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Abstract

In this work, we apply a non-intrusive global/local coupling strategy for the
modelling of local phenomena in a NURBS patch. The idea is to consider the
NURBS patch to be enriched as the global model. This results in a simple,
flexible strategy: first, the global NURBS patch remains unchanged, which
completely eliminates the need for costly re-parametrization procedures (even
if the local domain is expected to evolve); then, easy merging of a linear
NURBS code with any other existing robust codes suitable for the modelling
of complex local behaviour is possible. The price to pay is the number of
iterations of the non-intrusive solver but we show that this can be strongly
reduced by means of acceleration techniques. The main development for
NURBS is to be able to handle non-conforming geometries. Only slight
changes in the implementation process, including the setting up of suitable
quadrature rules for the evaluation of the interface reaction forces, are made
in response to this issue. A range of numerical examples in two-dimensional
linear elasticity are given to demonstrate the performance of the proposed
methodology and its significant potential to treat any case of local enrichment
in a NURBS patch simply.
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decomposition, Non-conforming geometries, Fictitious domain approach

1. Introduction

With the introduction of IsoGeometric Analysis (IGA) (see Hughes et
al. [1] for the first contribution and Cottrell et al. [2] for a detailed account),
it has become possible to compute structures using the exact geometry of the
Computer-Aided Design (CAD) model regardless of the mesh density. For
this purpose, Lagrange polynomials are replaced by Non-Uniform-Rational-
B-Spline (NURBS) functions to perform the analysis. NURBS functions have
a higher order of continuity, namely C(p−1) through the knot-span elements
of the mesh for a polynomial degree p, which, on a per-degree-of-freedom
basis, gives increased accuracy in comparison with standard Finite Element
Methods (FEM) (see, e.g., [3] for a theoretical analysis, [4] for applications in
structural vibrations, [5] for problems of standard elasticity, [6] for embedded
domain methods and [7, 8] for shell analysis). Although the global accuracy
of NURBS is now proved, the rigid tensor product structure of these functions
still prevents simple modelling of local behaviours in a NURBS patch. For
example, the integration of geometric details (i.e., basically, holes) leads to
the analysis of a trimmed NURBS patch, which is not a trivial task. The basic
strategy may involve a re-parametrization of the NURBS model, including
the splitting of the new geometry into several patches with C0 continuity
at the boundaries. This may apply not only for geometric details but to all
situations of local models different from the global NURBS patch model (e.g.,
local refinement, inclusion [9], local fracture [10, 11], local plasticity [12],
etc.). This entails a considerable modelling effort that is often as complex and
time consuming as standard mesh generation and so is opposed to the core
idea of IGA, which advocates a direct link between geometry and analysis.

After the pioneering works on NURBS-based IGA, great interest in meth-
ods addressing these modelling questions has emerged in the field. One of
the most noteworthy is the development of new splines that enable local
refinement: hierarchical B-splines and NURBS [13, 14], LRB-splines [15], T-
splines [16, 17] and multigrid-based NURBS [18]. Among these strategies,
T-splines seem to have gathered considerable momentum in both the compu-
tational geometry and analysis communities since they also appear suitable
to address trimmed multi-patch geometries. Nevertheless, the implementa-
tion of these new IGA techniques can appear complex and additional efforts
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may be necessary to solve the issue of describing a local behaviour that is
different from the global behaviour (inclusion, local fracture, local plasticity).

Concurrently, a second recent approach initiated in Nguyen et al. [9] and
Ruess et al. [19] and based on the combination of the Finite Cell Method
(FCM) with Nitsche coupling may constitute an interesting option to resolve
our problem of modelling local behaviours in a NURBS patch. The FCM,
which combines the fictitious domain approach with higher-order finite ele-
ments and adaptive integration, has proved to be efficient for the analysis of
any arbitrary trimmed patches (see, e.g., [20] for a detailed review). Regard-
ing NURBS coupling, a great effort has been made concerning the connection
of NURBS patches in recent years. One of the first works on the subject was
certainly that of Hesch and Betsch [21], who used the Lagrange multiplier
method to couple NURBS solids. Then, a comparative study in Apostolatos
et al. [22] showed the efficiency of a Nitsche-based technique for NURBS.
In consequence, Nitsche coupling has been used for connecting 3D NURBS
patches [9], for 3D-plate NURBS coupling [23, 24], and with NURBS im-
mersed boundary methods [25, 19]. Although it appears interesting because
of the strong mathematics behind it and the absence of additional degrees of
freedom, the Nitsche method leads to considerable implementation work and
an increased cost of computation, since an additional eigenvalue problem has
to be solved for the stabilizing term. As a result, Dornisch et al. [26] has
recently developed a weak substitution method that can be interpreted as a
mortar method. Although the combination of the FCM with Nitsche cou-
pling may be promising, the drawback of such a strategy, if directly applied
to the local enrichment of a NURBS patch, is that it suffers from some in-
trusiveness. More precisely, two main limitations can be highlighted. On the
one hand, the introduction of a local zone within the NURBS patch requires
a re-parametrization of the global geometric model, which is not a trivial
task in the NURBS framework. This can be very time consuming, in partic-
ular when the local region is expected to evolve (e.g., shape optimization of
the geometric details, of the inclusions, crack propagation, expansion of the
plastic zone) since several re-constructions and re-computations of the whole
problem then have to be performed during the simulation. On the other
hand, it is to be noted that, when Nitsche-based methods are used, both the
global and local operators have to be modified and merged together for the
coupling, which implies significant implementation efforts and a monolithic
resolution and thus prevents the simple use of existing robust codes for the
global/local strategy.
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To overcome this difficulty, the alternative purpose of this work is to make
use of a non-intrusive global/local coupling strategy that has become popular
in FEM. Based on the idea of Whitcomb [27], formalized later by Gendre et
al. [12], for the modelling of local plasticity, the method that we consider in
this work involves the definition of two finite element models: a global, coarse
model of the whole structure and a local, more detailed ”sub-model” meant
to replace the global model in the area of interest. An iterative coupling
technique is used to perform the substitution in an exact but non-intrusive
way: only interface data are transmitted from one model to the other and the
global stiffness operator remains unchanged (independently of the shape of
the local domain). This strategy has been applied in FEM for the modelling
of crack propagation [11], for the modelling of localized uncertainties [28],
for 3D-plate coupling [29] and for nonlinear domain decomposition [30]. Let
us note that this methodology, involving the coupling of a global model and
a local model in an iterative manner, has similarities with some hierarchical
global/local methods in FEM: for example, the Chimera method [31], the
method of finite element patches [32], numerical zoom [33] or the hp − d
method [34, 35, 36]. However, the difference of the strategy considered here
is that the contribution of the global solution in the local area is totally
replaced by the local solution while, in the hierarchical strategy, an approx-
imate solution is sought as the sum of the global coarse contribution and
a local fine one. As a result, the advantage of the algorithm used is that
it reduces the interactions between global and local discretizations. In the
proposed approach, the two models talk to each other with interface inte-
grals only, while the evaluation of mixed terms over the whole local domain
is necessary in the hierarchical approach. In this sense, the strategy followed
in this work is said to be non-intrusive.

In this paper, we propose an application of the non-intrusive technique [27,
12, 11, 28, 29, 30] to the NURBS context. The idea is to take the NURBS
patch to be enriched as the global model. In consequence, the global patch
is never modified during the simulation, which eliminates the need for costly
NURBS re-parametrization procedures. In addition, the global stiffness op-
erator is assembled and factorized only once and the system to be solved
remains well-conditioned. If the local behaviour is expected to evolve, only
the local model (including a limited number of degrees of freedom since re-
stricted to a thin zone of the structure) has to be re-computed. Moreover, it
should be mentioned that the flexibility of the strategy allows simple mod-
elling of a variety of local behaviours. Since the global and local problems are
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solved alternately in a non-intrusive strategy, two different numerical codes
can be used to compute the global and local models. Thus, a linear NURBS
code can be used for the global modelling of the NURBS patch while any
other existing robust code integrating any other numerical method can be
used to incorporate an accurate local model. By making use of this strat-
egy, we are able to address geometric details (for which the local model is
void: it represents holes) as well as all other cases of local models that are
covered: e.g., refined mesh, inclusion, fracture, plasticity. In particular, we
successfully apply the non-intrusive approach in this work for the situation
of holes, local refinement, inclusion and local fracture in a two-dimensional
NURBS patch under linear elasticity.

The difficulty when applying the non-intrusive strategy to NURBS is
that non-conforming geometries need to be addressed. By non-conforming
geometries, we mean that the local model domain overlaps the knot-span
elements in the global NURBS patch as the local model domain may be
bounded by a trimming curve living in the interior of the global NURBS
patch to be enriched. Thus, given the rigid tensor product structure of the
NURBS, there is no reason for the boundary of the local model domain
to be aligned with the edges of the global NURBS patch elements. The
non-conforming geometries issue does not involve specific modifications of
the equations and associated weak forms but special attention is needed in
the implementation process. In particular, the evaluation of the reaction
forces of the complement part of the global model (the part meant to be
replaced in the non-intrusive algorithm) requires the setting up of a suitable
quadrature rule and its treatment in the global NURBS patch. For this
purpose, an exact NURBS domain is simply constructed from the NURBS
trimming curve in the case of a geometric detail while the quadrature rule
used for the local model is transposed within the global NURBS patch in the
case of real (covered) local models. With regard to coupling, an application of
the conventional Lagrange multiplier approach to non-conforming geometries
is employed to meet the non-intrusive constraint in the sense of [11, 29, 30].
Acceleration techniques, such as techniques based on Aitken’s Delta Squared
method or a Quasi-Newton method (see, e.g., [30]), are also implemented in
the present situation, which results in a significant reduction of the number
of iterations of the non-intrusive algorithm.

The paper is organized as follows: after this introduction, Section 2 re-
views the fundamentals of NURBS-based IGA and introduces the reference
global/local coupling problem to be solved. Then, Section 3 is devoted to the
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application of the non-intrusive global/local strategy to the NURBS context.
In particular, the study is divided into two parts: the situation of geometric
details involving a void local model is investigated before the more usual
case of covered local models is addressed. Section 4 presents a range of nu-
merical examples in two-dimensional linear elasticity that demonstrate the
performance of our methodology and its significant potential for the simple
treatment of any case of local enrichment in a NURBS patch. Finally, Sec-
tion 5 concludes on this work by summarizing our most important points
and motivating future research in this direction.

2. The reference problem

This section establishes the context of the study and introduces the corre-
sponding notations. We start with a brief review of the concept of NURBS-
based IGA with a particular emphasis on the trimming concept that may
facilitate the geometric modelling of local behaviours. Then, the reference
global/local problem is presented along with its standard weak coupling for-
mulation.

2.1. NURBS-based isogeometric analysis

2.1.1. Basics.

For the discretization, we will use the recent concept of IGA based on
NURBS functions. Only the fundamentals of the concept are given in the
following. For further details, the interested reader is referred to the refer-
ences cited below.

The NURBS concept was first introduced in Hughes et al. [1] and for-
malized more recently in the book by Cottrell et al. [2]. NURBS functions
are a generalized version of B-spline functions and have become a standard
for geometric modelling in CAD and computer graphics (see, for example,
Cohen et al. [37], Piegl and Tiller [38], Farin [39] and Rogers [40]). These
functions lend themselves to an exact representation of many shapes used in
engineering, such as conical sections. They can be viewed as rational pro-
jections of higher-order B-splines and, therefore, they possess many of the
properties of B-splines, the most interesting one being their high degree of
continuity.

For the presentation in this part, we consider a domain in 3D so as to be
general. If (NA)A∈{1,2,..,n} denote the n 3D NURBS functions,(ωA)A∈{1,2,..,n}
the associated weights and (PA)A∈{1,2,..,n} the associated control points of
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coordinates (xA)A∈{1,2,..,n} in the global coordinate system, the geometry of
the structure is described through the position vector M defined as:

M =
n∑

A=1

NAxA, (1)

where the NURBS functions are obtained from the B-spline functions
(
NA

)
A∈{1,2,..,n}

such that:

NA =
NAwA∑n
A=1NAwA

. (2)

Now, all one needs to do in order to define the 3D B-spline functions NA

at control point PA is to perform the tensor product of the 1D B-spline
functions associated with this point in the three spatial directions. If one
denotes (M1

i )i∈{1,2,..,n1},
(
M2

j

)
j∈{1,2,..,n2}

and (M3
k )k∈{1,2,..,n3} the n1, n2 and

n3 1D B-spline functions associated with each of the three spatial directions,
this means that at control point PA, which corresponds to the ith, jth and
kth control points in these directions, one has:

NA = M1
i ×M2

j ×M3
k . (3)

The 1D B-spline functions are defined using a knot vector. Each knot vector
associated with a direction is defined in the parametric domain. For example,
for the first direction, one takes knot vector Ξ = {ξ1, ξ2, .., ξn1+p+1}, where
ξl ∈ R is the lth knot, with l being the knot index (l = 1, 2, .., n1 + p+ 1) and
p the polynomial degree of the functions (M1

i )i∈{1,2,..,n1}. The knots divide
the parametric space into elements, and the interval {ξ1, ξn1+p+1} constitutes
the IGA patch. The patch may be thought of as a macro-element. Most
geometries utilized for academic test cases can be modeled with a single
patch. In two-dimensional topologies, a patch is a rectangle in the parametric
domain. In three dimensions it is a cuboid.

Remark 1. In this work, we need to be careful with the term ”patch” since
this one can be employed for both NURBS and global/local coupling algorithm.
We emphasize here that the term ”patch” will only refer to the concept of IGA
patch in the following. Thus, the term patch will never refer to the local model
(in opposition to [32] for example).

Unlike standard FEM where each element has its own parametrization,
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the parametric space of B-Spline functions is localized onto the patch. There
can be more than one knot at a given location of the parametric space. If m
is the multiplicity of the considered knot, the functions have Cp−m continuity
at that location. If the knots are evenly spaced, the knot vector is said to be
uniform. A knot vector whose first and last knots have multiplicity p + 1 is
said to be open. In this case, the basis is interpolating at the boundary knots
of the interval, which facilitates the application of the boundary conditions.
For the sake of simplicity, we will consider in this work geometries that can
be represented (excluding the local details) with the use of only one patch.
Furthermore only open uniform knot vectors will be considered. The 1D B-
spline basis functions for a given order p are defined recursively from the knot
vector using the Cox-de Boor recursion formula (see, for example, Cohen et
al. [37]).

To take advantage of the superior approximation properties of NURBS
functions, one chooses them to be at least of polynomial degree two in all
the spatial directions. As far as continuity is concerned, one performs k-
refinement, meaning that one adds elements while keeping the higher degree
of continuity of the NURBS functions, namely Cp−1 at the knot level. The
positions of the control points and the values of the associated weights can be
adjusted in order to build conical sections exactly, after which these geome-
tries are preserved through mesh refinement. For a good overview of mesh
generation and refinement, see Cottrell et al. [41].

2.1.2. The trimming concept.

The difficulty to model local behaviours in a NURBS patch is due to
the use of the tensor product (see Eq. 3). For example, this makes the
integration of geometric details (e.g., holes) in a NURBS patch far from
trivial. Indeed, since standard IGA technology requires a boundary fitted
discretization for the analysis, a re-parametrization of the whole NURBS
model taking into account the geometric detail is required. This may lead to
the splitting of the new geometry into several patches with C0 continuity at
the boundaries. This entails a considerable modelling effort, which is often
as complex and time consuming as standard mesh generation as explained
in [19]. In CAD programs, where the only need is the rendering of the
geometry, such a re-parametrization is not necessary. Designers make use
of the trimming concept to create an almost unlimited range of geometric
shapes. The trimming concept is illustrated in 2D for the situation of a
circular hole as the geometric detail of a rectangular structure, see Fig. 1.
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This surface can be classified as a trimmed surface. Its description is simply
given by: a one-patch B-Spline surface parametrization for the plate (without
the hole) and a NURBS curve parametrization for the trimming curve that
forms the boundary of the hole. The trimming curve specifies visible and
invisible regions on the surface patch. As a consequence, the underlying
NURBS patch remains unaffected by the trimming object and preserves its
topology. Conversely, the NURBS parametrization of the plate including the
hole (without trimming) is shown in Fig. 1(c). As can been seen, a NURBS
re-parametrization of the geometry (including the splitting into 4 elements
with C0 continuity on the boundary) is necessary.

B-Spline patch

Control net

Trimming curve

1-1 1-2

2-22-1

1,9 2 3

4

567

8

(a) NURBS parametrization of the
trimmed geometry.

(b) CAD rendering.

1,9 3

57

1,9

2

3

4

5

6

7

8

C0

C0 C0

C0

2

6

48

(c) NURBS re-parametrization (without
trimming).

Figure 1: Illustration of the trimming concept.

2.2. Definition of the global/local problem
2.2.1. Governing equations.

We undertake to study a multi-domain model characterized by a physical
domain Ω ∈ Rd, d = 2 or 3, which is divided into two disjoint, open and
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bounded subsets Ω11 and Ω2 such that Ω = Ω11 ∪ Ω2 and Ω11 ∩ Ω2 = ∅.
Those two non-overlapping subdomains share a common interface denoted Γ
(see Fig. 2).

Remark 2. As subdomains are open, one would need to write Ω = Ω11 ∪Ω2

to be rigorous. In the paper, we decide to omit this notation in order to ease
the reading.

We suppose that the local part of the problem is the small region Ω2

and that a simple linear elastic model is sufficient to describe the global
behaviour in the complement domain Ω11. Even if the method applies in
more general context, we assume in this work a linear elastic constitutive
law in Ω2 as well. We emphasize that Ω2 may also constitute a geometric
detail (i.e., basically, a hole). To obtain this situation, one simply needs to
take the Hooke tensor in region Ω2 equal to zero. Regarding the NURBS
discretization of the problem, domain Ω may constitute a NURBS patch and
Γ (and so the extension to ∂Ω2) may be viewed as a trimming curve that
enables to specify the local part Ω2. Domains Ω11 and Ω2 are subjected to
body forces fg11 and fg2 , respectively. Furthermore, surface forces Fg

11 and
Fg

2 are associated to boundaries ΓF11 and ΓF2 and, displacements ug
11 and

ug
2 are prescribed over boundaries Γu11 and Γu2 . The boundaries satisfy the

following relations :
ΓFm ∪ Γum ∪ Γ = ∂Ωm

ΓFm ∩ Γum = ∅
ΓFm ∩ Γ = ∅
Γum ∩ Γ = ∅

with m = 11 and 2.

Remark 3. We emphasize that we restrict ourselves to a domain Ω that can
be represented using a single NURBS patch for simplicity in the presentation
only. Obviously, the strategy developed in this work straightforwardly applies
for the more general case of a multi-patch geometric model.

The problem to be solved is a classical multi-domain linear elastic problem
in Ω11 ∪ Ω2. In each subdomain, the kinematic constraints, the equilibrium
equations and the constitutive relations have to be verified. Using the sub-
script m to denote a quantity that is valid over region Ωm, with m = 11 and
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Figure 2: The reference global/local problem.

2, the corresponding governing equations read:

um = ug
m over Γum ;

div(σm) + fgm = 0 in Ωm ;

σm nm = Fg
m over ΓFm ;

σm = Cm ε (um) in Ωm.

(4)

For the sake of readability, we decided to use bold symbols for first-order
tensors while we underline twice the second- and four times the fourth-order
tensors. In the above equations, ε (um) denotes the infinitesimal strain ten-
sors, σm the Cauchy stress tensors and Cm the Hooke tensors. n11 and n2

represent the outward unit normals to Ω11 and Ω2, respectively. To com-
plete the formulation of the boundary value problem, the following coupling
conditions have to be added:{

u11 − u2 = 0 on Γ ;

σ11n11 + σ2n2 = 0 on Γ.
(5)

They ensure kinematic compatibility between the coupled domains and equi-
librium of the tractions along the coupling interface Γ, respectively.

2.2.2. Weak form.

The starting point in the derivation of a non-intrusive strategy in the
sense of [11, 29, 30] is to weakly formulate the coupling problem (4)-(5)
with a Lagrange multiplier approach. The development of the non-intrusive
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coupling formulation is not the subject of this section. Nevertheless, since
it is based on the use of a Lagrange multiplier approach, the corresponding
classical weak coupling formulation is given here. A standard fixed point
solver is also presented to account for the possibility to dissociate Ω11 and Ω2

in the resolution. These developments constitute the reference formulation
and the standard global/local solver of our coupling problem.

We start by defining the functional spaces Um and Vm over domain Ωm

that will contain the solution and trial functions respectively:

Um =
{

um ∈
[
H1 (Ωm)

]d
, um|Γum

= ug
m

}
; Vm =

{
vm ∈

[
H1 (Ωm)

]d
, vm|Γum

= 0
}
.

(6)

We also introduceM⊂ [L2 (Γ)]
d

the space for the Lagrange multiplier. The
formulation involves the set up of the following Lagrangian:

L ((u11,u2),λ) =
1

2
a11 (u11,u11)+

1

2
a2 (u2,u2)−l11 (u11)−l2 (u2)+b (λ,u11 − u2) ,

(7)
where bilinear form am and linear form lm associated to domain Ωm read:

am (um,vm) =

∫
Ωm

ε (vm) : Cm ε (um) dΩm ;

lm (vm) =

∫
Ωm

vm · fgmdΩm +

∫
ΓFm

vm · Fg
mdΓFm ;

(8)

and with bilinear form b defined such that:

b (µ,u) =

∫
Γ

µ · udΓ. (9)

With above notations, the resulting variational formulation of the coupled
problem can be written as follows:

Find u11 ∈ U11, u2 ∈ U2, and λ ∈M such that:
a11 (u11,v11) + b(λ,v11) = l11 (v11) , ∀v11 ∈ V11 ;

a2 (u2,v2)− b(λ,v2) = l2 (v2) , ∀v2 ∈ V2 ;

b(µ,u11 − u2) = 0, ∀µ ∈M.

(10)

Rather than directly solving equation (10) (i.e., in a monolithic way), an
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asymmetric algorithm, where Neumann problems over Ω11 and Dirichlet
problems over Ω2 are alternatively solved until convergence, may also be
used. This leads to the standard global/local algorithm. For the nth it-
eration, we can proceed as follows: starting with λ(0) ∈ M, we look for
u11

(n) ∈ U11, u2
(n) ∈ U2, and λ(n) ∈M such that:

1. Resolution of a Neumann problem over Ω11:

a11

(
u11

(n),v11

)
= l11 (v11)− b(λ(n−1),v11), ∀v11 ∈ V11. (11)

2. Resolution of a Dirichlet problem over Ω2:{
a2

(
u2

(n),v2

)
− b(λ(n),v2) = l2 (v2) , ∀v2 ∈ V2 ;

b(µ,u2
(n)) = b(µ,u11

(n)), ∀µ ∈M.
(12)

The global/local algorithm (11)-(12) has the drawback to be intrusive.
Indeed, it is important to note that the stiffness operator a11 depends at this
stage on the interface Γ or, in other words, on the shape of the local domain
Ω2. As a consequence, if domain Ω2 has to evolve (during optimization
process, or crack propagation for instance), not only the local operator a2

but also the global operator a11 have to be fully re-built and factorized. This
can be very time consuming and especially in the NURBS framework since
the strategy would involve several re-parametrizations of the global NURBS
patch. To overcome the difficulty, the purpose of this work is to make use of
the non-intrusive coupling [27]. This is the object of the next section.

3. The global/local non-intrusive strategy

3.1. Principle

Rather than considering only a part of the NURBS patch (region Ω11) as
the domain containing the global model, the idea of non-intrusive coupling
is to involve a global model defined over the whole existing NURBS patch.
The situation is illustrated in Fig. 3. In order to do this, domain Ω12 is
introduced to characterize the region in which the global model of Ω11 is
fictively prolonged. Ω12 is defined in such a way that the NURBS patch
domain is covered by Ω11∪Ω12. From here on, we refer to domain Ω1 = Ω11∪
Ω12 to characterize the global NURBS patch that contains the global model
everywhere. We proceed in the same way with the boundaries by introducing
Γu1 = Γu11 ∪ Γu12 for the prescribed displacements and ΓF1 = ΓF11 ∪ ΓF12 for
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the applied forces. The objective of the non-intrusive strategy is then to
replace the global model over Ω12 by the local one in Ω2 without actually
modifying the global NURBS patch operators over Ω1.

1111
12

12

11

212

Substitution

Global model: NURBS patch

Local model

2

2

Figure 3: The non-intrusive global/local problem.

For the construction of the non-intrusive strategy, we proceed in two
parts. Each of the parts has its own application. In the first part, we consider
the particular case of the non-intrusive modelling of geometric details in a
NURBS patch. Domain Ω2 is then assumed to be a hole that is bounded
by a trimming curve. In this case, the local model is said to be ”void”. In
the second part, we investigate the more usual situation of a covered local
model that behaves differently from the global model. In contrast to ”void”
models, we refer to ”covered” local models in the second case. Fig. 4 shows
the problems to be solved for the two cases.

1111

11

(a) Case of a void local model.

1111
2

22

11

(b) Case of a covered local model.

Figure 4: Problems to be solved using the non-intrusive strategy.
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3.2. Part 1: Case of ”void” local models

3.2.1. The continuum version.

In the case of a void local model (see Fig. 4(a)), the equations related
to domain Ω2 vanish in the reference problem (4)-(5). Taking into account
theses simplifications in Eq. (10) leads to the following usual weak form for
the new problem: {

Find u11 ∈ U11 such that:

a11 (u11,v11) = l11 (v11) , ∀v11 ∈ V11.
(13)

To derive the corresponding non-intrusive formulation, we first perform a
continuous prolongation of the displacement solution from Ω11 to Ω12. There
are (in principle) infinitely many possible prolongations but an arbitrary
prolongation can be used for the formulation of the method. From a practical
point of view, we define u1 the prolongation of u11 to the full domain Ω1 such
that:

u1 ∈
[
H1 (Ω1)

]d ⇔ u1 =

{
u11 ∈

[
H1 (Ω11)

]d
u12 ∈

[
H1 (Ω12)

]d and u11|Γ = u12|Γ. (14)

u12 corresponds to the prolonged part of the global solution u1 to domain
Ω12. As well, we introduce fg12 = fg2 , Fg

12 = Fg
2 and ug

12 = ug
2 the fictitious

prolongation of fg11, Fg
11 and ug

11 to Ω12, ΓF12 and Γu12 , respectively. In this
specific case of a void local model, we may take fg12 = 0, Fg

12 = 0 and ug
12 = 0.

With these notations, we can reformulate problem (13) over Ω1 as follows:{
Find u1 ∈ U1 such that:

a1 (u1,v1) = a1 (u1,v1) + {l11 (v1)− a11 (u1,v1)} , ∀v1 ∈ V1,
(15)

where the functional spaces U1 and V1 and the bilinear form a1 are defined
over Ω1 using the formalism of Eqs. (6) and (8), respectively. Then, we
can make use of the additivity of the integral with respect to domain Ω1 =
Ω11 ∪ Ω12:

a1 (u1,v1) = a11 (u1,v1) + a12 (u1,v1) , ∀u1 ∈ U1, ∀v1 ∈ V1, (16)
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which leads to the following simplification of Eq. (15):{
Find u1 ∈ U1 such that:

a1 (u1,v1) = l11 (v1) + a12 (u1,v1) , ∀v1 ∈ V1.
(17)

Finally, by writing the equilibrium of domain Ω12:

a12 (u1,v1) = l12 (v1) +

∫
Γ

σ12 (u1) n12 · v1dΓ, ∀v1 ∈ V1, (18)

n12 being the outward unit normal to Ω12 along Γ and σ12 being the Cauchy

stress tensor associated to Ω12, the problem can be recast as:

Find u1 ∈ U1 such that:

a1 (u1,v1) = l1 (v1) +

∫
Γ

σ12 (u1) n12 · v1dΓ, ∀v1 ∈ V1.
(19)

For the resolution, a fixed point as in Eqs. (11) and (12) can be implemented.
This time, only Neumann problems need to be solved. For the nth iteration,
we proceed as follows: starting with u1

(0) ∈ U1, we look for u1
(n) ∈ U1 such

that:

a1

(
u1

(n),v1

)
= l1 (v1) +

∫
Γ

σ12

(
u1

(n−1)
)
n12 · v1dΓ, ∀v1 ∈ V1. (20)

Thanks to the prolongation of the global model over Ω12, the global opera-
tors a1 and l1 over Ω1 are now involved without any modification. During
the iterations, only reaction forces across Γ need to be computed. In this
sense, the strategy is said to be non-intrusive. In our case of a NURBS dis-
cretization, this may highly facilitate the modelling of geometric details since
it avoids the complex task of constructing a new NURBS parametrization of
the global model (and of re-constructing it each time the detail evolves).

3.2.2. The discrete version.

Let us introduce the NURBS functions (N1
A)A∈{1,2,..,n1} that discretize

domain Ω1. Following the principle of isoparametric elements, the basis
(N1

A)A∈{1,2,..,n1} is used to build the finite element space Uh
1 corresponding

to the discretization of U1. By substituting this NURBS approximation in
the weak form Eq. (19) and performing as in Eq. (20), we can derive the dis-
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crete non-intrusive algorithm. For the nth iteration, we proceed as follows:
starting with {U1}(0), we look for {U1}(n) such that:

[K1] {U1}(n) = {F1}+ {R12}(n−1) . (21)

Operator [K1] (respectively {F1}) is the classical stiffness matrix (resp. vec-
tor force) associated to domain Ω1 and, {R12} is introduced to denote the
discrete reaction forces at Γ of the global model in the fictitious part (Ω12).
The convergence test usually performed to stop this algorithm relies on the
discrete equilibrium of the reaction forces of the initial coupled problem at
the interface Γ. Since in this case domain Ω2 is void, we simply need to verify
that the reaction forces at Γ of the global model in Ω11, denoted {R11}, are
sufficiently close to zero. This leads to the following definition of the interface
equilibrium residual:

ηvoid =
|| {R11} ||
|| {F1} ||

. (22)

It may be noted that the fictitious prolongation of the global solution over
Ω12 has no physical meaning (it depends on the initialization). Moreover, it
is important to notice that the algorithm proposed here is the standard one
and that its convergence may be slow in certain situations. To answer this
issue, acceleration techniques, such as based on an Aitken’s Delta Squared
method or a Quasi-Newton method, can be applied to the present situation
from the existing developments in classical FEM (see, e.g., [30]). Numerical
experiments to account for this point will be carried out in section 4.

Remark 4. With its discrete version in hand (see Eq. (21)), the physics of
the new problem may be easily understandable. Indeed, roughly speaking, the
new problem to be solved is a problem over Ω1 that is subjected along Γ to
a surface force {R12}. As a consequence, performing the equilibrium of the
new problem at Γ leads to:

{R11}+ {R12} = {R12} ⇒ {R11} = {0} , (23)

which enables to recover that Γ constitutes a free boundary for the problem
solved in Ω11.

3.2.3. Implementation: computation of the interface reaction forces.

The setting up of algorithm (21) requires the evaluation of the reaction
forces {R12}. In order to be consistent with the discrete approximations,
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{R12} has to be computed from its associated stiffness matrix and vector
force as follows:

{R12} = ([K12] {U1} − {F12}) |Γ. (24)

This implies performing a volume integral of the form:

a12

(
uh

1 ,v
h
1

)
+ l12

(
vh

1

)
, (25)

and applying the restriction operator ·|Γ on a discrete vector. The restriction
operator on Γ of a discrete vector {F} is defined such that:

{F} |Γ = [BΓ] {F} , (26)

where [BΓ] is the Boolean trace operator that selects only the degrees of
freedom concerned by the interface.

Remark 5. We emphasize that the computation of the reaction forces from
a volume integral and not directly from a surface integral (as in Eq. (19)) is
necessary to obtain a non-intrusive strategy in the discrete case as the finite
element error is not taken into account otherwise. We specify that in the
finite element setting, Eq. (18) becomes :

[K12] {U1} = {F12}+ ([K12] {U1} − {F12}) |Γ. (27)

Such a decomposition is usual in FEM non-intrusive coupling (see, e.g., [11,
29, 30]).

Although implementing the volume integral (24)- (25) is quite straight-
forward in FEM, the extension in the NURBS context may require addi-
tional attention. Conforming geometries are usually considered in FEM
(see, e.g., [12, 11, 30]) whereas, due to the rigid tensor product structure
of NURBS, non-conforming geometries need to be addressed in this work
(there is no reason for the interface Γ to be aligned with the edges of the ele-
ments in Ω1). To perform the calculation (24), a special integration scheme is
required to evaluate the contribution of the global operators in Ω12 only. We
recall that the only available data regarding Ω2 is the parametrization of the
trimming curve that forms its boundary ∂Ω2. For the general case, existing
techniques could be used to define a suitable quadrature rule: for instance,
the standard sub-triangulation technique in the context of X-FEM [42], or
the hierarchical element subdivision employed in the FCM [25, 19, 20], or
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the technique used in the NURBS Enhanced FEM [43]. Now, for most cases
arising in the situation of geometric details, it seems that an exact NURBS
domain may be simply constructed from the NURBS trimming curve by
adding multiple interpolatory control points at the center of the detail.

To illustrate the strategy, we return to the example of Fig. 1, namely a
plate with a circular hole. The basis of our strategy is to construct a NURBS
parametrization of the surface contained inside the circular curve (in red in
Fig.1). Let us denote this surface (Ω12) by the disk and its boundary (Γ) by
the circular curve. To generate the disk with NURBS, as many control points
as necessary to define the circular curve (with the same weights as for the
curve) can be put and matched together at the center of the circular curve.
The initial NURBS parametrization of the disk is composed of four elements
of degree two in the circumferential direction and of degree one in the radial
direction (see Fig. 5(a)). Then, usual NURBS mesh refinement techniques
can be applied to produce a quadrature rule enabling the behaviour of the
global model to be accurately seized in the disk Ω12 (see Fig. 5(b) for a
mesh of 8 (circumferential direction) ×2 (radial direction) elements with a
3 × 3 Gaussian rule per element). From the newly constructed NURBS
parametrization of the disk, the standard integration rule for NURBS is
used: p + 1 Gauss points (p being the polynomial order) are considered in
each direction per element. The last thing to be done is to pull back the
quadrature points to the parametric domain of the plate (see Fig. 5(c)).
This can be achieved simply by performing Newton-Raphson iterations to
inverse the NURBS mapping:

xgauss
i =

n1∑
A=1

N1
A (ξgauss

i ) x1
A ⇒ ξgauss

i . (28)

xgauss
i denotes the coordinates of the quadrature points in the physical space

and ξgauss
i refers to the corresponding coordinates in the parametric space.

The advantage of the proposed technique is that it produces NURBS con-
forming quadrature rules simply (in the sense that the quadrature points are
aligned with the trimming curve that bounds the NURBS domain). Such
a strategy applies directly to all types of star domains. Based on the same
principle, we believe that most of the details of engineering interest can be
generated with a few additional efforts. Corresponding investigations are
in progress to generalize the procedure. We also note that new strategies
producing conforming quadrature rules for trimmed surfaces have appeared
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very recently (see Nagy et al. [44] and Kudela et al. [45]) and may constitute
promising options to be considered in our future works.

Initial NURBS disk (     )

1,9

2 4

68 7

3

5

9 matched control points

Physical space

(a) Construction of the NURBS disk
from the trimming curve.

Refined NURBS disk (      )

Quadrature points

Physical space

(b) Refinement of the NURBS disk.

Quadrature points

0 1

1

Parametric space

(c) Inverse mapping.

Figure 5: Construction of a suitable quadrature rule for {R12}.

Remark 6. We emphasize that the NURBS mesh of Fig. 5(b) is only con-
structed here to produce an accurate integration rule for [K12] and {F12}. The
corresponding stiffness operator is never assembled and factorized. Further-
more, it may be noted that operators [K12] and {F12} are of small size (the
NURBS function N1

A, whose support does not reach the small region Ω12, does
not contribute), and can be computed in the pre-processing step. As a result,
the computation of the reaction forces only requires small-size matrix-vector
products during the non-intrusive algorithm, which is not expensive.

Remark 7. With the above developments, the problem can be solved directly
by performing:

([K1]− [K12]) {U1} = {F1} − {F12} . (29)
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In this sense, the method can be classified as a fictitious domain approach and
is very close to the so-called NURBS FCM [25, 19, 20], the only difference
being the quadrature rule used. Rather than computing Eq. (29), we believe
that the proposed non-intrusive strategy (Eq. (21)) may be more suitable for
the modelling of geometric details that could evolve during the simulation.
Independently of the shape of the geometric details, the global stiffness opera-
tor is assembled and factorized only once and the system to be solved remains
well-conditioned. The price to pay is the number of iterations, but this can
be strongly reduced by means of acceleration techniques.

Remark 8. Setting up the non-intrusive algorithm (21) also requires compu-
tation of the reaction forces {R11} to evaluate the equilibrium residual (22).
This is obtained from the already-computed stiffness [K12] and force {F12} as
follows:

{R11} =
(

([K1]− [K12]) {U1} − ({F1} − {F12})
)
|Γ. (30)

3.3. Part 2: Case of ”covered” local models

3.3.1. The continuum version.

The strategy proposed for geometric details can easily be extended to the
modelling of covered local behaviours in a NURBS patch (i.e., when Ω2 is
not void but constitutes a real domain, see Fig. 4(b)). Indeed, going back to
the reference problem of section 2.2, exactly the same procedure as for a void
local model can be applied to Eq. (11) to rewrite the Neumann problem over
the whole NURBS patch Ω1. By doing that, the global/local non-intrusive
algorithm straightforwardly follows from the standard algorithm (11)-(12).
For the nth iteration, we start with u1

(0) ∈ U1 and λ(0) ∈M and we look for
u1

(n) ∈ U1, u2
(n) ∈ U2, and λ(n) ∈M such that:

1. Resolution of a Neumann problem over Ω1:

a1

(
u1

(n),v1

)
= l1 (v1)−b(λ(n−1),v1)+

∫
Γ

σ12

(
u1

(n−1)
)
n12·v1dΓ, ∀v1 ∈ V1.

(31)

2. Resolution of a Dirichlet problem over Ω2:{
a2

(
u2

(n),v2

)
− b(λ(n),v2) = l2 (v2) , ∀v2 ∈ V2 ;

b(µ,u2
(n)) = b(µ,u1

(n)), ∀µ ∈M.
(32)
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Once again, the operators over the whole global NURBS patch are now in-
volved in Eq. (31) without any modification and, only displacement and
force exchanges at the interface Γ are required. This accounts for the non-
intrusiveness of the strategy and thus, for the simplicity of the method to
model local behaviours in a NURBS patch.

3.3.2. The discrete version.

To derive the discrete version of the global/local non-intrusive algorithm (31)-
(32), we need to introduce the approximation spaces Uh

2 and Mh associated
to U2 and M, respectively. Keeping the principle of isoparametric element,
we consider for Uh

2 the basis functions (N2
B)B∈{1,2,..,n2} that discretize domain

Ω2. For the discretization of the Lagrange multiplier space, special care may
be required since bad-chosen basis can lead to undesirable energy-free oscil-
lations (due to the non-satisfaction of the inf-sup condition). For the sake
of simplicity, we adopt in this work a classical strategy (see, e.g., [30]): the
trace along the coupling interface Γ of the basis functions of domain Ω2 is
considered forMh. With such a choice, we never encountered instabilities in
our computations. The discrete version can then be written as follows: for
the nth iteration, we start with {U1}(0) and {Λ}(0) and we look for {U1}(n),

{U2}(n), and {Λ}(n) such that:

1. Resolution of a Neumann problem over Ω1:

[K1] {U1}(n) = {F1} − [C1]T {Λ}(n−1) + {R12}(n−1) . (33)

2. Resolution of a Dirichlet problem over Ω2:[
[K2] − [C2]T

− [C2] [0]

] {
{U2}(n)

{Λ}(n)

}
=

{
{F2}

− [C1] {U1}(n)

}
. (34)

[C1] and [C2] are the classical mortar coupling operators. To stop the algo-
rithm, the global reaction forces at Γ ({R11}) have to be compared to the
local reaction forces pulled back in Ω11, i.e. {R2} = [C1]T {Λ}. It leads to
the following equilibrium residual:

ηcovered =
|| {R11}+ {R2} ||
|| {F1} ||

. (35)
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We emphasize that such an algorithm is classical in non-intrusive coupling
and has been widely studied in the field of FEM. For more information, the
interested reader is advised to consult Duval et al. [30] and references cited
therein. Finally, the same remarks as for a void local model can be done
about the algorithm. The fictitious prolongation of the global solution over
Ω12 has no physical meaning and has to be replaced by the solution in Ω2.
The number of iterations of the algorithm can be reduced by means of Aitken
or Quasi-Newton acceleration techniques.

3.3.3. Implementation aspects.

Since in this case the discretization of domain Ω2 is explicitly known,
we use it to simply compute the quadrature rule required to evaluate the
reaction forces {R12} of Ω12 (and so {R11}, see remark 8). As well, we
use the integration rule coming from the discretization of the part Γ of the
boundary ∂Ω2 for the computation of the coupling matrices [C1] and [C2].
Since the global and local problems are solved alternatively in a non-intrusive
strategy, two different numerical codes can be used for the resolution (one
for the global Neumann problem (33) and the other for the local Dirichlet
problem (34)). This feature offers an important flexibility to the method.
Indeed, if a linear NURBS code is used for the global NURBS problem, any
other existing robust codes (NURBS, FEM, X-FEM, FCM) suitable for the
modelling of complex behaviours (fracture, plasticity, contact) may be used
to incorporate an accurate local model. The only need for that is to be able
to apply Dirichlet boundary conditions to the local problem and to extract
from its resolution the reaction forces at Γ and the quadrature rules in Ω2

and over Γ (see Fig. 6 for illustration). The local model actually acts as a
correction applied to the global model on the right-hand side.

Global code (NURBS)

Neumann 
 problem

Local code

Dirichlet
problem

Displacement at 

Reaction forces at
Integration rule in       and at            2

Figure 6: The non-intrusive strategy: coupling of codes.
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4. Numerical results

We now present a range of numerical examples in two-dimensional linear
elasticity in order to assess the performance of the proposed strategy. As
in the previous section, the presentation is divided into two parts: first,
the situation of a ”void” local model is addressed in section 4.1; then, the
more usual case of enrichment by a ”covered” local model is investigated
in section 4.2. We recall that the local model is said to be ”void” when
the associated region constitutes a hole, while the adjective ”covered” is
used to qualify a local model over the existing real region Ω2. Regarding the
discretization of the global model, we start from a patch composed of a single
element, to which we apply the k-refinement strategy. Thus, the continuity
across the interior knots is Cp−1, p being the polynomial degree of the NURBS
functions. From here on, the mesh composed of N elements along the first
length and M elements along the second length will be denoted N ×M . In
the illustrations, we keep the notations introduced in the previous section;
in particular, domain Ω1 = Ω11∪Ω12 characterizes the global NURBS patch,
the model of which in domain Ω12 is to be replaced either by a void model
or by another discrete model contained in domain Ω2.

4.1. Modelling of geometric details

In this first part, the methodology implemented is the one related to sec-
tion 3.2. Our interest here is in how geometric details are modelled. Two
numerical examples are investigated. In the first one, where an analytical ref-
erence solution is available, we illustrate that our non-intrusive methodology
does not compromise accuracy and that few iterations are required, especially
when acceleration techniques are used. In the second example, we illustrate
the potential of the method to treat more complex cases of geometric details.

4.1.1. Infinite plate with a circular hole.

Description of the test case: To start with, the popular example
of an infinite plate with a circular hole under in-plane tension is considered.
The geometry, material, boundary conditions and the analytical solution [46]
are given in Fig. 7. Because of symmetry, the problem is restricted to one
quarter of the plate. This problem was among the first to be studied with
NURBS [1, 2] and was later investigated in the framework of the fictitious
domain concept [14]. The discretization of the problem following the non-
intrusive strategy developed is illustrated in Fig. 8(a). A regular B-Spline
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mesh is used for the plate without the hole (domain Ω1) and a circular
NURBS mesh is constructed to produce a suitable quadrature rule in the
fictitious domain Ω12. Again, we emphasize that the only aim of this circular
mesh is the derivation of the quadrature rule: the associated stiffness opera-
tor is never assembled and factorized. For a curved domain, the first length
(where there are N elements) is the circumferential length and the second
length (discretized by M elements) is the radial length. This notation also
holds for the following examples.

Tx

E
xa

ct tra
ctio

n

Exact traction

Sym

S
ym

x

y

L

R
r

Parameters:

Exact solution:

Figure 7: Infinite plate with a circular hole: description and data of the problem.

Study of the non-intrusive algorithm: First, the behaviour of the
non-intrusive algorithm (21) is studied. The results obtained with the dis-
cretization of Fig. 8(a) are grouped in Figs. 8(b)-8(e). More precisely, Figs. 8(b)
and 8(c) show plots of the normal stress in the horizontal x-direction ob-
tained (once the algorithm has converged) in the embedded domain Ω1 and
in the true domain Ω11, respectively. Removing the smooth non-physical
fictitious prolongation in Ω12, the solution appears to be in good agreement
with references [1, 2, 14]. Figs. 8(b) and 8(c) enable the convergence of
the iterative algorithm to be appreciated: first, in terms of the equilibrium
residual (Eq. (22)) and then in terms of the error on the displacements in
energy norm. Note that the error is computed by taking only contribu-
tions in Ω11 into account. The standard fixed point and also Aitken’s Delta
squared and Quasi-Newton acceleration techniques are implemented. The
equilibrium residual falls to zero, which accounts for the convergence of the
algorithm. Conversely, the error on the displacement reaches an asymptotic
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value, which corresponds to the NURBS finite element approximation. As
noted in remark 7, the use of acceleration techniques strongly reduces the
number of iterations: the number of iterations needed to attain the finite
element accuracy, which seems to be obtained for a residual of about 10−3,
is reduced by a factor of ten in this example.

(a) Mesh (black) and sup-
port of the quadrature rule
(blue).

(b) Normal stress σxx plot-
ted over Ω1.

(c) Normal stress σxx plot-
ted over Ω11.
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Figure 8: Non-intrusive analysis of the infinite plate with a circular hole (rectangular
B-spline mesh of quadratic 6 × 6 elements for Ω1 + circular NURBS mesh of quadratic
15× 15 elements for the quadrature rule in Ω12).

Remark 9. By comparing Figs. 8(d) and 8(e), it may be noted that reaching
a residual as low as 10−8 is probably not necessary to achieve an accurate
numerical solution. Nevertheless, as the development of efficient convergence
criteria was not the purpose of the present contribution, we kept a value of
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10−8 for the equilibrium residual to stop the algorithm. Thus the number of
iterations required is probably overestimated.

Study of the finite element convergence: Then, the convergence of
the method with respect to the mesh size is studied. Here, the non-intrusive
algorithm is performed until convergence. To get a general view, Fig. 9
shows plots of the normal stress in the horizontal x-direction for different
cubic B-spline meshes of the global patch, which can be directly compared
to corresponding plots given in [14]. No visible difference with [14] can be
observed. To go further, the convergence behaviour of the displacements
in the energy norm under uniform refinement is plotted in Fig. 10, starting
from a mesh of 4 × 4 B-spline elements for the global model. Polynomial
degrees p = 1, p = 2 and p = 3 are considered in both spatial directions.
We note that the NURBS mesh of the hole needs to be sufficiently fine to
give a suitable quadrature rule for the interface reaction forces. We use
a NURBS mesh composed of 50 × 50 elements for the finer B-spline mesh
of the global model. The optimal rates of convergence of hp are seen to
be achieved (h being the characteristic element size), which demonstrates
that the methodology does not interfere with the accuracy of the NURBS
functions.

(a) 3× 3 elements. (b) 6× 6 elements. (c) 12× 12 elements.

Figure 9: Normal stress σxx, plotted over Ω11, for different cubic B-spline meshes.

4.1.2. Perforated strip under tension.

Description of the test case: To illustrate the robustness of the
method, the more complex case of a plane strip perforated in its middle
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Figure 10: Convergence of the displacement in the energy norm, when the B-spline grid
is uniformly refined.

part by several holes and subjected to constant in-plane tension is now com-
puted. The numerical model is described in Fig. 11(a). Note that such a test
case is usually encountered in the field of immersed boundary methods (see,
e.g., [19]). In our non-intrusive model, a regular quadratic B-spline mesh is
used for the global model of the plate without the holes and each hole is
specified by a circular NURBS mesh. We emphasize that the interest of the
method here is the simplicity with which it handles a modification of the
perforation (size and number of holes). For comparison purposes, a refined
finite element solution is computed using the classical linear triangular ele-
ments implemented in Code Aster [47]. The corresponding boundary fitted
discretization is shown in Fig. 11(b).

Numerical results: The results are given in Fig. 12. Figs. 12(a)-12(c)
show, respectively, the displacement in the x-direction, the displacement in
the y-direction and the von Mises stress obtained with the non-intrusive
model of Fig. 11(a). The same information is plotted in Figs. 12(d)-12(f)
for the reference FE solution. The two solutions are very close, which shows
the accuracy of the non-intrusive methodology. The horizontal and vertical
displacements exhibit a necking effect due to the stiffness reduction induced
by the perforations and the typical stress concentration phenomena around
the holes are well represented. Finally, the convergence of the non-intrusive
algorithm can be observed in Fig. 12(g): a residual of 10−4 is obtained in
about 20 iterations and approximately 30 iterations are required to reach a
residual of 10−8.
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Figure 11: Perforated tensile specimen.
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(a) NURBS non-
intrusive disp. ux.

(b) NURBS non-
intrusive disp. uy.

(c) NURBS non-
intrusive Von Mises
stress σvm.

(d) FE Reference disp.
ux.

(e) FE Reference disp.
uy.

(f) FE Reference VM
stress σvm.
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(g) Convergence of the interface equilibrium
residual.

Figure 12: Non-intrusive analysis of the perforated strip under tension and comparison
with a reference FE solution. 30



4.2. Modelling of local behaviours

In this second part, we illustrate the behaviour of the proposed non-
intrusive strategy when applied to covered local models. The developments
established in section 3.3 are implemented here and three examples are con-
sidered. In the first, the strategy is used to perform NURBS local refinement
on a simple test case, which demonstrates that the non-intrusive coupling
method does not compromise accuracy. The second example concerns ap-
plications to micromechanics of materials. In particular, the ability of the
method to treat a plate with a stiffer inclusion is shown. Finally, the non-
intrusive coupling of two different types of elements (NURBS and FEM)
coming from two different numerical codes is performed to model a crack in
a NURBS patch.

4.2.1. Curved beam subjected to end shear.

Description of the test case: The first example consists of a curved
beam subjected to end shear. The problem, together with its non-intrusive
discretization, is illustrated in Fig. 13(a). A constant radial displacement of
u0 = 0.01 units is prescribed over the lower beam boundary. An analyti-
cal solution for a reference plane stress model is available for the problem
in [48]. The same polynomial order is used in both spatial directions and
for the global model as well as for the local model. A minimum order of
p = 2 is necessary to represent the curvature exactly. In the upper half of
the structure, the global NURBS model is meant to be replaced by a more re-
fined (along the radial direction) NURBS model. We posit that the material
properties are the same for the global and local models, the only difference
being the mesh size. In order to address the coupling of non-conforming
geometries, an odd number of elements along the circumferential direction is
considered for the global patch. Such a choice leads to an interface Γ that
cuts (in the middle) a layer of elements of the global model.

Numerical results:

• The results obtained (once the non-intrusive algorithm has converged)
with the discretization of Fig. 13(a) are shown in terms of displacement
in Fig. 13(b) and in terms of Von Mises stress in Figs. 13(c) and 13(d).
The Von Mises error is normalized by the maximum reference Von Mises
stress encountered in the domain. We emphasize that it is the coupling
solution in Ω11 ∪ Ω2 that is mapped (the fictitious prolongation of the
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global solution over Ω12 is not represented). The solution corresponds
to reference [48] (error of the Von Mises stress less than 0.4%, see
Fig. 13(d)). In particular, there is no visible error concentration around
the coupling interface Γ.

a

b

x

y

u0

(a) Problem description and discretiza-
tion.

(b) Displacement field (magni-
tude).

(c) Von Mises stress. (d) Error of the Von Mises stress
(normalized by the maximum VM
stress).

Figure 13: Non-intrusive analysis of the curved beam problem (NURBS mesh of quadratic
25× 12 elements for Ω1 (12.5× 12 elements for Ω11) + NURBS mesh of quadratic 12× 20
elements for Ω2).

• To better appreciate the accuracy of the method, we study the con-
vergence of the coupling solution with the refinement of the mesh (see
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Fig. 14). We proceed in the same way as in reference [48]: the conver-
gence behaviour of the strain energy is considered. The relative energy
error is computed as:

|Eex
d − E

fe
d |

Eex
d

, (36)

where Eex
d denotes the reference exact strain energy and Efe

d the strain
energy of the NURBS finite element model. Orders p = 2 and 3 are
investigated. To refine the non-intrusive coupling solution, we consider
the meshes indicated in Tab. 1 (right column). For each approximation,
the first mesh discretizes domain Ω11 (this is the global mesh divided in
half along the circumferential direction; that is why half of the elements
are involved) and the second mesh is used for domain Ω2 (this is the
local mesh). We note that the refinement obtained between successive
meshes is not exactly uniform since there are always some elements
of the global model that are cut. For comparison purposes, the con-
vergence curves of (almost) equivalent single-patch solutions have been
added in Fig. 14. Also, the equivalent single-patch meshes are reported
in Tab. 1 (middle column). Finally, the convergence curves are plotted
with respect to the equivalent number of elements N el normalized by
the number of elements N el

1 of the equivalent coarsest mesh (see left
column of Tab. 1 for the associated values).

|E
dex

−
E

dh |/E
dex

N /N
1

p=2, 1 domain

elel

Figure 14: Convergence of the strain energy for uniform refinement in both subdomains.

• We observe that the rate of convergence and the error constant of
the non-intrusive coupled discretizations are equivalent to those of the
equivalent single-patch discretization. True, a slight discrepancy ap-
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Number of elements Single-patch Coupled discretization
(N el) mesh (Ω11 ∪ Ω2)

24 (= N el
1 ) 6× 4 3.5× 3 ∪ 3× 5

96 12× 8 6.5× 6 ∪ 6× 10
384 24× 16 12.5× 12 ∪ 12× 20
1536 32× 48 24.5× 24 ∪ 24× 40

Table 1: Meshes considered to study the convergence behaviour.

pears since the single-patch model cannot exactly represent the non-
conforming coupled model. For the finest cubic single-patch mesh, the
error level is so low that it may be deteriorated by rounding errors.
These results indicate that the error coming from the non-intrusive
coupling methodology is significantly smaller than the error due to the
NURBS finite element approximation. This means that the accuracy
of NURBS is preserved with the proposed methodology when applied
to covered local models.

4.2.2. Plate with a central inclusion.

Description of the test case: With the next example, the situation of
a non-conforming covered local model that has different material properties
from those of the global model is investigated, considering the modelling of
a plate with a central inclusion subjected to constant in-plane tension (see
Fig. 15). Note that such types of test cases have already been computed
using an embedded Nitsche’s method (see, e.g., [9]). Here, the proposed
non-intrusive coupling strategy is implemented. In order to be different from
the situation of holes (where, roughly speaking, the local stiffness equals
zero) and to be consistent with composite materials, the Young’s modulus
is chosen to be a hundred times larger for the inclusion than for the plate
(Ei = 100× Ep). The Poisson’s coefficients are the same.

Numerical models considered: Two different numerical non-intrusive
models are considered for the problem (see Fig. 15(a) for the first model
and Fig. 15(b) for the second one). For each, a regular quadratic B-Spline
grid is used for the global model and a circular quadratic NURBS mesh is
constructed for the local model. However, in the first situation, the local
model includes the inclusion only, while in the second case, an annulus of
two elements in the radial direction is added at the boundary of the inclu-
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sion to constitute the local model. In the second local model, two different
materials separated by a C0 continuity then need to be considered to recover
the solution of the initial problem: Ei is taken at the centre (i.e., in the
inclusion) and Ep is fixed in the annulus. By doing this, we will see that we
are able to achieve good accuracy with relatively coarse meshes for the plate.
The transition of the solution from the local model to the global one across
Γ becomes smoother in the second situation while sharp phenomena need to
be correctly captured in the first model. The difference of mesh size in the
plate to obtain an equivalent solution with the first model and the second
model is illustrated and reported in Fig. 15.

Sym
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p

(a) First model: local model = in-
clusion.

Sym

L

H

p

C  line0

(b) Second model: local model = in-
clusion + annulus.

Figure 15: Plate with a central inclusion: description and discretization of the problem.

Numerical results:

• The results obtained once the non-intrusive algorithm has converged are
given in Figs. 16(a)-16(c) for the first model and Figs. 16(d)-16(f) for
the second situation. The first plots are related to the discretization of
Fig. 15(a) and the second plots concern the discretization of Fig. 15(b).
For both models, the vertical displacement, the vertical strain and the
Von Mises stress are shown. The solutions of the two models are in
good agreement. The stiffer behaviour of the inclusion seems to be
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well captured: the vertical strain is low while the Von Mises stress is
high in the inclusion.

(a) Model 1: disp. uy. (b) Model 1: strain
εyy.

(c) Model 1: VM
stress σvm.

(d) Model 2: disp. uy. (e) Model 2: strain εyy. (f) Model 2: VM
stress σvm.

Figure 16: Plate with a central inclusion: converged solution of the non-intrusive analysis
(top: first model, bottom: second model).

• The associated convergence behaviour of the non-intrusive algorithm
is given in Fig. 17. As already observed in the framework of non-
intrusive coupling in FEM, the Newton acceleration technique appears
to be necessary to reach convergence in the situation of a local model
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stiffer than the global model. Furthermore, we observe that the con-
vergence is much slower for the first model (see Fig. 17(a)) than for the
second model (see Fig. 17(b)) where the usual number of several tens
of iterations is reached. The reason for this is the difference of stiff-
ness between the global (fictitious) model in Ω12 and the local model
in Ω2. Theoretically, this can be shown by rewriting the fixed point as
a modified Newton algorithm where the approximation of the tangent
matrix depends on the gap in the primal Schur complements between
the models in Ω12 and in Ω2 (see, e.g., [30]). To conclude on these
results, the two non-intrusive models implemented enable the problem
to be solved accurately. Nevertheless, we emphasize that, for better
convergence of the algorithm, the primal Schur complement of the lo-
cal model (Dirichlet problem with prescribed displacement on Γ) has
to be relatively close to the primal Schur complement of the global
model in Ω12. This is consistent with the original idea of global/local
non-intrusive coupling: the region of the local model is expected to
be sufficiently large to include both the small zone where complex be-
haviours are to be modelled (at its center) and larger regions (at its
boundaries) where the connection with a simpler global model can be
made efficiently.
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(a) First model: interface equilibrium resid-
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Iteration number

E
qu

ili
br

iu
m

 r
es

id
ua

l

Standard fixed point

Aitken acceleration
Quasi−Newton acceleration

(b) Second model: interface equilibrium
residual.

Figure 17: Convergence of the non-intrusive algorithm for the plate with a central inclu-
sion.

4.2.3. Edge-cracked plate under uniaxial tension.

Description of the test case: In the last example, we demonstrate the
ability of the proposed methodology to combine analysis models that consist
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of several different element types coming from different numerical codes. In
particular, we are interested in the coupling of NURBS elements with stan-
dard finite elements (i.e., based on Lagrange shape functions). This may be
of great interest for engineers because it provides a flexible tool to couple ro-
bust conventional finite element codes with newly developed NURBS codes.
We recall that the procedure illustrated in Fig. 6 is used for the non-intrusive
coupling. For the study, an edge-cracked plate, as shown in Fig. 18(a), sub-
jected to a uniform tensile stress is analysed. The crack size (a = 1) is very
small in comparison with the lengths of the plate (H = 17 and L = 7), so
the problem exhibits two different scales. The structure is assumed to be
in plane strain conditions. Such a problem has already been studied in the
context of non-intrusive FEM (see, e.g., [11]). The reference value of the
mode I Stress Intensity Factor (SIF) can be accurately approximated by the
value that holds for an infinite plate, corrected by a factor depending on the
ratio a

L
:

Kref
I = p

√
aπ

[
1.12− 0.231

a

L
+ 10.55

( a
L

)2

− 21.72
( a
L

)3

+ 30.39
(a
l

)4
]
.

(37)

Numerical model considered: The non-intrusive numerical model
considered is illustrated in Fig. 18(b). To model the behaviour around the
crack, we propose to make use of the well-established X-FEM method (in the
context of usual FEM). In particular, X-FEM linear triangles are used here
to discretize the local model. In addition, we propose to add an analytical
domain at the crack tip in the local model, which contains the Williams’
expansion [49]. The consequence of this is that the stress intensity factors
can be derived directly. For details regarding crack modelling, the interested
reader is invited to consult [11] and references cited therein. The local model
is computed using the code of [11]. Simultaneously, a quadratic 15 × 30 B-
spline mesh is used in our IGA code as the global model to compute the plate
without the crack. This model is intended to be replaced around the crack
by the local model presented above. Non-conforming geometries are involved
(see, again, Fig. 18(b)).

Numerical results: The vertical displacement obtained (once the non-
intrusive algorithm has converged) with the discretizations of Fig. 18(b) is
plotted in Fig. 18(c). A deformation similar to that in [11] can be observed.
In addition, the convergence behaviour of the mode I SIF KI with the non-
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Figure 18: Non-intrusive analysis of an edge crack plate under uniaxial stress.
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intrusive algorithm is shown in Fig. 19. We note that only five iterations
are required to obtain the converged value with the Newton acceleration
technique. For the discretization considered, a relative error of 0.08% on KI

with respect to Kref
I (Eq. (37)) is reached. These results account for the

flexibility of the method to connect finite element methods that use different
basis functions. The present work can then be interpreted as an extension
of the non-intrusive coupling coming from conventional FEM to higher-order
finite element methods.
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Figure 19: Convergence of the SIF KI during the non-intrusive algorithm.

5. Conclusion

In this paper, we applied the global/local non-intrusive coupling strategy
to the NURBS context in order to simplify the modelling of local behaviour
within a NURBS patch. The idea was to consider the NURBS patch to be en-
riched as the global model. The first advantage of the methodology when ap-
plied to NURBS is that the global NURBS patch remains unchanged, which
completely eliminates the need for costly re-parametrization procedures, even
if the local domain is expected to evolve during the simulation. In addition,
it should be emphasized that the global stiffness operator is assembled and
factorized only once, and the system to be solved remains well-conditioned.
The second advantage of the proposed approach is its considerable flexibil-
ity. Beyond being an efficient strategy to couple different element types, the
formalism offers the possibility to couple different numerical codes with very
little implementation effort. Since the global and local problems are solved
alternately and only interface data are transmitted in a non-intrusive strat-
egy, it is possible to use a linear NURBS code for the global model and any
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other existing robust codes suitable for the modelling of complex behaviour
for the local model. This notably allows for easy merging of robust conven-
tional FEM codes with newly developed NURBS codes which, in our opinion,
may foster the integration of NURBS in the engineering world.

We have presented a range of numerical examples that demonstrate the
ability of the non-intrusive coupling to model various types of local behaviour
within a NURBS patch. Starting with the specific case of a local model that
is void, we derived a strategy for the situation of geometric details, which
requires only global Neumann problems to be solved in the iterative proce-
dure. In a second part, we investigated the more usual case of covered local
models. First, we considered a refined NURBS local model to achieve local
refinement, then studied the modelling of a stiffer inclusion by involving a
local model with a different Young modulus and, finally, combined our lin-
ear NURBS code with a standard FEM code to incorporate a local model
including standard X-FEM linear triangles for crack modelling. The results
confirm that the proposed approach does not compromise accuracy. In par-
ticular, the optimal rates of convergence were achieved. The price to pay for
the non-intrusive strategy is the number of iterations of the solver but we
have shown that this can be reduced to a few dozen with the use of accel-
eration techniques (Aitken dynamic relaxation and Quasi-Newton update).
In consequence, we believe that our methodology is of significant interest for
treating any case of local enrichment expected to evolve in a NURBS patch.

From the non-intrusive coupling point of view, the main development
from FEM to NURBS consisted of taking non-conforming geometries into
account. Because of the rigid tensor product structure of NURBS, the case
of a local model domain overlapping the knot-span elements in the global
NURBS patch had to be investigated. To this end, we decided to stay close
to the initial FEM non-intrusive strategy. We kept the same equations and
associated weak forms. Thus, only slight changes in the implementation pro-
cess were required. In particular, we had to set up suitable quadrature rules
for the evaluation of the interface reaction forces. For the case of a void local
model, we proposed the simple construction of an exact NURBS domain to
fill in the geometric detail by adding multiple interpolatory control points
at the center. The procedure applies directly to all types of star domains
and may require a few additional improvements (such as based on very re-
cent works [44, 45]) in the general case. For the situation of covered local
models, the quadrature rule coming from the local problem was transposed
within the global NURBS patch. Since NURBS usually implies higher or-
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der shape functions, our developments can also be viewed as an extension of
non-intrusive FEM coupling to higher-order finite element methods.

The numerical experiments of the present contribution were limited to
two-dimensional linear elasticity. However, the proposed strategy does not
seem to require such a framework. In particular, the case of three dimensions
and nonlinear local models is straightforward as demonstrated in the context
of standard FEM (see, e.g., [30]) which opens the door to the tackling of real-
istic engineering applications. Moreover, the ability of the proposed method-
ology to take any modification of local models into account may constitute an
attractive feature for the resolution of optimization problems. With NURBS,
the non-intrusive strategy could offer a robust, flexible tool for employing a
design-through-analysis method for shape optimization.
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