2 (20)

Let us fix any ε > 0 small enough. For any θ1 ∈ C with Rθ1 = ε, the function Θ2(θ1)
takes two values Θ±2 (θ1) where R(Θ−2 (θ1)) < 0 and R(Θ2(θ1)) > 0. The domain ∆ε

1 is bounded
by the contour Iεθ1 = Iε,−θ1 ∪ I

ε,+
θ1

where Iε,−θ1 , Iε,+θ1 both go from s∞ to s∞′, Iε,−θ1 ⊂ ∆2 and
Iε,+θ1 ∩∆ = ∅. See Figure 12. The same is true about the contour Iεθ2 = Iε,−θ2 ∪ I

ε,+
θ2

limiting ∆ε
2,

namely Iε,−θ2 ⊂ ∆1 and Iε,+θ2 ∩∆ = ∅.

Lemma 8. Functions ϕ1(s) and ϕ2(s) can be continued as meromorphic functions on ∆ε. More-
over equation (17) and the invariance formulas (18) remain valid.

Proof. For any s ∈ ∆ε
1 \∆, we have ζs ∈ ∆2 ⊂ ∆, except for s = s′0, for which ζs′0 = s0. Anyway,

function ϕ2(s) can be continued as meromorphic function on ∆ε
1/∆ as :

ϕ2(s) = ϕ2(ζs), ∀s ∈ ∆ε
1 \∆.
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Figure 12. Iε,−θ1 and Iε,+θ1

Then ϕ1(s) can be continued on the same domain by (17):

ϕ1(s) = −γ2(s)

γ1(s)
ϕ2(s) ∀s ∈ ∆ε

1 \∆.

Similarly, the formulas

ϕ1(s) = ϕ1(ηs), ϕ2(s) = −γ1(s)

γ2(s)
ϕ1(s) ∀s ∈ ∆ε

2 \∆

determine the meromorphic continuation of ϕ1(s) and ϕ2(s) on ∆ε
2 \∆. �

Lemma 9. The domains ∆ε∩ηζ∆ε and ∆ε∩ζη∆ε are open simply connected domains. Function
ϕ1(s) can be continued as meromorphic on ∆ε ∪ ηζ∆ε by the formula :

ϕ1(s) =
γ1(ζηs)γ2(ηs)

γ2(ζηs)γ1(ηs)
ϕ1(ζηs), ∀s ∈ ηζ∆ε continuation by rotation of 2β. (21)

Function ϕ2(s) can be continued as meromorphic on ∆ε ∪ ζη∆ε by the formula :

ϕ2(s) =
γ2(ηζs)γ1(ζs)

γ1(ηζs)γ2(ζs)
ϕ2(ηζs), ∀s ∈ ζη∆ε continuation by rotation of− 2β. (22)

Proof. We have shown in the proof of Lemma 7 that ηζI+
θ1
⊂ ∆̄ ⊂ ∆ε, and that ζηI+

θ2
⊂ ∆̄ ⊂ ∆ε.

Since ζη and ηζ are just rotations, this implies that ∆ε ∩ ηζ∆ε and ∆ε ∩ ζη∆ε are non-empty
open simply connected domains, and that ∆ε ∪ ηζ∆ε and ∆ε ∪ ζη∆ε are simply connected.

Let us take s ∈ ∆ε ∩ ηζ∆ε. Then ζηs ∈ ∆ε ∩ ζη∆ε and we can write by (17)

γ1(ζηs)ϕ1(ζηs) + γ2(ζηs)ϕ2(ζηs) = 0. (23)

Furthermore, we have shown in the proof of Lemma 7 that ζηI+
θ2
∈ ∆̄1. It follows that for all ε

small enough ζηIε,+θ2 ∈ ∆1, and hence ∆ε ∩ ζη∆ε ⊂ ∆ε
1. Since ζ∆ε

1 = ∆ε
1, then ζ(∆ε ∩ ζη∆ε) ⊂

∆ε
1 ⊂ ∆ε. Then ζ(ζηs) = ηs ∈ ∆ε and we can write (17) at this point as well:

γ1(ηs)ϕ1(ηs) + γ2(ηs)ϕ2(ηs) = 0. (24)

For points ηs ∈ ∆ε and ζηs ∈ ∆ε, by the invariance formula (18) we have:

ϕ2(ηs) = ϕ2(ζηs). (25)

Combining (23), (24) and (25) we obtain the formula (21) valid for any s ∈ ∆ε ∩ ηζ∆ε. By
principle of analytic continuation this allows to continue ϕ1 on ηζ∆ε as meromorphic function.
The proof is completely analogous for ϕ2. �
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We may now in the same way, using formulas (21) and (22), continue function ϕ1(s) (resp.
ϕ2(s)) as meromorphic on (ηζ)2∆ε, (ηζ)3∆ε (resp. (ζη)2∆ε, (ζη)3∆ε) etc proceeding each time
by rotation for the angle 2β [resp. −2β]. Namely we have the following lemma.

Lemma 10. For any n > 1 the domains ∆ε∪ηζ∆ε∪· · ·∪(ηζ)n∆ε and ∆ε∪ζη∆ε∪· · · (ζη)n∆ε are
open simply connected domains. Function ϕ1(s) can be continued as meromorphic subsequently
on ηζ∆ε, (ηζ)2∆ε, · · · (ηζ)n∆ε by the formulas :

ϕ1(s) =
γ1(ζηs)γ2(ηs)

γ2(ζηs)γ1(ηs)
ϕ1(ζηs), ∀s ∈ (ηζ)k∆ε, k = 1, 2 . . . , n, continuation by rotation of 2β.

(26)
Function ϕ2(s) can be continued as meromorphic on ζη∆ε, (ζη)2∆ε, · · · (ζη)n∆ε by the formulas
:

ϕ2(s) =
γ2(ηζs)γ1(ζs)

γ1(ηζs)γ2(ζs)
ϕ2(ηζs), ∀s ∈ (ζη)k∆ε, k = 1, 2, . . . n, continuation by rotation of− 2β.

(27)

Proof. We proceed by induction on k = 1, 2, . . . n. For k = 1, this is the subject of the previous
lemma. For any k = 2, . . . , n, assume the formula (26) for any s ∈ (ηζ)k−1∆. The domain
(ηζ)k−1∆ε ∩ (ηζ)k∆ε = (ηζ)k−1(∆ε ∩ ηζ∆ε) is a non empty open domain by Lemma 9, (ηζ)k−1

being just the rotation for the angle 2(k−1)β. The formula (26) is valid for any s ∈ (ηζ)k−1∆ε∩
(ηζ)k∆ε by induction assumption. Hence, by the principle of meromorphic continuation it is
valid for any s ∈ (ηζ)k∆ε. The same is true for the formula (27). �

Proceeding as in Lemma 10 by rotations, we will continue ϕ1 soon on the first half of S, that
is S1

θ2
, then the whole of S and go further, turning around S for the second time, for the third,

etc up to infinity. In fact, each time we complete this procedure on one of two halves of S, we
recover a new branch of the function ϕ1 as function of θ2 ∈ C. So, going back to the complex
plane, we continue this function as multivalued and determine all its branches. The same is true
for ϕ2 if we proceed by rotations in the opposite direction. This procedure can be presented
better on the universal covering of S, that we will do in the next paper. For the purpose of the
present paper, it is enough to complete this procedure only on one-half of S, that is to study
just the first (main) branch of ϕ1 and ϕ2. We summarize this result in the following theorem.
We recall that S = S1

θ1
∪ S2

θ1
and we denote by S1

θ1
the half that contains s′0 (and not s0, as

ζs0 = s′0). In the same way S = S1
θ2
∪ S2

θ2
and we denote by S1

θ2
the half that contains s′′0 (and

not s0, as ηs0 = s′′0), see Figure 10.

Theorem 11. For any s ∈ S1
θ2

there exists n > 0 such that (ζη)ns ∈ ∆̄. Let us define

ϕ1(s) =
γ1((ζη)ns) . . . γ1(ζηs)

γ2((ζη)ns) . . . γ2(ζηs)

γ2(η(ζη)n−1s) . . . γ2(ηs)

γ1(ηζη)n−1s) . . . γ1(ηs)
ϕ1((ζη)ns) (28)

Then the function ϕ1(s) is meromorphic on S1
θ2
. For any s ∈ S1

θ1
, there exists n > 0 such that

(ηζ)ns ∈ ∆̄. Let us define

ϕ2(s) =
γ2((ηζ)ns) . . . γ2(ηζs)

γ1((ηζ)ns) . . . γ1(ηζs)

γ1(ζ(ηζ)n−1s) . . . γ1(ηs)

γ2(ζηζ)n−1s) . . . γ2(ζs)
ϕ1((ηζ)ns) (29)

Then the function ϕ2(s) is meromorphic on S1
θ1
.

Proof. It is a direct corollary of Lemma 7 and Lemma 10. �

3.2. Poles of functions ϕ1 and ϕ2 on S. It follows from meromorphic continuations procedure
that all poles of ϕ1(s) and ϕ2(s) on S are located on the ellipse E , they are images of zeros of γ1

and γ2 by automorphisms η and ζ applied several times. Then all poles of all branches of ϕ2(s)
(resp. ϕ2(s)) on Cθ1 (resp. Cθ2) are on the real segment [θ−1 , θ

+
1 ] (resp. [θ−2 , θ

+
2 ]).
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Notations of arcs on E. Let us remind that we denote by {s1, s2} an arc of the ellipse E with
ends at s1 and s2 not passing through the origin, see Theorem 4. From now on, we will denote
in square brackets ]s1, s2[ or [s1, s2] an arc of E going in the anticlockwise direction from s1 to
s2.

In order to compute the asymptotic expansion of stationary distribution density, we are inter-
ested in poles of ϕ1 on the arc ]s′′0, s

+
2 [ and in those of ϕ2 on the arc ]s+

1 , s
′
0[. To determine the

main asymptotic term, we are particularly interested in the pole of ϕ1(θ2(s)) on ]s′′0, s
+
2 [ closest

to s′′0 and in the one of ϕ2(θ1(s)) on ]s+
1 , s

′
0[ closest to s′0. We identify them in this section.

We remind that θ∗ is a zero of γ1(s) on E different from s0 and that θ∗∗ is a zero of γ2(s) on
E different from s0. Their coordinates are

θ∗ = 2
r21µ1 − r11µ2

r2
21σ11 − 2r11r21σ12 + r2

11σ22

(
− r21, r11

)
,

θ∗∗ = 2
r12µ2 − r22µ1

r2
22σ11 − 2r22r12σ12 + r2

12σ22

(
r22,−r12

)
(30)

Their images by automorphisms η and ζ have the following coordinates:

ηθ∗ =
(
− r11

σ11r21
(σ22θ

∗
2 + 2µ2), θ∗2

)
,

ζθ∗∗ =
(
θ∗∗1 ,−

r22

σ22r12
(σ11θ

∗∗
1 + 2µ1)

)
. (31)

Lemma 12. (1) If θ∗∗ ∈]s0, s
+
1 [, then ζθ∗∗ is a pole of ϕ2(θ1(s)) on ]s+

1 , s
′
0[.

(2) If θ∗ ∈]s+
2 , s0[, then ηθ∗ is a pole of ϕ1(θ2(s)) on ]s′′0, s

+
2 [.

Proof. By meromorphic continuation procedure

ϕ2(ζθ∗∗) =
γ2(ηθ∗∗)γ1(θ∗∗)ϕ2(ηθ∗∗)

γ2(θ∗∗)γ1(ηθ∗∗)
.

It is clear that γ1(θ∗∗) 6= 0 due to stability conditions.
We could have γ2(ηθ∗∗) = 0 only if ηθ∗∗ = θ∗∗ ∈]s0, s

+
1 [. This could happen only at θ∗∗ = s−2

where θ2(s−2 ) < 0. But by meromorphic continuation of ϕ2(θ1(s)) to the arc {s ∈ E : θ2(s) < 0}
we have: ϕ2(ηθ∗∗1 ) = −γ1(ηθ∗∗)ϕ1(ηθ∗∗2 )

γ2(ηθ∗∗) , from where

ϕ2(ζθ∗∗) = −γ1(θ∗∗)

γ2(θ∗∗)
ϕ1(ηθ∗∗2 ),

so that θ∗∗ is clearly a pole in this particular case.
Let us finally check that ϕ2(ηθ∗∗) 6= 0.
Let us first observe that ϕ2(θ1(s)) 6= 0 for any s ∈ E with one of two coordinates non-positive.

In fact, if the first coordinate θ1(s) of s is non-positive, then ϕ2(θ1(s)) 6= 0 by its definition. If
s has the second coordinate θ2(s) non-positive, then ϕ2(θ1(s)) = −γ1(s)

γ2(s)ϕ1(θ2(s)) where γ1(s)

can not have zeros with the second coordinate non-positive by stability conditions and neither
ϕ1(θ2(s)) by its definition. Hence, ϕ2(θ1(s)) 6= 0 on the arc {s ∈ E : θ1(s) 6 0 or θ2(s) 6 0}.

It remains to consider the case where both coordinates of ηθ∗∗ are positive, i.e. θ∗∗ ∈]ηs′0, s
+
1 [

where the parameters are such that s1,+
2 > θ2(ηs′0) > 0 and to show that ϕ2(ηθ∗∗1 ) 6= 0. Suppose

the contrary, that ϕ2(ηθ∗∗) = 0. Then there are zeros of ϕ2 on ]ηs+
1 , s

′
0[ and among these zeros

there exists θ0 the closest one to s′0. By meromorphic continuation

ϕ2(θ0
1) =

γ2(ηζθ0)γ1(ζθ0)ϕ2(ηζθ0)

γ2(ζθ0
1)γ1(ηζθ0)

, (32)

where ηζθ0 ∈]θ0, s
′′
0]. First of all, we note that ϕ2(ηζθ0) 6= 0 if ηζθ0 ∈ [θ0, s

′
0[, since θ0 is the

closest zero to s′0, and ϕ2(ηζθ0) 6= 0 if ηζθ0 ∈ [s′0, s
′′
0], because one of coordinates of ηζθ0 is

non-positive within this segment. Hence, ϕ2(ηζθ0) 6= 0 for all ηζθ0 ∈]θ0, s
′′
0[.
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Furthermore, since ηζθ0 ∈]θ0, s
′′
0[, then ηζθ0 6= θ∗∗ and thus γ2(ηζθ0) 6= 0 except for ηζθ0 = s0.

As for this particular case ηζθ0 = s0, we would have ϕ2(θ0) = −γ1(s′′0)ϕ1(s0)γ−1
2 (s′′0) 6= 0, so

that θ0 = ζηs0 can not be a zero of ϕ2.
The point ζθ0 ∈ ζ[ηθ∗∗, s′0] = ζη[ηs′0, θ

∗∗] that is the segment [ηs′0, θ
∗∗] rotated for the angle

−2β. Hence ζθ0 is located on E below θ∗∗. Then γ1(ζθ0) = 0 combined with γ2(θ∗∗) = 0 is
impossible by stability conditions. Thus γ1(ζθ0) 6= 0. It follows from (32) that ϕ2(θ0

1) 6= 0. Thus
there exist no zeros of ϕ2 on ]ηs1,+, s′0[ and finally ϕ2(ηθ∗∗) 6= 0. Therefore ζθ∗∗ is a pole of ϕ2.

The reasoning for θ∗ is the same.
�

Lemma 13. (i) Assume that θp ∈]s+
1 , s

′
0[ is a pole of ϕ2(θ1) and it is the closest pole to s′0 .

If the parameters (Σ, µ) are such that θ2(s+
1 ) 6 0, or the parameters (Σ, µ,R) are such

that θ2(s+
1 ) > 0 but ηζθp 6∈]ηs+

1 , s0[, then γ2(ζθp) = 0 where ζθp ∈]s+
1 , s0[ and θp is a pole

of the first oder.
If the parameters (Σ, µ,R) are such that θ2(s+

1 ) > 0 and ηζθp ∈]ηs+
1 , s0[, then either

γ2(ζθp) = 0 where ζθp ∈]s0, s
+
1 [ or γ1(ηζθp) = 0. Furthermore, in this case, if γ2(ζθp)

and γ1(ηζθp) do not equal zero simultaneously, then θp is a pole of the first order.
(ii) Assume that θp ∈]s′′0, s

+
2 [ is a pole of ϕ1(θ2) and it is the closest pole to s′′0.

If the parameters (Σ, µ) are such that θ1(s+
2 ) 6 0, or the parameters (Σ, µ,R) are such

that θ1(s+
2 ) > 0 but ζηθp 6∈]s0, ζs

+
2 [, then γ1(ηθp) = 0 where ηθp ∈]s0, s

+
2 [ and θp is a

pole of the first oder.
If the parameters (Σ, µ,R) are such that θ1(s+

2 ) > 0 and ζηθp ∈]s0, ηs
+
1 , [, then either

γ1(ηθp) = 0 where ηθp ∈]s+
2 , s0[ or γ2(ζηθp) = 0. Furthermore, in this case, if γ1(ηθp)

and γ2(ζηθp) do not equal zero simultaneously, then θp is a pole of the first order.

Proof. Due to meromorphic continuation procedure we have

ϕ2(θp1) =
γ2(ηζθp)γ1(ζθp)ϕ2(ηζθp1)

γ2(ζθp)γ1(ηζθp)
(33)

where ηζθp ∈]θp, s′′0].
Assume that ηζθp ∈]θp, s0[. In this case point ηζθp has the second coordinate positive and so

does ζθp ∈ [s0, s
+
1 [. It follows that θ2(s+

1 ) > 0 and ηζθp ∈ η]s0, s
+
1 [∩{θ : θ2 > 0} =]ηs+

1 , s0[.
Thus, if the parameters (Σ, µ) are such that θ2(s+

1 ) 6 0, or the parameters (Σ, µ,R) are such
that θ2(s+

1 ) > 0 but ηζθp 6∈]ηs+
1 , s0[, then the second coordinate of ηζθp is non-positive, i.e.

ηζθp ∈ [s0, s
′′
0]. In this case

ϕ2(ηζθp1) = −γ1(ηζθp)

γ2(ηζθp)
ϕ1(ηζθp) (34)

from where

ϕ2(θp1) = −γ1(ζθp)ϕ1(ηζθp2)

γ2(ζθp)
. (35)

Since ϕ1(ηζθp2) is finite for for any ηζθp ∈ [s0, s
′′
0] by its initial definition, the formula (35) implies

that γ2(ζθp) = 0 and the pole θp is of the first order.
If parameters (Σ, µ,R) are such that θ2(s+

1 ) > 0 and ηζθp ∈]ηs+
1 , s0[, then either ηζθp ∈ [s′′0, s0]

or ηζθp ∈]s0, θ
p[. In the first case we have (35) as previously from where γ2(ζθp) = 0 and the

pole ζθp is of the first order. Let us turn to the second case ηζθp ∈]θp, s0[ for which we will
use the formula (33). The pole θp being the closest to s′0, then ηζθp can not be a pole of ϕ2 on
]θp, s′0[. It can neither be a pole of ϕ2 on [s′0, s0], since this function is initially well defined on
this segment. Hence in formula (33) ϕ2(ηζθp1) 6= ∞ for ηζθp ∈]θp, s′0[. It follows from (33) that
either γ2(ζθp) = 0 or γ1(ηζθp) = 0 and if these two equalities do not hold simultaneously, then
pole θp must be of the first order.

The proof in the case (ii) is symmetric.
�
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Figure 13 gives two illustrations of Lemmas 12 and 13.
On the left figure the parameters are such that θ1(s+

2 ) > 0 and θ2(s+
1 ) > 0. Let us look at

zeros θ∗ of γ1 and θ∗∗ of γ2 different from s0. We see θ∗ ∈]s+
2 , s0[, then ηθ∗ is the first candidate

for the closest pole of ϕ1 to s′′0 on ]s′′0, s
+
2 [. We also see θ∗∗ 6∈ [s0, ζs

+
2 ], then there are no other

candidates. Hence the closest pole of ϕ1 to s′′0 on ]s′′0, s
+
2 [ is ηθ∗. Since θ∗∗ ∈]s0, s

+
1 [, then ζθ∗∗ is

the first candidate for the closest pole of ϕ2 to s′0 on ]s+
1 , s

′
0[. Furthermore, θ∗ ∈]ηs+

1 , s0[, so that
ζηθ∗ is the second candidate to be the closest pole of ϕ2 to s′0 on ]s+

1 , s0[. We see at the picture
that ζηθ∗ is closer to s′0 than ζη∗∗.

On the right figure the parameters are such that θ1(s+
2 ) < 0 and θ2(s+

1 ) < 0. We see θ∗ ∈
]s+

2 , s0[, then ηθ∗ is immediately the closest pole of ϕ1 to s′′0 on ]s′′0, s
+
2 [. Since θ∗∗ 6∈]s0, s

+
1 [, then

there are no poles of ϕ2 on ]s+
1 , s

′
0[.

Figure 13. On the left figure : ηθ∗ is the closest pole of ϕ1 to s′′0 on ]s′′0, s
+
2 [,

ζηθ∗ is the closest pole of ϕ2 to s′0 on ]s+
1 , s0[. On the right figure: ηθ∗ is the

closest pole of ϕ1 to s′′0 on ]s′′0, s
+
2 [, there are no poles of ϕ2 on ]s+

1 , s0[

We will also need the following two lemmas.

Lemma 14. (1) Assume that θ2(s+
1 ) > 0. Then for any s ∈]ηs+

1 , s0[ we have θ2(ζηs) >
θ2(ηs).

(2) Assume that θ1(s+
2 ) > 0. Then for any s ∈]s0, ζs

+
2 [ we have θ1(ηζs) > θ1(ζs).

Proof. Since θ2(s+
1 ) > 0, then θ2(ζηs0)−θ2(ηs0) > 0. Consider the function f(s) = θ2(ζs)−θ2(s)

for s ∈ [s′′0, s
+
1 ]. It depends continuously on s on this arc. We note that f(s′′0) = θ2(ζηs0) −

θ2(ηs0) > 0, f(s+
1 ) = 0. Furthermore, since s−1 6∈ [s′′0, s

+
1 ], then f(s) 6= 0 for all s ∈]s′′0, s

1,+].
Hence f(s) > 0 for all s ∈]s′′0, s

+
1 ], from where θ2(ζηs)−θ2(ηs) = f(ηs) > 0 for any s ∈ η]s′′0, s

+
1 ] =

[ηs+
1 , s0[. The proof in the other case is symmetric.

�

Lemma 15. Assume that γ2(s) has a zero θ∗∗ ∈]s0, s
+
1 [ and γ1(s) has a zero θ∗ ∈]s+

2 , s0[. Then
one of the following three assertions holds true :

(i) The closest pole of ϕ2(θ1(s)) to s′0 on ]s+
1 , s

′
0[ is ζθ∗∗, the closest pole of ϕ1(θ2(s)) to s′′0

on ]s′′0, s
+
2 [ is ηθ∗, both of them are of the first order.

(ii) The closest pole of ϕ2(θ1(s)) to s′0 on ]s+
1 , s

′
0[ is ζθ∗∗, it is of the first order. The closest

pole of ϕ1(θ2(s)) to s′′0 on ]s′′0, s
+
2 [ is ηζθ∗∗ where θ1(ηζθ∗∗) > θ1(ζθ∗∗).
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(iii) The closest pole of ϕ2(θ1(s)) to s′0 on ]s+
1 , s

′
0[ is ζηθ∗ where θ2(ζηθ∗) > θ2(ηθ∗). The

closest pole of ϕ1(θ2(s)) to s′′0 on ]s′′0, s
+
2 [ is ηθ∗, it is of the first order.

The case (ii) is illustrated on Figure 13.

Proof. By Lemma 12 there exist poles of the function ϕ1(θ2(s)) on ]s′′0, s
+
2 [. By Lemma 13 under

parameters such that θ1(s+
2 ) 6 0 or θ1(s+

2 ) > 0 and θ∗∗ 6∈]s0, ζs
+
2 [, ηθ∗ is the closest pole to

s′′0 and it is of the first order. By the same lemma under parameters such that θ1(s+
2 ) > 0 and

θ∗∗ ∈]s0, ζs
+
2 [, either ηθ∗ or ηζθ∗∗ is the closest pole to s′0. By Lemma 13, if γ1(ζθ∗) 6= 0, pole

ηθ∗ is of the first order. Condition γ1(ζθ∗) 6= 0 is equivalent to ζθ∗ 6= θ∗∗. This means just that
pole ηθ∗ is different from ηζθ∗∗ which is another candidate for the closest pole to s′′0. By Lemma
14 θ1(ηζθ∗∗) > θ1(ζθ∗∗) To summarize, one of two following statements holds true:

(a1) Point ηθ∗ is the closest pole of ϕ1(θ2(s)) to s′′0 on ]s′′0, s
+
2 [ and it is of the first order;

(b1) The parameters are such that θ1(s+
2 ) > 0 and θ∗∗ ∈]s0, ζs

+
2 [. Point ηζθ∗∗ is the closest

pole of ϕ1(θ2(s)) to s′′0 on ]s′′0, s
+
2 [ and θ1(ηζθ∗∗) > θ1(ζθ∗∗).

By Lemmas 12, 13, 14 and the same considerations, one of the following statements about
ϕ2(θ1) holds true:

(a2) Pole ζθ∗∗ is the closest pole of ϕ2(θ1(s)) to s′0 on ]s+
1 , s

′
0[ and it is of the first order.

(b2) The parameters are such that θ2(s+
1 ) > 0, θ∗ ∈]ηs+

1 , s0[, point ζηθ∗ is the closest pole of
ϕ2(θ1(s)) to s′0 on ]s+

1 , s
′
0[ and θ2(ζηθ∗) > θ2(ηθ∗)

Let us finally prove that (b1) and (b2) can not hold true simultaneously. Assume that θ2(s+
1 ) >

0, θ∗ ∈]ηs+
1 , s0[, θ1(s+

2 ) > 0, θ∗∗ ∈]s0, ζs
+
2 [ and e.g. (b2), that is ζηθ∗ is the closest pole to s0.

Note that in this case ζθ∗∗ ∈]s+
2 , s

′
0[. Then ζηθ∗ is closer to s′0 than the pole ζθ∗∗ on this

segment or coincides with it. Hence θ1(ζηθ∗) 6 θ1(ζθ∗∗) and θ2(ζηθ∗) 6 θ2(ζθ∗∗). By Lemma
14 θ1(ηθ∗) = θ1(ζηθ∗) and θ1(ζθ∗∗) < θ1(ηζθ∗∗), θ2(ηθ∗) < θ2(ζηθ∗) and θ2(ζθ∗∗) = θ2(ηζθ∗∗).
Then θ1(ηθ∗) < θ1(ηζθ∗∗), θ2(ηθ∗) < θ2(ηζθ∗∗). This means that that ηθ∗ is the closest pole of
ϕ1(θ2(s)) to s′′0, ηθ∗ 6= ηζθ∗∗ , so that (b1) is impossible for ϕ1(θ2(s)), then we have (a1).

In the same way assumption (b1) leads to (a2). Thus (b1), (b2) can not hold true simultane-
ously, the lemma is proved. �

4. Contribution of the saddle-point and of the poles to the asymptotic
expansion

4.1. Stationary distribution density as a sum of integrals on S. By the functional equa-
tion (4) and the inversion formula of Laplace transform (we refer to [10] and [3]), the density
π(x1, x2) can be represented as a double integral

π(x1, x2) =
1

(2πi)2

∫ i∞

−i∞

∫ i∞

−i∞
e−x1θ1−x2θ2ϕ(θ1, θ2)dθ1dθ2

=
−1

(2πi)2

∫ i∞

−i∞

∫ i∞

−i∞
e−x1θ1−x2θ2

γ1(θ)ϕ1(θ2) + γ2(θ)ϕ2(θ1)

γ(θ)
dθ1dθ2. (36)

We now reduce it to a sum of single integrals.

From double to single integrals along contours on S.

Lemma 16. For any (x1, x2) ∈ R2
+

π(x1, x2) = I1(x1, x2) + I2(x1, x2)

where

I1(x1, x2) =
1

2πi

∫ i∞

−i∞
ϕ2(θ1)γ2(θ1,Θ

+
2 (θ1))e−x1θ1−x2Θ+

2 (θ1) dθ1√
d(θ1)

(37)
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and

I2(x1, x2) =
1

2πi

∫ i∞

−i∞
ϕ1(θ2)γ1(Θ+

1 (θ2), θ2)e−x1Θ+
1 (θ2)−x2θ2 dθ2√

d̃(θ2)
. (38)

Proof. By inversion formula (36)

π(x1, x2) =
−1

2πi

∫ i∞

−i∞
ϕ2(θ1)e−x1θ1

( 1

2πi

∫ i∞

−i∞

γ2(θ)

γ(θ)
e−x2θ2dθ2

)
dθ1

+
−1

2πi

∫ i∞

−i∞
ϕ1(θ2)e−x2θ2

( 1

2πi

∫ i∞

−i∞

γ1(θ)

γ(θ)
e−x1θ1dθ1

)
dθ2.

Now it suffices to show the following formulas

−1

2πi

∫ i∞

−i∞

γ2(θ)e−x2θ2

γ(θ)
dθ2 =

γ2(θ1,Θ
+
2 (θ1))√

d(θ1)
e−x2Θ+

2 (θ1), (39)

−1

2πi

∫ i∞

−i∞

γ1(θ)e−x1θ1

γ(θ)
dθ1 =

γ1(Θ+
1 (θ2), θ2)√
d̃(θ2)

e−x1Θ+
1 (θ2). (40)

Let us prove (39). For any θ1 ∈ iR \ {0}, the function γ(θ) = σ22
2 (θ2 − Θ+

2 (θ1))(θ2 − Θ−2 (θ1))

has two zeros Θ+
2 (θ1) and Θ−2 (θ1). Their real parts are of opposite signs: <(Θ−2 (θ1)) < 0 and

<(Θ+
2 (θ1)) > 0. Thus for any fixed θ1 ∈ iR\{0}, function γ2(θ)e−x2θ2

γ(θ) of the argument θ2 has two
poles on the complex plane Cθ2 , one at Θ−2 (θ1) with negative real part and another one at Θ+

2 (θ1)
with positive real part. Let us construct a contour CR = [−iR, iR] ∪ {Reit | t ∈] − π/2, π/2[}
composed of the purely imaginary segment [−iR, iR] and the half of the circle with radius R and
center 0 on Cθ2 , see Figure 14. For R large enough Θ+

2 (θ1) is inside the contour. The integral
of γ2(θ)e−x2θ2

γ(θ) over this contour taken in the counter-clockwise direction equals the residue at the
unique pole of the integrand:

1

2πi

∫
CR

γ2(θ)e−x2θ2

γ(θ)
dθ2 = resθ2=Θ+

2 (θ1)

γ2(θ)e−x2θ2

γ(θ)
=

γ2(θ1,Θ
+
2 (θ1))

(σ22/2)(Θ+
2 (θ1)−Θ−2 (θ1))

e−x2Θ+
2 (θ1)

=
γ2(θ1,Θ

+
2 (θ1))√

d(θ1)
e−x2Θ+

2 (θ1) for all large enough R > 0. (41)

Let us take the limit of this integral as R→∞:

lim
R→∞

∫
CR

γ2(θ)e−x2θ2

γ(θ)
dθ2 = − lim

R→∞

∫ iR

−iR

γ2(θ)e−x2θ2

γ(θ)
dθ2 + lim

R→∞

∫
{Reit|t∈]−π

2
,π
2

[}

γ2(θ)e−x2θ2

γ(θ)
dθ2.

(42)
The last term equals

lim
R→∞

∫
{Reit|t∈]−π

2
,π
2

[}

γ2(θ)e−x2θ2

γ(θ)
dθ2 = lim

R→∞

∫ π
2

−π
2

γ2(θ1, Re
it)

γ(θ1, Reit)
e−x2Re

it
iReitdt. (43)

We note that supR>0 supt∈]−π
2
,π
2

[ |iReit
γ2(θ1,Reit)
γ(θ1,Reit)

| < ∞ and supR>0 supt∈]−π
2
,π
2

[ |e−x2Re
it | 6 1.

Furthermore |e−x2Reit | = e−x2R cos t → 0 as R → ∞ for all t ∈] − π
2 ,

π
2 [. Then by dominated

convergence theorem the limit (43) equals 0 as R→∞. Hence, due to (41) and (42)

γ2(θ1,Θ
+
2 (θ1))

(σ22/2)(Θ+
2 (θ1)−Θ−2 (θ1))

e−x2Θ+
2 (θ1) = lim

R→∞

∫
CR

γ2(θ)e−x2θ2

γ(θ)
dθ2 =

∫ i∞

−i∞

γ2(θ)e−x2θ2

γ(θ)
dθ2,

that proves (39) for any θ1 ∈ iR \ {0}. The proof of (40) is analogous.
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Figure 14. Contour CR on Cθ2 .

Note also that the integral

1

2πi

∫ i∞

−i∞
ϕ2(θ1)γ2(θ1,Θ

+
2 (θ1))e−x1θ1−x2Θ+

2 (θ1) dθ1√
d(θ1)

is absolutely convergent. In fact supθ1∈iR |ϕ2(θ1)| 6 ν2(R2) by definition of ϕ2. It is elementary
to see that supθ1∈iR |γ2(θ1,Θ

+
2 (θ1))d−1/2(θ1)| < ∞. Furthermore, for any θ1 ∈ iR, <Θ+

2 (θ1) =

σ−1
22 (−µ2+<

√
d(θ1)), thus for some constant c > 0 we have <Θ+

2 (θ1) > c=θ1. Then the integral is
absolutely convergent. This concludes the proof of formula (37). The proof of (38) is completely
analogous. �

Remark. These integrals are equal to those on the Riemann surface S along properly oriented
contours I+

θ1
and I+

θ2
respectively. Thanks to the parametrization of Section 2.5 we have

dθ1√
d(θ1)

=
dθ2√
d̃(θ2)

=
ids

s
√

det Σ
. (44)

Then we can write for x = (x1, x2) ∈ R2
+

I1 + I2 =
1

2π
√

det Σ

∫
I+θ1

ϕ2(s)γ2(θ(s))

s
e−〈θ(s)|x〉ds+

1

2π
√

det Σ

∫
I+θ2

ϕ1(s)γ1(θ(s))

s
e−〈θ(s)|x〉ds.

4.2. Saddle-point. Let us fix α ∈]0, π/2[ and put (x1, x2) = reα = r(cos(α), sin(α)) where
α ∈]0, π/2[, Our aim now is to find the asymptotic expansion of π(r cos(α), r sin(α)), that is the
one of the sum

I1 + I2 =
1

2π
√

det Σ

∫
I+θ1

ϕ2(s)γ2(θ(s))

s
e−r〈θ(s)|eα〉ds+

1

2π
√

det Σ

∫
I+θ2

ϕ1(s)γ1(θ(s))

s
e−r〈θ(s)|eα〉ds

(45)
as r →∞ and to prove that for any α0 ∈]0, π/2[ this asymptotic expansion is uniform in a small
neighborhood O(α0) ∈]0, π/2[.

These integrals are typical to apply the saddle-point method, see [15] or [33]. Let us study
the function 〈θ(s) | eα〉 on S and its critical points.

Lemma 17. (i) For any α ∈]0, π/2[ function 〈θ(s) | eα〉 has two critical points on S denoted
by θ+(α) and θ−(α). Both of them are on ellipse E, θ+(α) ∈]s+

1 , s
+
2 [, θ−(α) ∈]s−1 , s

−
2 [.

Both of them are non-degenerate.
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(ii) The coordinates of θ+(α) = (θ+
1 (α), θ+

2 (α)) are given by formulas :

θ±1 (α) =
µ2σ12 − µ1σ22

det Σ
± 1

det Σ

√√√√ D1

1 + tan(α)2

(σ22−tan(α)σ12)2
det Σ

θ±2 (α) =
µ1σ12 − µ2σ11

det Σ
± 1

det Σ

√√√√ D2

1 + tan(α)2

(σ11−tan(α)σ12)2
det Σ

(46)

where notations D1 = (µ2σ12− µ1σ22)2 + µ2
2 det Σ and D2 = (µ1σ12− µ2σ11)2 + µ2

1 det Σ
are used. With the parametrization of Section 2.5 the corresponding points on S are such
that:

s±(α)2 =
cosα(θ+

1 − θ
−
1 ) + sinα(θ+

2 − θ
−
2 )eiβ

cosα(θ+
1 − θ

−
1 ) + sinα(θ+

2 − θ
−
2 )e−iβ

.

(iii) Function θ+(α) is an isomorphism between [0, π/2] and A = [s1,+, s2,+], limα→0 θ
+(α) =

s+
1 , limα→π/2 θ

+(α) = s+
2 . Function θ−(α) is an isomorphism between [0, π/2] and

[s1,−, s2,−], limα→0 θ
−(α) = s−1 , limα→π/2 θ

−(α) = s−2 .
(iv) Function 〈θ(s) | eα〉 is strictly increasing on the arc [θ−(α), θ+(α)] of E and strictly

decreasing on the arc [θ+(α), θ−(α)]. Namely, θ+(α) is its maximum on E and θ−(α) is
its minimum:

θ+(α) = argmaxs∈E〈θ(s) | eα〉 θ−(α) = argmins∈E〈θ(s) | eα〉.

Proof. Let us look for critical points with coordinates (θ1, θ2) of 〈θ(s) | eα〉 on S. Equa-
tion (θ1 cos(α) + θ2(θ1) sin(α))′θ1 = 0 implies tan(α)dθ2dθ1

= −1. Substituting it into equation
γ(θ1, θ2(θ1))′θ1 ≡ 0 and writing also γ(θ1, θ2) ≡ 0 we get the system of two equations{

−σ11θ1 tan(α) + σ22θ2 + σ12θ1 − σ12θ2 tan(α)− µ1 tan(α) + µ2 = 0
σ11θ

2
1 + σ22θ

2
2 + 2σ12θ1θ2 + µ1θ1 + µ2θ2 = 0

from where we compute θ−(α) = (θ−1 (α), θ−2 (α)) and θ+(α) = (θ+
1 (α), θ+

2 (α)) explicitly as an-
nounced in (46). We check directly that d2θ2

dθ1
6= 0 at these points, so they are non-degenerate

critical points. It is also easy to see from (46) that θ−1 (α) is strictly increasing from branch point
θ−1 to θ1(θ−2 ) and that θ+

1 (α) is strictly decreasing from branch point θ+
1 to θ1(θ+

2 ) when α runs
the segment [0, π/2]. In the same way θ−2 (α) is strictly decreasing from θ2(θ−1 ) to θ−2 and θ+

2 (α)
is strictly increasing from θ2(θ+

1 ) to θ+
2 when α runs the segment [0, π/2]. This proves assertions

(i)–(iii).
Finally, since there are no critical points on E except for θ+(α) and θ−(α), function 〈θ(s) | eα〉

is monotonous on the arcs [θ−(α), θ+(α)] and [θ+(α), θ−(α)]. In view of the inequality 〈θ+(α) |
eα〉 > 〈θ−(α) | eα〉, assertion (iv) follows. �

Notation of the saddle-point. From now one we are interested in point θ+(α) that we denote
by θ(α) for shortness.
The steepest-descent contour γα. The level curves {s : <〈θ(s) | eα〉 = 〈θ(α) | eα〉} are
orthogonal at θ(α) and subdivide its neighborhood into four sections. The curves of steepest
descent {s : =〈θ(s) | eα〉 = 0} on S are orthogonal at θ(α) as well, see Lemma 1.3, Chapter IV
in [14]. One of them coincides with E . We denote the other one by γα. The real part <〈θ(s) | α〉
is strictly increasing on γα as s goes far away from θ(α), see [15, Section 4.2]. The level curves
of functions <〈θ(s) | eα〉 and =〈θ(s) | eα〉 are pictured in Figure 15.

Let zα,+ = (θ1(zα,+), θ2(zα,+)) and zα,− = (θ1(zα,−), θ2(zα,−)) be the end points of γα where
=θ1(zα,−) > 0 and =θ1(zα,−) < 0. We can fix end points zα,− and zα,+ in such a way that
∀α ∈ O(α0) and some small ε > 0

<〈zα,± | eα〉 = 〈θ(α) | eα〉+ ε.
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Figure 15. Level sets of =〈θ(s) | eα〉 and <〈θ(s) | eα〉

For technical reasons we choose ε small enough such that <θ1(zα,±) ∈]θ−1 , θ
+
1 [ and <θ2(zα,±) ∈

]θ−2 , θ
+
2 [.

4.3. Shifting the integration contours. Our aim now is to shift the integration contours I+
θ1

and I+
θ2

in (45) up to new contours Γθ1,α and Γθ2,α respectively which coincide with γα in a
neighborhood of θ(α) on S and are “higher” than θ(α) in the sense of level curves of the function
<〈θ(s) | eα〉, that is <〈θ(s) | eα〉 > <〈θ(α) | eα〉 + ε for any s ∈ Γθi,α \ γα with i = 1, 2. When
shifting the contours we should of course take into account the poles of the integrands and the
residues at them.

Let us construct Γθ1,α and Γθ2,α. We set

Γ1,+
θ1,α

= {s : <θ1(s) = <θ1(zα,+),=θ1(zα,+) 6 =θ1(s) 6 V (α)}

where V (α) > 0 will be defined later. Then the end points of Γ1,+
θ1,α

are zα,+ and Zα,+ where
<θ1(zα,+) = <θ1(Zα,+), =θ1(Zα,+) = V (α). Next

Γ2,+
θ1,α

= {s : =θ1(s) = V (α), 0 6 <θ1(s) 6 <θ1(zα,+)}

if <θ1(zα,+) > 0 and

Γ2,+
θ1,α

= {s : =θ1(s) = V (α), 0 > <θ1(s) > <θ1(zα,+)}

if <θ1(zα,+) < 0. This contour goes from Zα,+ up to Z0
α,+ on Iθ1 with <(θ1(s)) = 0, =(θ1(s)) =

V (α). Finally Γ3,+
θ1,α

coincides with I+
θ1

from Z0
α,+ up to infinity :

Γ3,+
θ1,α

= {s : <θ1(s) = 0,=θ1(s) > V (α)}.

We define in the same way Γ1,−
θ1,α

= {s : <θ1(s) = <θ1(zα,−),−V (α) 6 =s 6 =θ1(zα,−)}. The
end points of Γ1,−

θ1,α
are zα,− and Zα,− where <θ1(zα,−) = <θ1(Zα,−), =θ1(Zα,−) = −V (α). Next

Γ2,−
θ2,α

= {s : =θ1(s) = −V (α), 0 6 <θ1(s) 6 <θ1(zα,−)} or Γ2−
θ2,α

= {s : =θ1(s) = −V (α), 0 >

<θ1(s) > <θ1(zα,−)} according to the sign of <θ1(zα,−). It goes from Zα,− to Z0
α,− on Sθ1

with <(θ1(Z0
α,−)) = 0, =(θ1(Z0

α,−)) = −V (α). Finally Γ3,+
θ1,α

coincides with I+
θ1

from Z0
α,− up to

infinity. Then contour Γθ1,α = Γ3,−
θ1,α
∪ Γ2,−

θ1,α
∪ Γ1,−

θ1,α
∪ γα ∪ Γ1,+

θ1,α
∪ Γ2,+

θ1,α
∪ Γ3,+

θ1,α
⊂ S1

θ1
. One can

visualize this contour on Figure 16 : in the left picture it is drawn on parametrized S, in the
right picture it is projected on the complex plane Cθ1 .
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Figure 16. Contour Γθ1,α on parametrized S and projected on Cθ1 .

The contour Γθ2,α is constructed analogously with respect to θ2-coordinate, Γθ2,α = Γ3,−
θ2,α
∪

Γ2,−
θ2,α
∪ Γ1,−

θ2,α
∪ γα ∪ Γ1,+

θ2,α
∪ Γ2,+

θ2,α
∪ Γ3,+

θ2,α
⊂ S1

θ2
. The curve of steepest descent γα is common for

Γθ1,α and Γθ2,α.
Let us recall that poles of ϕ1(s) and ϕ2(s) on S may occur only at E . The arcs on E in

accolades are those not passing through the point s0 = (0, 0).

Notation of the sets of poles P ′α and P ′′α. Let P ′α be the set of poles of the first order of
the function ϕ2(θ1(s)) on the arc }θ(α), s′0{. Let P ′′α be the set of poles of the first order of the
function ϕ1(θ2(s)) on the arc }θ(α), s′′0{.

Then the following lemma holds true.

Lemma 18. Let α0 ∈]0, π/2[ be such that θ(α0) is not a pole of ϕ1(θ2(s)) neither of ϕ2(θ1(s)).
If P ′α ∪ P ′′α is not empty, then for any α ∈ O(α0)

π(reα) =
∑
p∈P ′α

respϕ2(θ1(s))
γ2(p)√
d(θ1(p))

e−r〈θ(p)|eα〉 +
∑
p∈P ′′α

respϕ1(θ2(s))
γ1(p)√
d̃(θ2(p))

e−r〈θ(p)|eα〉

+
1

2π
√

det Σ

( ∫
Γθ1,α

ϕ2(s)γ2(θ(s))

s
e−r〈θ(s)|eα〉ds+

∫
Γθ2,α

ϕ1(s)γ1(θ(s))

s
e−r〈θ(s)|eα〉

)
ds.(47)

If P ′α∪P ′′α is empty, representation (47) stays valid where the corresponding sums over p ∈ P ′α
and p ∈ P ′′α are omitted.

Proof. It follows from the assumption of the lemma that θ(α) is not a pole of ϕ1(θ2(s)) neither
of ϕ2(θ1(s)) for any α in a small enough neighborhood O(α0). Then we use the representation
of the density (45) and apply Cauchy theorem shifting the contours to Γθ1,α and Γθ2,α. �

In order to find the asymptotic expansion of the density π(r cos(α), r sin(α)), we have to
evaluate now the contribution of the residues at poles in (47) and the one of integrals along
shifted contours Γθ1,α and Γθ2,α. This is the subject of the next two sections.

4.4. Asymptotic of integrals along shifted contours Γθ1,α and Γθ2,α. To finish the con-
struction of Γθ1,α and Γθ2,α, it remains to specify V (α). For that purpose we consider closer the
function

fα(s) = 〈θ(s) | eα〉 = θ1(s) cosα+ θ2(s) sinα.

Let us define the projection of this function on Cθ1 :

fα(θ1) = θ1 cosα+ Θ+
2 (θ1) sinα, θ1 ∈ Cθ1 .
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Clearly fα(s) = fα(θ1(s)) = 〈θ(s) | eα〉 on S1
θ1
.

Lemma 19. (i) For any fixed u ∈ [θ−1 , θ
+
1 ] the function v → <(fα(u+ iv)) is increasing on

[0,∞[ and decreasing on ]−∞, 0].
(ii) There exist constants d1 6 0, d2 > 0 and V > 0 such that:

inf
u∈[θ−1 ,θ

+
1 ]
<(fα(u+ iv)) > d1 + d2 sin(α)v ∀v > V and ∀v 6 −V, ∀α ∈]0, π/2[. (48)

Proof. We compute :

<(fα(u+ iv)) = cos(α)u+
sin(α)

σ22
(−σ12u− µ2 + <

√
d(u+ iv))

with the discriminant d(u+ iv) = (det Σ)(u+ iv − θ−1 )(θ+
1 − u− iv). Then

<
√
d(u+ iv) =

√
det Σ

√
|(u+ iv − θ−1 )(θ+

1 − u− iv)| cos(
ω−(u+ iv) + ω+(u+ iv)

2
)

where ω−(u+ iv) et ω+(u+ iv) are defined as ω−(u+ iv) = arg(θ+
1 − u− iv) and ω+(u+ iv) =

arg(u+ iv − θ−1 ), see Figure 17. We have

cos(
ω−(u+ iv) + ω+(u+ iv)

2
) =

√
1

2
cos(ω−(u+ iv) + ω+(u+ iv)) +

1

2

=

√
1

2
cos(ω−(u+ iv)) cos(ω+(u+ iv))− 1

2
sin(ω−(u+ iv)) sin(ω+(u+ iv)) +

1

2

=

√
(u− θ−1 )(θ+

1 − u)− v(−v)

2|(u+ iv − θ−1 )(θ+
1 − u− iv)|

+
1

2
.

Thus

<(fα(u+ iv)) = cos(α)u

+
sin(α)

σ22

(
− σ12u− µ2 +

√
1

2

√
(u− θ−1 )(θ+

1 − u) + v2 + |(u+ iv − θ−1 )(θ+
1 − u− iv)|

)
Both statements of the lemma follow directly from this representation. �

Figure 17. ω−(u+ iv) et ω+(u+ iv)

We may now choose V (α) and such that

V (α) = max
(
V,
〈θ(α) | eα〉+ ε− d1

d2 sin(α)

)
(49)
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in accordance with notations of Lemma 19. This concludes the construction of Γθ1,α and Γθ2,α.
The asymptotic expansion of integrals along these contours is given in the following lemma.

The main contribution comes from the integrals along γα, while all other parts of integrals are
proved to be exponentially negligible by construction.

Lemma 20. Let α0 ∈]0, π/2[ and O(α0) a small enough neighborhood of α0. Then when r →∞
uniformly for α ∈ O(α0) we have

1

2π
√

det Σ

∫
Γθ1,α

ϕ2(s)γ2(θ(s))

s
e−r〈θ(s)|eα〉ds ∼

k∑
l=0

clθ1(α)

rl
√
r
e−r〈θ(α)|eα〉, (50)

1

2π
√

det Σ

∫
Γθ2,α

ϕ1(s)γ1(θ(s))

s
e−r〈θ(s)|eα〉ds ∼

k∑
l=0

clθ2(α)

rl
√
r
e−r〈θ(α)|eα〉. (51)

The constants clθ1(α), clθ2(α), l = 0, 1, 2, . . . depend continuously of α and can be made explicit
in terms of functions ϕ1 and ϕ2 and their derivatives at θ(α). Namely

c0
θ1(α) =

1√
2π det Σ

ϕ2(s(α))γ2(θ(α))

s(α)
√
f ′′α(s(α))

,

c0
θ2(α) =

1√
2π det Σ

ϕ1(s(α))γ1(θ(α))

s(α)
√
f ′′α(s(α))

.

Proof. By Lemma 19 (i) and by (44) for any r > 0.∣∣∣ ∫
Γ1,±
θ1,α

ϕ2(θ1(s))γ2(s)

s
√

det Σ
exp−r〈θ(s)|eα〉 d s

∣∣∣ 6 2V (α) sup
s∈Γ1,±

θ1,α

∣∣∣ϕ2(θ1(s))γ2(s)√
d(θ1(s))

∣∣∣e−r〈θ(α)|eα〉−rε. (52)

The length of Γ±θ2,α being smaller than (θ+
1 − θ

−
1 ), by Lemma 19 (ii) and by (44) for any r > 0∣∣∣ ∫

Γ2,±
θ1,α

ϕ2(θ1(s))γ2(s)

s
√

det Σ
exp−r〈θ(s)|eα〉 d s

∣∣∣ 6 (θ+
1 − θ

−
1 ) sup

s∈Γ2,±
θ2,α

∣∣∣ϕ2(θ1(s))γ2(s)√
d(θ1(s))

∣∣∣e−r(d1+d2 sin(α)V (α))

(53)
where due to the choice (49) of V (α)

e−r(d1+d2 sin(α)V (α)) 6 e−r〈θ(α)|eα〉−rε. (54)

Finally note that for any s ∈ Γ3,±
θ1,α

γ2(s)√
d(θ1(s))

= r1,2
θ1(s)√
d(θ1(s))

+ r22
−b(θ1(s)) +

√
d(θ1(s))

2a(θ1(s))
√
d(θ1(s))

where <θ1(s) = 0, =θ1(s) > V . Then there exists a constantD > 0 such that |γ2(s)d−1/2(θ1(s))| 6
D for any s ∈ Γ3,±

θ1,α
and any α ∈]0, π/2[. Moreover |ϕ2(θ1(s))| 6 ν1(R+) for any s ∈ Iθ1 . Thus

by Lemma 19 (ii) and by (44)∣∣∣ ∫
Γ3,±
θ1,α

ϕ2(θ1(s))γ2(s)

s
√

det Σ
exp−r〈θ(s)|eα〉 d s

∣∣∣ 6 2Dν1(R+)

∞∫
V (α)

e−r(d1+d2 sin(α)v)dv

6 2Dν1(R+)
1

c sin(α)V (α)
e−r(d1+d2 sin(α)V (α)) 6 2Dν1(R+)

1

c sin(α)V (α)
e−r〈θ(α)|eα〉−rε. (55)

The contours Γi,±θ1,α for i = 1, 2 being far away from poles of ϕ2 and zeros of d(θ1(s)) for all α ∈
O(α0), supα∈O(α0) sup

s∈Γi,±θ1,α

∣∣∣ϕ2(θ1(s))γ2(s)√
d(θ1(s))

∣∣∣ <∞ for i = 1, 2, and of course supα∈O(α0)(sin(α)V (α))−1 <
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∞, supα∈O(α0) V (α) <∞. It follows that for some constant C > 0 , any r > 0 and any α ∈ O(α0)∣∣∣ ∫
Γ1,±
θ1,α
∪Γ2,±

θ1,α
∪Γ3,±

θ1,α

ϕ2(θ1(s))γ2(s)

s
√

det Σ
e−r〈θ(s)|eα〉d s

∣∣∣ 6 Ce−r〈θ(α)|eα〉−rε. (56)

As for the contour γα of the steepest descent of the function 〈θ(s) | eα〉, we apply the standard
saddle-point method, see e.g. Theorem 1.7, Chapter IV in [14]: for any k > 0 when r → ∞,
uniformly ∀α ∈ O(α0),

1

2π
√

det Σ

∫
γα

ϕ2(s)γ2(θ(s))

s
e−r〈θ(s)|eα〉d s ∼

k∑
l=0

clθ1(α)

rl
√
r
e−r〈θ(α)|eα〉, (57)

where c0
θ1

(α) is given explicitly in the statement of the lemma and all other constants clθ1(α) can
be written in terms of the same functions and their derivatives at θ(α). Thus (50) is proved and
the proof of (51) for the integral over Γθ2,α is absolutely analogous. �

4.5. Contribution of poles into the asymptotic of π(r cos(α), r sin(α)). Once Lemma 20
established the asymptotics of integrals along shifted contours Γθ1,α and Γθ2,α, let us come back
to Lemma 18 and evaluate the contribution to the density of residues at poles over P ′α ∪ P ′′α.
There are two possibilities:

(i) P ′α ∪P ′′α is empty, then the asymptotics of the density is determined by the saddle-point
via Lemma 20.

(ii) P ′α ∪ P ′′α is not empty. Then due to monotonicity of the function 〈θ(s) | eα〉 on E , see
Lemma 17 (iv), for any p ∈ P ′α ∪P ′′α we have 〈θ(p) | eα〉 < 〈θ(α) | eα〉. Hence all residues
at poles p ∈ P ′α ∪ P ′′α bring more important contribution to the asymptotic expansion as
r →∞ than integrals over Γθ1,α and Γθ2,α.

First of all, we would like to distinguish the set of parameters (Σ, µ,R) under which (i) or (ii) hold
true. Secondly, under (ii), we would like to find the most important pole from the asymptotic
point of view. Let us look closer at the arc {s′0, θ(α)}. Under parameters such that θ1(s+

2 ) < 0
we have s′0 ∈]s+

1 , s
+
2 [, see Figure 18, the left picture. Then for some α′ ∈]0, π/2[ θ(α′) = s′0. This

arc written in square brackets in the anticlockwise direction is ]s′0, θ(α)[ for any α ∈]α′, π/2[ and
the function 〈θ(s) | eα〉 is increasing when s runs from s′0 to θ(α). For any α ∈ [0, α′[ this arc is
written ]θ(α), s′0[ and the function 〈θ(s) | eα〉 is decreasing when s runs from θ(α) so s′0. Under
parameters such that θ1(s+

2 ) > 0, we have s′0 6∈]s+
1 , s

+
2 [, see Figure 18 the right picture, from

where this arc is written ]θ(α), s′0[ for any α ∈]0, π/2[. The function 〈θ(s) | eα〉 is decreasing
when s runs from θ(α) to s′0.

Figure 18. The arc A = [s+
1 , s2+] if θ1(s+

2 ) < 0, θ2(s+
1 ) < 0 on the left picture,

if θ1(s+
2 ) > 0, θ2(s+

1 ) > 0 on the right picture
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The important conclusion is that in all cases, the pole p of ϕ2 on the arc {s′0, θ(α)} with the
smallest 〈θ(p) | eα〉 is the closest to s′0. In the same way we can consider the arc {s′′0, θ(α)} and
find out, due to monotonicity of the function 〈θ(s) | eα〉, that the pole of ϕ1 with the smallest
〈θ(p) | eα〉 is the closest to s′′0. We know from Lemmas 12–15 the way that these poles are related
to zeros of γ1 and γ2. Now we summarize this information in the following theorem.

Theorem 21. (a) Let ζθ∗∗ 6∈ {θ(α), s′0}, ηθ∗ 6∈ {θ(α), s′′0)}. Then P ′α and P ′′α are both
empty, θ(α) is not a pole of ϕ1 and neither of ϕ2.

(b) Let ζθ∗∗ ∈}θ(α), s′0} and ηθ∗ 6∈}θ(α), s′′0}. Then
min

p∈P ′α∪P ′′α
〈θ(p) | eα〉 = 〈ζθ∗∗ | eα〉 (58)

and this minimum over P ′α ∪P ′′α is achieved at the unique element p = ζθ∗∗ which is a
pole of the first order of ϕ2.

(c) Let ζθ∗∗ 6∈}θ(α), s′0} and ηθ∗ ∈ {s′′0, θ(α){. Then
min

p∈P ′α∪P ′′α
〈θ(p) | eα〉 = 〈ηθ∗ | eα〉 (59)

and this minimum over P ′α ∪ P ′′α is achieved at the unique element p = ηθ∗ which is a
pole of the first order of ϕ1.

(d) Let ζθ∗∗ ∈}θ(α), s′0} and ηθ∗ ∈ {s′′0, θ(α){.
If 〈ζθ∗∗ | eα〉 < 〈ηθ∗ | eα〉, then (58) is valid. If 〈ζθ∗ | eα〉 > 〈ηθ∗∗ | eα〉, then (59)

is valid. In both cases the minimum over P ′α ∪ P ′′α is achieved at the unique element
which is the pole of the first order p = ζθ∗∗ of ϕ2 or the pole of the first order p = ηθ∗ of
ϕ1 respectively.

If 〈ζθ∗∗ | eα〉 = 〈ηθ∗ | eα〉, then
min

p∈P ′α∪P ′′α
〈θ(p) | eα〉 = 〈ζθ∗∗ | eα〉 = 〈ηθ∗ | eα〉. (60)

This minimum over P ′α ∪P ′′α is achieved at exactly two elements p = ζθ∗∗ and p = ηθ∗

which are poles of the first order of ϕ1 and ϕ2 respectively.

Proof. (a) Let θ1(s+
2 ) < 0 and let α > α′ defined above. Then θ1(α) < 0 and all points of

the arc {θ(α), s′0{ have the first coordinate negative, so that function ϕ2(θ1(s)) is initially well
defined at them and holomorphic. Let now θ1(s+

2 ) < 0 and α ∈]0, α′[ or θ1(s+
2 ) > 0. Then

θ1(α) > 0 and the arc {θ(α), s′0} written in the anticlockwise direction is [θ(α), s′0]. Assume
that ϕ2(θ1(s)) has poles on [θ(α), s′0[ and θp is the closest to s′0. Then by Lemma 13 either
γ2(ζθp) = 0 or parameters are such that θ2(s+

1 ) > 0, ηζθp ∈]ηs+
1 , s0[ and γ1(ηζθp) = 0. In the

first case ζθp = θ∗∗ is a zero of γ2 different from s0. This implies θp = ζθ∗∗ ∈ [θ(α)s′0[ which is
impossible by assumptions. In the second case ηζθp = θ∗ is a zero of γ1 different from s0. This
implies ζθp = ηθ∗ ∈ η]ηs+

1 , s0[=]s′′0, s
+
1 [⊂]s′′0, θ(α)[=}θ(α), s′′0{ that contradicts the assumptions

as well. Hence ϕ2(θ1(s)) has no poles on the open arc }θ(α), s′0{ and neither at θ(α), P ′α is
empty, The reasoning for P ′′α is the same.

(b) By stability conditions θ∗∗1 > 0, then ζθ∗∗1 > 0. Thus θ1(α) > 0, in the case θ1(s+
2 ) < 0

the angle α must be smaller than α′ and the arc }θ(α), s′0{ should be written ]θ(α), s′0[. By
Lemma 12 there exist poles of function ϕ2(θ1(s)) on this arc and ζθ∗∗ is one among them. By
Lemma 13 ζθ∗∗ is not be the closest pole to s′0 only if the parameters are such that θ2(s+

1 ) > 0
and for some θp ∈]θ(α), s′0[ such that ηζθp ∈]ηs+

1 , s0[ γ1(ηζθp) = 0. But then ηζθp = θ∗ is a zero
of γ1 different from s0. It follows ζθp = ηθ∗ ∈ η]ηs+

1 , s0[=]s′′0, s
+
1 [⊂]s′′0, θ(α)[=}θ(α), s′′0{ that is

impossible by assumptions. Hence by Lemma 13 ζθ∗∗ is the closest pole to s′0 of ϕ2(θ1(s)) and it
is of the first order. The function 〈θ(s) | eα〉 being decreasing on ]θ(α), s′0[ when s runs the arc
in the anticlockwise direction, thus

min
p∈P ′α

〈θ(p) | eα〉 = 〈ζθ∗∗ | eα〉, (61)

and the minimum is achieved on the unique element ζθ∗∗.
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If P ′′α is empty then the statement (b) is proved.
Assume that P ′′α is not empty. Then there exist poles of ϕ1(θ2(s)) on the arc }θ(α), s′′0{.

Since function ϕ1(θ2(s)) is initially well defined and holomorphic at all points with the second
coordinate negative, then θ2(α) > 0 and the arc is ]s′′0, θ(α)[ when written in the anticlockwise
direction. Let θp be a pole of ϕ1(θ2(s)) which is the closest to s′′0. Then by Lemma 13 either
γ1(ηθp) = 0 or parameters are such that θ1(s+

2 ) > 0, ζηθp ∈]s0, ζs
+
2 [ and γ2(ζηθp) = 0. In the

first case ηθp = θ∗ is a zero of γ1 different from s0. This implies θp = ηθ∗ ∈]s′′0, θ(α)[ which
is impossible by assumptions. In the second case ζηθp = θ∗∗ where ηθp = ζθ∗∗ ∈ ζ]s0, ζs

+
2 [=

]s+
2 , s

′
0[⊂]θ(α), s′0[. Thus θp = ηζθ∗∗ is the closest pole to s′′0. Hence, the closest pole of the first

order coincides with it or is further away from s′′0. Since the function < θ(s) | eα > is increasing
on ]s′′0, θ(α)[ when s is running from s′′0 to θ(α), we derive

min
p∈P ′′α

〈θ(p) | eα〉 > 〈ηζθ∗∗ | eα〉.

But by Lemma 14
θ1(ηζθ∗∗) > θ1(ζθ∗∗), θ2(ηζθ∗∗) = θ2(ζθ∗∗)

from where
〈ηζθ∗∗ | eα〉 > 〈ζθ∗∗ | eα〉.

Thus, whenever P ′′α is non empty,

min
p∈P ′′α

〈θ(p) | eα〉 > 〈ζθ∗∗ | eα〉.

This inequality combined with (61) finishes the proof of (b).
The proof of (c) is symmetric.
(d) Since θ∗2 = ηθ∗2 > 0 and θ∗∗1 = ζθ∗∗1 > 0 by stability conditions, then θ(α) has both

coordinates positive. The corresponding arcs written in the anticlockwise direction are ]θ(α), s′0[⊂
]s+

1 , s
′
0[ and ]s′′0, θ(α)[⊂]s′′0, s

+
2 [. By Lemma 13 ζθ∗∗ is a pole of ϕ2(θ1(s)) on the first of these arcs

while ηθ∗ is a pole of ϕ1(θ2(s)) on the second one. Then one of the statements of Lemma 15 (i),
(ii) or (iii) holds true.

Under the statement (i), taking into account the monotonicity of the function 〈θ(s) | eα〉 on
the arcs, we derive immediately that minp∈P ′α〈θ(p) | eα〉 = 〈ζθ∗∗ | eα〉, and this minimum is
achieved on the unique element p = ζθ∗∗ . We derive also that minp∈P ′′α〈θ(p) | eα〉 = 〈ηθ∗ | eα〉
and this minimum is achieved on the unique element p = ηθ∗. Thus, under the statement (i) of
Lemma 15, the theorem is immediate.

Assume now (ii) of Lemma 15. Again by monotonicity of 〈θ(s) | eα〉 we deduce minp∈P ′α〈θ(p) |
eα〉 = 〈ζθ∗∗ | eα〉 where the minimum is achieved at the unique element ζθ∗∗. Under (ii) all poles
of ϕ1(θ2(s)) on ]s′′0, θ(α)[ are not closer to s′′0 than ηζθ∗∗ , so that either P ′′α is empty or

min
p∈P ′′α

〈θ(p) | eα〉 > 〈ηζθ∗∗ | eα〉.

By Lemma 14 θ1(ηζθ∗∗) > θ1(ζθ∗∗), θ2(ηζθ∗∗) = θ2(ζθ∗∗) from where 〈ηζθ∗∗ | eα〉 > 〈ζθ∗∗ | eα〉.
Hence

min
p∈P ′′α

〈θ(p) | eα〉 > 〈ζθ∗∗ | eα〉,

and finally
min

p∈P ′α∪P ′′α
〈θ(p) | eα〉 = 〈ζθ∗∗ | eα〉 (62)

where the minimum is achieved on the unique element ζθ∗∗. From the other hand, the pole
ηθ∗ ∈]s′′0, θ(α)[ of ϕ1(θ2(s)) in this case is not closer to s′′0 than ηζθ∗∗. Then the inequality

〈ηθ∗ | eα〉 > 〈ηζθ∗∗ | eα〉 > 〈ζθ∗∗ | eα〉 (63)

is valid. Statements (62) and (63) finish the proof of this theorem under assumption (ii) of
Lemma 15. The proof under assumption (iii) of the same lemma is symmetric. �
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5. Asymptotic expansion of the density π(r cos(α), r sin(α)), r →∞, α ∈ O(α0)

5.1. Given angle α0, asymptotic expansion of the density as a function of parameters
(Σ, µ,R). We are now ready to formulate and prove the results. In this section we fix an angle
α0 ∈]0, π/2[ and give the asymptotic expansion of the density of stationary distribution depending
on parameters (Σ, µ,R), and more precisely on the position of zeros of γ1 and γ2 on ellipse E .

In the first theorem parameters (Σ, µ,R) are such that the asymptotic expansion is determined
by the saddle-point.

Theorem 22. Let α0 ∈]0, π/2[, O(α0) is a small enough neighborhood of α0. Assume that
ζθ∗∗ 6∈ {θ(α0), s′0}, ηθ∗ 6∈ {θ(α0), s′′0)}. Then there exist constants cl(α), l = 0, 1, 2, . . ., such that
for any k > 0:

π(r cos(α), r sin(α)) ∼
k∑
l=0

cl(α)

rl
√
r
e−r〈θ(α)|eα〉, as r →∞, uniformly for α ∈ O(α0). (64)

Constants cl(α) l = 0, 1, 2, . . . depend continuously on α and can be expressed in terms of func-
tions ϕ1 and ϕ2 and their derivatives at θ(α). Namely

c0(α) = c0
θ1(α) + c0

θ2(α) (65)

where c0
θ1

(α) and c0
θ2

(α) are defined in Lemma 20.

Proof. By Lemma 17 (iii) θ(α) depends continuously on α, then ζθ∗∗ 6∈ {θ(α), s′0}, ηθ∗ 6∈
{θ(α), s′′0} for all α ∈ O(α0). By Theorem 21 (a) the sets P ′α and P ′′α are both empty, further-
more, θ(α) is not a pole of ϕ1 and neither of ϕ2. Then by Lemma 18 the density equals the sum
of integrals along shifted contours Γθ1,α and Γθ2,α the asymptotics of which is found in Lemma
20, cl(α) = clθ1(α) + clθ2(α), l = 0, 1, 2, . . .. �

In the second theorem parameters (Σ, µ,R). are such that the most important terms of the
asymptotic expansion come from the poles of ϕ1 or ϕ2 and the smaller ones come from the
saddle-point.

Theorem 23. Let α0 ∈]0, π/2[, O(α0) is a small enough neighborhood of α0. Assume that
ζθ∗∗ ∈}θ(α0), s′0} or ηθ∗ ∈}θ(α0), s′′0}. Assume also that θ(α0) is not a pole of ϕ1(θ2(s)) neither
of ϕ2(θ1(s)). Then for any k > 0 when r →∞, uniformly for α ∈ O(α0) we have

π(r cos(α), r sin(α)) ∼
∑

p∈P ′α0

respϕ2(θ1(s))
γ2(p)√
d(θ1(p))

e−r〈θ(p)|eα〉

+
∑

p∈P ′′α0

respϕ1(θ2(s))
γ1(p)√
d̃(θ2(p))

e−r〈θ(p)|eα〉

+

k∑
l=0

cl(α)

rl
√
r
e−r〈θ(α)|eα〉. (66)

Constants cl(α) l = 0, 1, 2, . . . are the same as in Theorem 22. Furthermore
(i) If ζθ∗∗ ∈}θ(α0), s′0} and ηθ∗ 6∈}θ(α0), s′′0}, then the main term in the expansion (66) is

at p = ζθ∗∗.
(ii) If If ζθ∗∗ 6∈}θ(α0), s′0} and ηθ∗ ∈}θ(α0), s′′0}, then the main term in (66) is at p = ηθ∗.
(iii) Let ζθ∗∗ ∈}θ(α0), s′0} and ηθ∗ ∈}θ(α0), s′′0}. If 〈ζθ∗∗ | eα0〉 < 〈ηθ∗ | eα0〉, then the main

term in (66) is at p = ζθ∗∗.
If 〈ζθ∗∗ | eα0〉 > 〈ηθ∗ | eα0〉, then main term in (66) is at p = ηθ∗.
If 〈ζθ∗∗ | eα0〉 = 〈ηθ∗ | eα0〉, then two the most important terms in the expansion (66)

are at p = ζθ∗∗ and at p = ηθ∗.
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Proof. Point θ(α0) being not a pole of ϕ1 neither of ϕ2, one can choose O(α0) small enough such
that θ(α) is not a pole of no one of these functions and P ′α∪P ′′α = P ′α0

∪P ′′α0
for all α ∈ O(α0). By

assumptions ζθ∗∗ ∈}θ(α0), s′0} or ηθ∗ ∈}θ(α0), s′′0}, then by Theorem 21 (b), (c) or (d) P ′α0
∪P ′′α0

is not empty. Finally by virtue of Lemma 18 and Lemma 20 the representation (66) holds true.
Let us study the main asymptotic term. Statements (i), (ii) and (iii) for α = α0 follow directly

from Theorem 21 (b), (c) and (d). They remain valid for any α ∈ O(α0) due to the continuity
of the functions α→ 〈θ(p) | eα〉 for any p ∈ P ′α0

∪ P ′′α0
. �

Remark. Under parameters such that ζθ∗∗ ∈}θ(α0), s′0}, ηθ∗ ∈}θ(α0), s′′0} and 〈ζθ∗∗ | eα0〉 =
〈ηθ∗ | eα0〉 (case (iii)), for any fixed angle α < α0, the main asymptotic term is at ηθ∗ and the
second one is at ζθ∗∗; for any fixed angle α > α0 the pole ζθ∗∗ provides the main asymptotic
term and ηθ∗ gives the second one. If r →∞ and α→ α0, both of these terms should be taken
into account.

In Theorem 23 θ(α0) is assumed not to be a pole of ϕ1 and neither of ϕ2, that is why Lemma 18
applies. Nevertheless, it may happen (for a very few angles and under some sets of parameters)
that θ(α0) is a pole of one of these functions. In this case the following theorem holds true.

Theorem 24. Let α0 ∈]0, π/2[. Assume that ζθ∗∗ ∈}θ(α0), s′0} or ηθ∗ ∈}θ(α0), s′′0)}.
Assume also that θ(α0) is a pole of ϕ1(θ2(s)) or of ϕ2(θ1(s)).
Then for any δ > 0 there exists a small enough neighborhood O(α0) such that

π(r cos(α), r sin(α)) ∼
∑

p∈P ′α0

respϕ2(θ1(s))
γ2(p)√
d(θ1(p))

e−r〈θ(p)|eα〉

+
∑

p∈P ′′α0

respϕ1(θ2(s))
γ1(p)√
d̃(θ2(p))

e−r〈θ(p)|eα〉

+ o(e−r(〈θ(α)|eα〉−δ)) r →∞, uniformly ∀α ∈ O(α0) (67)

Furthermore, the main term in this expansion is the same as in Theorem 23, cases (i), (ii)
and (iii).

Proof. For any δ > 0 one can choose τ ′ ∈}s′0, θ(α0){ and τ” ∈}s′′0, θ(α0){ close enough to θ(α0)
so that P ′α0

⊂}s′0, τ ′{ and P ′′α0
⊂}s′′0, τ”{. Furthermore τ ′ and τ ′′ can be chosen close enough

to α0 so that 〈θ(α0) | eα0〉 − 〈τ ′ | eα0〉 < δ/4 and 〈θ(α0) | eα0〉 − 〈τ ′′ | eα0〉 < δ/4. Then by
continuity of the functions α → 〈θ(α) | eα〉, α → 〈τ ′ | eα〉, α → 〈τ ′′ | eα〉 one can fix a small
enough neighborhood O(α0) such that

〈θ(α) | eα〉 − 〈τ ′ | eα〉 < δ/2, 〈θ(α) | eα〉 − 〈τ ′′ | eα〉 < δ/2, ∀α ∈ O(α0). (68)

Next, we shift the integration contours in (45) I+
θ1

and I+
θ2

to the new ones Γ′θ1,α and Γ′′θ2,α going
through τ ′ and τ ′′ respectively that we construct as follows: Γ′θ1 = Γ′1θ1,α ∪ Γ′2,±θ1,α ∪ Γ′3,±θ1,α where
Γ′1θ1 = {s : <θ1(s) = <θ1(τ ′),−V (α) 6 =θ1(s) 6 V (α)}, Γ′2,±θ1,α = {s : =θ1(s) = ±V (α), 0 6

<θ1(s) 6 <θ1(τ ′)} if <θ1(τ ′) > 0 and Γ′2,±θ1,α = {s : =θ1(s) = ±V (α), 0 > <θ1(s) > <θ1(τ ′)} if
<θ1(τ ′) < 0 , finally Γ′3,+θ1,α

= {s : <θ1(s) = 0,=θ1(s) > V (α)}, Γ′3,−θ1,α = {s : <θ1(s) = 0,=θ1(s) 6
−V (α)}. The construction of Γ′′θ2 is analogous. The value V (α) is fixed as:

V (α) = max
(
V,
〈τ ′ | eα〉 − d1

d2 sin(α)
,
〈τ ′′ | eα〉 − d1

d2 sin(α)

)
(69)

with notations from Lemma 19. Thanks to the representation (45) and Cauchy theorem

π(reα) =
∑

p∈P ′α0

respϕ2(θ1(s))
γ2(p)√
d(θ1(p))

e−r〈θ(p)|eα〉 +
∑

p∈P ′′α0

respϕ1(θ2(s))
γ1(p)√
d̃(θ2(p))

e−r〈θ(p)|eα〉
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+
1

2π
√

det Σ

∫
Γ′θ1,α

ϕ2(s)γ2(θ(s))

s
e−r〈θ(s)|eα〉ds+

1

2π
√

det Σ

∫
Γ′′θ2,α

ϕ1(s)γ1(θ(s))

s
e−r〈θ(s)|eα〉ds.

(70)
Applying Lemma 19 (i) for the estimation of integrals along Γ′1θ1,α and Γ′′1θ1,α, and the same lemma
(ii) for the estimation of those along Γ′±2

θ1,α
Γ′′±2
θ2,α

, Γ′±3
θ1,α

and Γ′′±3
θ2,α

exactly as in Lemma 20 and in
view of (69) we can show that with some constant C > 0∣∣∣ ∫

Γ′θ1,α

ϕ2(s)γ2(θ(s))

s
e−r〈θ(s)|eα〉ds

∣∣∣ 6 Ce−r〈τ
′|eα〉,

∣∣∣ ∫
Γ′′θ1,α

ϕ2(s)γ2(θ(s))

s
e−r〈θ(s)|eα〉ds

∣∣∣ 6 Ce−r〈τ
′′|eα〉 ∀r > 0,∀α ∈ O(α0).

Hence, by (68)∫
Γ′θ1,α

ϕ2(s)γ2(θ(s))

s
e−r〈θ(s)|eα〉ds+

∫
Γ′′θ2,α

ϕ1(s)γ1(θ(s))

s
e−r〈θ(s)|eα〉ds = o(e−r(〈θ(α)|eα〉−δ)) (71)

as r →∞ uniformly ∀α ∈ O(α0). This finishes the proof of the representation (67). The analysis
of the main term is the same as in Theorem 23. �

It remains to study the cases of parameters such that
(O1) ζθ∗∗ = θ(α0) and ηθ∗ 6∈ {s′′0, θ(α0){
(O2) ηθ∗ = θ(α0) and ζθ∗∗ 6∈ {s′′0, θ(α0){.
By Lemma 12 this means that θ(α0) is a pole of one of functions ϕ1 or ϕ2. Since in both cases

ηθ∗ 6∈ {s′′0, θ(α){, ζθ∗∗ 6∈ {s′′0, θ(α){, we derive by the same reasoning as in Theorem 21 (a) that
P ′α0
∪ P ′′α0

is empty. The following theorem is valid.

Theorem 25. Assume that α0 is such that the assumptions on parameters (O1) or (O2) are
valid. Then for any δ > 0 there exists a small enough neighborhood O(α0) such that

π(r cos(α), r sin(α)) = o(e−r(〈θ(α)|eα〉−δ)) r →∞, uniformly ∀α ∈ O(α0). (72)

Proof. We choose τ ′ and τ ′′ according to (68) and proceed exactly as in the proof of Theorem
24. �

Remark. In Theorems 24 and 25 θ(α0) is a pole of one of the functions ϕ1 or ϕ2, hence at least
one of the integrals (45) can not be shifted to Γθ1,α0 or Γθ2,α0 going through θ(α0). Furthermore,
although for any α ∈ O(α0), α 6= α0, this shift is possible, the uniform asymptotic expansion
by the saddle-point method as in Lemma 20 does not stay valid, that is why we are not able
to specify small asymptotic terms in Theorem 24 neither to obtain a more precise result in
Theorem 25. This should be possible if we consider the double asymptotics r →∞ and α→ α0

and apply the (more advanced) saddle-point method in the special case when the saddle-point
is approaching a pole of the integrand. We do not do it in the present paper.
Remark. Assumptions of theorems 22 — 25 are expressed in terms of positions on ellipse E of
points ζθ∗∗ and ηθ∗ that are images of zeros of γ1 and γ2 on E by Galois automorphisms. They
can be also expressed in terms of the following simple inequalities.

Under parameters such that θ1(α0) > 0, we have ζθ∗∗ 6= {s′0, θ(α0)} iff θ∗∗ 6= {s0, ζθ(α0)} that
is equivalent to γ2(ζθ(α)) < 0. Under parameters such that θ1(α0) 6 0, we have always ζθ∗∗ 6=
{s′0, θ(α0)} because θ1(ζθ∗∗) > 0 by stability conditions, in this case we have also γ2(ζθ(α0)) > 0.
We come to the following conclusions.

(i) Assumption ζθ∗∗ 6= {s′0, θ(α0)} is equivalent to the one that γ2(ζθ(α0)) < 0 or θ1(α0) 6 0.
Assumption ζθ∗∗ ∈ {s′0, θ(α0){ is equivalent to the one that γ2(ζθ(α0)) > 0 and

θ1(α0) > 0.
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(ii) Assumption ηθ∗ 6= {s′′0, θ(α0)} is equivalent to the one that γ1(ηθ(α0)) < 0 or θ2(α0) 6 0.
Assumption ηθ∗∗ ∈ {s′′0, θ(α0){ is equivalent to the one that γ1(ηθ(α0)) > 0 and

θ2(α0) > 0.

5.2. Given parameters (Σ, µ,R), density asymptotics for all angles α0 ∈]0, π/2[. In this
section we state the asymptotics of the density for all angles α0 ∈]0, π/2[ once parameters
(Σ, µ,R) are fixed. Theorems 26 – 28 below are direct corollaries of Theorems 22 – 25 and
elementary geometric properties of ellipse E and straight lines γ1(θ) = 0 and γ2(θ) = 0, therefore
we do not give their proofs. To shorten the presentation, we restrict ourselves to the main term
in the formulations of the results, although of coarse further terms of the expansions could be
written. The different cases of therome 26 are illustrated by Figures 19–25.

Theorem 26. Let θ1(s+
2 ) > 0, θ2(s+

1 ) > 0.
(i) Let γ2(s+

1 ) 6 0 and γ1(s+
2 ) 6 0 Then for any α0 ∈]0, π/2[ we have :

π(r cosα, r sinα) ∼ c(α0)√
r

exp(−r〈θ(α) | eα〉), r →∞, α→ α0, (73)

where the constant c(α0) depends continuously on α0 ∈]0, π/2[ and limα0→0 c(α0) =
limα0→π/2 c(α0) = 0.

(ii) Let γ2(s+
1 ) > 0 and γ1(s+

2 ) 6 0.

(iia) Let γ2(ζs+
2 ) > 0 or equivalently dΘ+

2 (θ1)
dθ1

∣∣∣
θ∗∗1
> 0. Then for any α0 ∈]0, π/2[ we have

:
π(r cosα, r sinα) ∼ d1 exp(−r〈ζθ∗∗ | eα〉), r →∞, α→ α0, (74)

with some constant d1 > 0.
(iib) Let γ2(ζs+

2 ) < 0 or equivalently A∗∗ ≡ dΘ+
2 (θ1)
dθ1

∣∣∣
θ∗∗1
< 0. Define α1 = arctan(−1/A∗∗) ∈

]0, π/2[. Then for any α0 ∈]0, α1[ we have (74) and for any α ∈]α1, π/2[ we have
(73).

(iii) Let γ2(s+
1 ) < 0 and γ1(s+

2 ) > 0.

(iiia) Let γ1(ηs+
1 ) > 0 or equivalently dΘ+

1 (θ2)
dθ2

∣∣∣
θ∗2
> 0. Then for any α0 ∈]0, π/2[ we have

π(r cosα, r sinα) ∼ d2 exp(−r〈ηθ∗ | eα〉), r →∞, α→ α0, (75)

with some constant d2 > 0.
(iiib) Let γ1(ηs+

1 ) < 0 or equivalently A∗ ≡ dΘ+
1 (θ2)
dθ2

∣∣∣
θ∗2
< 0. Define α2 = arctan(−A∗) ∈

]0, π/2[. Then for any α0 ∈]0, α2[ we have (73) and for any α ∈]α2, π/2[ we have
(75).

(iv) Let γ2(s+
1 ) > 0 and γ1(s+

2 ) > 0.
(iva) Let θ1(ζθ∗∗) 6 θ1(ηθ∗) and θ2(ζθ∗∗) 6 θ2(ηθ∗) where at least one of inequalities is

strict. Then for any α0 ∈]0, π/2[ we have (74).
(ivb) Let θ1(ζθ∗∗) > θ1(ηθ∗) and θ2(ζθ∗∗) > θ2(ηθ∗) where at least one of inequalities is

strict. Then for any α ∈]0, π/2[ we have (75).
(ivc) Let θ1(ζθ∗∗) 6 θ1(ηθ∗) and θ2(ζθ∗∗) > θ2(ηθ∗) where at least one of the inequalities

is strict. Let us define β0 = arctan θ1(ζθ∗∗)−θ1(ηθ∗)
θ2(ηθ∗)−θ2(ζθ∗∗) Then for any α0 ∈]0, β0[ we have

(74), for any α0 ∈]β0, π/2[ we have (75) and for α0 = β0 we have

π(r cosα, r sinα) ∼ d1 exp(−r〈ζθ∗∗ | eα〉) + d2 exp(−r〈ηθ∗ | eα〉), r →∞, α→ α0. (76)

(ivd) Let θ1(ζθ∗∗) > θ1(ηθ∗) and θ2(ζθ∗∗) 6 θ2(ηθ∗). Let us define angles α1 and α2 as
in (ii) and (iii). Then 0 < α1 6 α2 < π/2; for any α0 ∈]0, α1[ we have (74) , for
any α0 ∈]α1, α2[ we have (73) and for any α0 ∈]α2, π/2[ we have (75).

Theorem 27. Let θ1(s+
2 ) 6 0, θ2(s+

1 ) 6 0.
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(i) Let γ2(s+
1 ) 6 0 and γ1(s+

2 ) 6 0 Then for any α0 ∈]0, π/2[ the asymptotics (73) is valid.

(ii) Let γ2(s+
1 ) > 0 and γ1(s+

2 ) 6 0. Let A∗∗ ≡ dΘ+
2 (θ1)
dθ1

∣∣∣
θ∗∗1

. Then α1 = arctan(−1/A∗∗) ∈

]0, π/2[. For any α0 ∈]0, α1[ the asymptotics (74) is valid and and for any α ∈]α1, π/2[
the asymptotics (73) holds true.

(iii) Let γ2(s+
1 ) < 0 and γ1(s+

2 ) > 0. Let A∗ ≡ dΘ+
1 (θ2)
dθ2

∣∣∣
θ∗2
. Then α2 = arctan(−A∗) ∈]0, π/2[.

For any α0 ∈]0, α2[ the asymptotics (73) is valid and for any α ∈]α2, π/2[ the asymptotics
(75) holds true.

(iv) Let γ2(s+
1 ) > 0 and γ1(s+

2 ) > 0. Then either θ1(ζθ∗∗) < θ1(ηθ∗) and θ2(ζθ∗∗) >
θ2(ηθ∗), or θ1(ζθ∗∗) > θ1(ηθ∗) and θ2(ζθ∗∗) < θ2(ηθ∗), or finally θ1(ζθ∗∗) = θ1(ηθ∗)
and θ2(ζθ∗∗) = θ2(ηθ∗).
(iva) Let θ1(ζθ∗∗) < θ1(ηθ∗) and θ2(ζθ∗∗) > θ2(ηθ∗). Let us define β0 = arctan θ1(ζθ∗∗)−θ1(ηθ∗)

θ2(ηθ∗)−θ2(ζθ∗∗)

Then for any α0 ∈]0, β0[ we have (74), for any α0 ∈]β0, π/2[ we have (75) and for
α0 = β0 we have (76).

(ivb) Let θ1(ζθ∗∗) > θ1(ηθ∗) and θ2(ζθ∗∗) < θ2(ηθ∗) or θ1(ζθ∗∗) = θ1(ηθ∗) and θ2(ζθ∗∗) =
θ2(ηθ∗) Let us define angles α1 and α2 as in (ii) and (iii). Then 0 < α1 6 α2 < π/2;
for any α0 ∈]0, α1[ we have (74) , for any α0 ∈]α1, α2[ we have (73) and for any
α0 ∈]α2, π/2[ we have (75).

Theorem 28. Let θ1(s+
2 ) > 0, θ2(s+

1 ) 6 0.
(i) Let γ2(s+

1 ) 6 0 and γ1(s+
2 ) 6 0 Then for any α0 ∈]0, π/2[ the asymptotics (73) is valid.

(ii) Let γ2(s+
1 ) > 0 and γ1(s+

2 ) 6 0.

(iia) Let γ2(ζs+
2 ) > 0 or equivalently dΘ+

2 (θ1)
dθ1

∣∣∣
θ∗∗1
> 0. Then for any α0 ∈]0, π/2[ the

asymptotics (74) is valid.
(iib) Let γ2(ζs+

2 ) < 0 or equivalently A∗∗ ≡ dΘ+
2 (θ1)
dθ1

∣∣∣
θ∗∗1
< 0. Define α1 = arctan(−1/A∗∗) ∈

]0, π/2[. Then for any α0 ∈]0, α1[ we have (74) and for any α ∈]α1, π/2[ we have
(73).

(iii) Let γ2(s+
1 ) < 0 and γ1(s+

2 ) > 0. Let A∗ ≡ dΘ+
1 (θ2)
dθ2

∣∣∣
θ∗2
. Then α2 = arctan(−A∗) ∈]0, π/2[.

For any α0 ∈]0, α2[ the asymptotics (73) is valid and for any α ∈]α2, π/2[ the asymptotics
(75) holds true.

(iv) Let γ2(s+
1 ) > 0 and γ1(s+

2 ) > 0. Then either θ1(ζθ∗∗) 6 θ1(ηθ∗) and θ2(ζθ∗∗) 6 θ2(ηθ∗),
or θ1(ζθ∗∗) < θ1(ηθ∗) and θ2(ζθ∗∗) > θ2(ηθ∗), or θ1(ζθ∗∗) > θ1(ηθ∗) and θ2(ζθ∗∗) <
θ2(ηθ∗), or finally θ1(ζθ∗∗) = θ1(ηθ∗) and θ2(ζθ∗∗) = θ2(ηθ∗).
(iva) Let θ1(ζθ∗∗) 6 θ1(ηθ∗) and θ2(ζθ∗∗) 6 θ2(ηθ∗) where at least one of inequalities is

strict. Then for any α0 ∈]0, π/2[ we have (74).
(ivb) Let θ1(ζθ∗∗) < θ1(ηθ∗) and θ2(ζθ∗∗) > θ2(ηθ∗). Let us define β0 = arctan θ1(ζθ∗∗)−θ1(ηθ∗)

θ2(ηθ∗)−θ2(ζθ∗∗)

Then for any α0 ∈]0, β0[ we have (74), for any α0 ∈]β0, π/2[ we have (75) and for
α0 = β0 we have (76).

(ivc) Let θ1(ζθ∗∗) > θ1(ηθ∗) and θ2(ζθ∗∗) < θ2(ηθ∗) or θ1(ζθ∗∗) = θ1(ηθ∗) and θ2(ζθ∗∗) =
θ2(ηθ∗) Let us define angles α1 and α2 as in (ii) and (iii). Then 0 < α1 6 α2 < π/2;
for any α0 ∈]0, α1[ we have (74) , for any α0 ∈]α1, α2[ we have (73) and for any
α0 ∈]α2, π/2[ we have (75).

The symmetric theorem for the case θ1(s+
2 ) 6 0, θ2(s+

1 ) > 0 holds.

5.3. Concluding remarks. Let us remark that the approach of this article applies to the SRBM
in any cone of R2. Thanks to a linear transformation T ∈ R2×2, it is easy to transform Z(t),
a reflected Brownian motion of parameters (Σ, µ,R) in a cone into TZ(t) a reflected Brownian
motion of parameters (TΣT t, Tµ, TR) in the quarter plane. For example if the initial cone is
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the set {(x, y)|x > 0 and y 6 ax} for some a > 0, we may just take T =

(
1 − 1

a
0 1

)
. The process

TZ(t) lives in a quarter plane. Then the approach of this article applies and its results can be
converted to the initial cone by the inverse linear transformation. The analytic approach for
discrete random walks is essentially restricted to those with jumps to the nearest neighbors in
the interior of the quarter plane. Since a linear transformation can not generally keep the length
of jumps, this procedure does not work in the discrete case. That is why the analytic approach
in R2 has a more general scope of applications.

To conclude this article, we sketch the way of recovering the asymptotic results of Dai and
Miyazawa [7] via the approach of this article. Given a directional vector c = (c1, c2) ∈ R2

+,
thanks to the representation of Lemma 16 we obtain

P(〈c | Z(∞)〉 > R) =

∫
x1>0, x2>0
c1x1+c2x2>R

π(x1, x2)dx1dx2

=

∫
x1>0, x2>0
c1x1+c2x2>R

I1(x1, x2)dx1dx2 +

∫
x1>0, x2>0
c1x1+c2x2>R

I2(x1, x2)dx1dx2

=

∫
Iε,+θ1

g1(θ1)
1

θ1

1

Θ+
2 (θ1)− θ1

c2
c1

e
− R
c1
θ1dθ1 +

∫
Iε,+θ1

g1(θ1)
−c2/c1

Θ+
2 (θ1)(Θ+

2 (θ1)− θ1
c2
c1

)
e
− R
c2

Θ+
2 (θ1)

dθ1(77)

+

∫
Iε,+θ2

g2(θ2)
1

θ2

1

Θ+
1 (θ2)− θ2

c1
c2

e
− R
c2
θ2dθ2 +

∫
Iε,+θ2

g2(θ2)
−c1/c2

Θ+
1 (θ2)(Θ+

1 (θ2)− θ2
c1
c2

)
e
− R
c1

Θ+
1 (θ2)

dθ2,

(78)

where

g1(θ1) =
ϕ2(θ1)γ2(θ1,Θ

+
2 (θ1))√

d(θ1)
, g2(θ2) =

ϕ1(θ2)γ1(Θ+
1 (θ2), θ2)√

d(θ2)
.

The first term in (77) is just the Laplace transform of the function h1(θ1) = g1(θ1) 1
θ1

1
Θ+

2 (θ1)−θ1 c2c1
,

its asymptotics is determined by the smallest real singularity of h1(θ1), see e.g. [10]. This may
be either the branch point θ+

1 of ϕ2(θ1), or the smallest pole of h1(θ1) on ]0, θ+
1 [ whenever it

exists, the natural candidates are ζθ∗∗, ζηθ∗ due to Lemmas 12– 15 or a point θc = (θc1, θ
c
2) such

that θc2 = Θ+
2 (θc1) = θc1

c2
c1
. To determine the asymptotics of the second integral in (77), we shift

the integration contour to the new one passing through the saddle-point Θ1(θ+
2 ) and take into

account the poles of the integrand we encounter, the most important of these poles are those
listed above. The asymptotics of two terms in (78) is determined in the same way. Combining all
these results together we derive the main asymptotic term depending on the parameters that can
be either e−

R
c1
θ+1 , e−

R
c2
θ+2 preceding by R−1/2 or R−3/2 with some constant, or e−

R
c1
θc1 = e

R
c2
θc2 ,

e
− R
ci

(ζθ∗∗)i , e−
R
ci

(ηθ∗)i , i = 1, 2 preceding by some constant and the factor R in some critical cases.
This analysis leads to the results of [7].
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Figure 19. Theorem 26 case (i)

Figure 20. Theorem 26 case (iia) and (iva)
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Figure 21. Theorem 26 case (iiia) and (ivb)

Figure 22. Theorem 26 case (iib)



ASYMPTOTICS OF THE STATIONARY DISTRIBUTION FOR SRBM IN R2
+ 43

Figure 23. Theorem 26 case (iiib)

Figure 24. Theorem 26 case (ivc)

Figure 25. Theorem 26 case (ivd)
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