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Generalized Satisfaction Equilibrium: A Model for
Service-Level Provisioning in Networks

Mathew Goonewardena, Samir M. Perlaza, Animesh Yadav, and Wessam Ajib

Abstract—This paper presents a generalization of the existing
notion of satisfaction equilibrium (SE) for games in satisfac-
tion form. The new equilibrium, which is referred to as the
generalized SE (GSE), is particularly adapted for modeling
problems such as service-level provisioning in decentralized self-
configuring networks. Existence theorems for GSEs are provided
for particular classes of games in satisfaction form and the
problem of finding a pure strategy GSEs with a given number of
satisfied players is shown to be NP-hard. Interestingly, for certain
games there exist a dynamic, analogous to the best response of
games in normal form, that is shown to efficiently converge to a
pure strategy GSE under the given sufficient conditions. These
contributions form a more flexible framework for studying self-
configuring networks than the existing SE framework. This paper
is concluded by a set of examples in wireless communications
in which classical equilibrium concepts are shown to be not
sufficiently adapted to model service-level provisioning. This
reveals the relevance of the new solution concept of GSE.

I. INTRODUCTION

Game theory has played a fundamental role in the anal-
ysis of decentralized self-configuring networks (DSCNs),
e.g., sensor networks, body area networks, small cells, law-
enforcement networks. See for instance [1]–[3] and refer-
ences therein. A DSCN is an infrastructure-less network in
which transmitters communicate with their respective receivers
without the control of a central authority, for instance, a
base station. Therefore, radio devices must autonomously tune
their own transmit-receive configuration to meet a required
quality-of-service (QoS) or quality-of-experience (QoE), as
well as efficiently exploit the available radio resources. The
underlying difficulty of this individual task is that meeting
a given QoS/QoE depends also on the transmit-receive con-
figuration adopted by all other counterparts. This suggests
that communications networks can be modeled by games as
first suggested in [4], which justifies the central role of game
theory.

An object of central attention within this context is the
notion of equilibrium. In particular, the notion of Nash equi-
librium (NE) [5], [6] is probably the most popular solution to
games arising from DSCNs. An NE is reminiscent to notions
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used in mechanics, for instance, a small perturbation to a
system at a stable (mechanical) equilibrium induces the system
to spontaneously go back to the equilibrium point. Similarly,
within a communication network operating at an NE, any
transmitter unilaterally deviating from the equilibrium point
degrades its own individual performance and thus, backs down
to the initial equilibrium configuration. The relevance of the
notion of equilibrium is that it sets up the rules under which
a DSCN can be considered stable, and thus exploitable. In
any other state, the network cannot be fruitfully exploited
as there always exists at least one radio device aiming to
change its individual transmit-receive configuration. Aside
from NE, there are other notions of equilibria particularly
adapted to DSCN. Each solution concept has advantages and
disadvantages, as described in [7].

A major disadvantage that is common to most of equi-
librium concepts is that stability depends on whether or not
each radio device achieves the highest performance possible.
This does not necessarily meet the original problem in which
radio devices must only ensure a QoS or QoE condition [8].
To overcome this constraint, a new solution concept known
as satisfaction equilibrium (SE) was suggested in [9] and
formally introduced in the realm of wireless communications
in [10], [11]. The SE notion relaxes the condition of in-
dividual optimality and defines an equilibrium in which all
radio devices satisfy the QoS or QoE constraints. From this
perspective, radio devices are not anymore modeled by players
that maximize their individual benefit but by players that aim
at satisfying some individual constraints. This new approach
was adopted to model the problem of dynamic spectrum access
in [12]–[14] and small cells in [15]. Other applications of SE
are reported for instance in the case of collaborative filtering
in [16]. In [17], it is shown that the games in normal form
discussed in [18], [19] have satisfaction form representations,
such that their pure strategy NEs coincide with the SEs.
However, the notion of SE as introduced in [10] presents
several limitations. As pointed out in [19] and [20], the
notion of SE is too restrictive. Simultaneously satisfying the
QoS/QoE constraints of all radio devices might not always be
feasible, and thus an SE cannot be achieved, even if some
of the radio devices can be satisfied. Hence, existence of
an SE is highly constrained, which limits its application to
wireless communications. These limitations are more evident
in the case of mixed-strategies. In mixed-strategies, an SE
corresponds to a probability distribution that assigns positive
probability to actions that satisfy the individual constraints
for any action profile that might be adopted by all the other
players.
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A. Contributions

In this paper, the notion of SE presented in [10] is gen-
eralized to embrace the case in which only a subset of the
radio devices can satisfy their QoS/QoE individual constraints.
This new notion of equilibrium is referred to as generalized
satisfaction equilibrium (GSE). At a GSE, there are two groups
of players: satisfied and unsatisfied player set. The former is
the set of players that meet their own QoS/QoE conditions.
The latter is the set of players that are unable to meet their
own QoS/QoE, given the actions adopted by all the other
players. The key point is that at a GSE, none of the actions
of a given unsatisfied player allows meeting the individual
QoS/QoE constraints and thus, none of the players unilaterally
deviates from an equilibrium point. Note that if all players can
be satisfied, then the notion of SE and GSE are identical.

The existence of GSEs in games in satisfaction form is
studied and general existence results are presented for some
classes of games. Interestingly, these existence conditions are
less restrictive than those observed for the case of SE in [10].
Nonetheless, the existence of a GSE is shown to be not ensured
even in the case of mixed-strategies. This contrasts with other
game formulations, such as the normal-form, for which there
always exists an NE in mixed-strategies. Finally, the relevance
of SF games in the realm of wireless communications is
highlighted by several examples.

The rest of the paper is organized as follows. Sec. II intro-
duces games in satisfaction form and presents the definition of
GSE. The complexity of the problem of finding a pure strategy
GSEs of a finite game in satisfaction form is also studied in this
section. In particular, it is shown that this problem is NP-hard.
This section concludes by presenting a satisfaction-response
dynamic and identifies sufficient conditions under which this
dynamic converges to a pure strategy GSE. Finally, Sec. IV
concludes this paper.

II. SATISFACTION FORM AND GENERALIZED
SATISFACTION EQUILIBRIUM

This section introduces games in satisfaction form and
generalizes the notion of equilibrium presented in [10].

A. Games in Satisfaction Form

A game G in satisfaction form is defined by the triplet

G ,
(
N , {Ai}i∈N , {gi}i∈N

)
, (1)

where N = {1, . . . , N} is a finite set containing the indices
of all players. The set Ai is finite and contains all the pure
strategies (actions) of player i ∈ N . Let 4(Ai) denote the set
of all probability distributions over Ai. The correspondence
gi : 4(A1)× . . .×4(Ai−1)×4(Ai+1)× . . .×4(AN )→
24(Ai) determines the set of strategies that satisfy the indi-
vidual constraints of player i. The notation 24(Ai) denotes
the power-set of the set 4(Ai). More specifically, given a
strategy profile π = (π1, . . . ,πN ) ∈ 4(A1)× . . .×4(AN ),
player i is said to be satisfied if πi ∈ gi (π−i), with
π−i = (π1, . . . ,πi−1,πi+1, . . . ,πN ).

The correspondence gi should not be confused with a
constraint on feasible strategies, as in the case of games
with coupled actions [21]. Player i can choose any πi ∈
4(Ai) as a response to a given π−i, however, only the
strategies in gi (π−i) satisfy its individual constraints. When
only pure strategies are considered, with a slight abuse of
notation, the correspondence in pure strategies is denoted by
gi : A1× . . .×Ai−1×Ai+1× . . .×AN → 2Ai . Then, given
a−i = (a1, . . . , ai−1, ai+1, . . . , aN ), the set gi (a−i) denotes
the set of pure strategies that satisfies the individual constraints
of player i.

B. Generalized Satisfaction Equilibrium

Each strategy profile π of the game (1) induces a partition
over the set N of players formed by the sets Ns and Nu.
Players in the set Ns are said to be satisfied, that is, ∀i ∈ Ns,
πi ∈ gi (π−i). Alternatively, players in the set Nu are said
to be unsatisfied, that is, ∀i ∈ Nu, πi 6∈ gi (π−i) . The
players in Ns are satisfied and thus, they do not possess any
interest in changing their own strategy. Conversely, players
in Nu are unsatisfied and thus, to guarantee an equilibrium,
it must hold that none of their strategies can be used to
satisfy their individual constraints. This notion of equilibrium,
namely generalized satisfaction equilibrium, is introduced by
the following definition.

Definition 1. Generalized Satisfaction Equilibrium (GSE): A
strategy profile π is a GSE of the game in (1) if there exists a
partition of N , e.g., Ns and Nu, such that ∀i ∈ Ns, it holds
that πi ∈ gi (π−i) and ∀j ∈ Nu, it holds that gj (π−j) = ∅.

At a GSE strategy profile π, either a player i satisfies its
individual constraints or it is unable to satisfy its individual
constraints since gi (π−i) = ∅. From Def. 1 it follows that a
pure strategy GSE of (1) is a profile a ∈ A, where ∀i ∈ Ns,
ai ∈ gi (a−i) and ∀j ∈ Nu, gj (a−j) = ∅. This equilibrium
notion generalizes previously proposed solution concepts to
games in satisfaction form. An SE, as introduced in [10], is
a special case of a pure strategy GSE of Def. 1. Specifically,
every GSE in which all players are satisfied in pure strategies
is an SE, as suggested in [10]. An ε-SE, as defined in [10],
is a GSE in which Nu = ∅ and ∀i ∈ N , gi (π−i) = {π ∈
4(Ai) : E

(
1gi(a−i) (ai)

)
= 1 − ε}, where the expectation is

taken over the mixed strategy profile. Finally when ε = 0, the
SE in mixed strategies as introduced in [10], also follows as
a special case of the GSE in Def. 1.

The set of all GSEs of a game can be categorized by the
number of players that are satisfied. An Ns-GSE denotes a
GSE in which Ns ≤ N players are satisfied. An N -GSE
satisfies all players and thus, it is referred to as an SE in this
paper. The qualifiers mixed- and pure- for the set of strategies
may be omitted when the meaning is clear from the context.

C. Existence of Generalized Satisfaction Equilibria

The existence of a GSE in (1) depends on the properties
of the correspondences g1, . . . , gN . Let g : 4(A1) × . . . ×
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4(AN )→ 24(A1)×...×4(AN ) be such that for a given strategy
profile π, it follows that

g(π) , (π′1, . . . ,π
′
N ), (2)

with π′
i ∈ gi(π

′
−i), for all i ∈ N . Then, an SE is a fixed

point of g, i.e.,
π ∈ g (π) , (3)

and thus, the tools of fixed-point equations [22] can be used
to state existence theorems of SEs. This is not the case for
GSEs. Note that at a GSE action profile π, where Ns < N
there exists an i ∈ N for which gi (π−i) = ∅ and thus, a fixed
point is not properly defined. This observation highlights the
difficulty of providing a general existence result for a GSE.
It also emphasizes the key difference between GSE and NE.
By definition, an NE is a fixed point of the special case when
the correspondences of (1) are best response mappings with
respect to individual utility functions and therefore, for finite
games there always exists at least one NE [5], [6]. Thus, the
satisfaction form in (1) is a more general formulation that the
normal form [10].

Existence results can be given for very particular classes
of correspondences g1, . . . , gN . Consider for instance a game
in which player i obtains an expected reward given by the
function ui : 4(A1) × . . . ×4(AN ) → R and it is satisfied
only if the expected reward is higher than a given threshold
τi (the expectation is over the mixed strategies). That is, the
set of mixed strategies that satisfies the individual constraints
of player i is given by:

gi (π−i) = {πi ∈ 4(Ai) : ui (π) ≥ τi} . (4)

Examples of games in satisfaction form following this con-
struction are used in [10] to describe several dynamic spectrum
access problems. In this case, the game in satisfaction form
possesses at least one GSE. This observation is formalized by
the following proposition.

Proposition 1. The finite game in satisfaction form in (1)
for which ∀i ∈ N , gi (π−i) = {πi ∈ 4(Ai) : ui (π) ≥ τi} ,
possesses at least one GSE.

Proof: The proof of Prop. 1 is presented in [23].
The statement of Prop. 1 is only for games with the

specified correspondences. Prop. 1 does not hold if the
correspondence is modified for instance to gi (π−i) =
{πi ∈ 4(Ai) : τ i ≤ ui (π) ≤ τ i}, with τ i and τ i, any two
reals. In general, the existence of an GSE in games in SF is
not guaranteed.

An interesting example of a game in satisfaction form that
does not possess a GSE in mixed strategies is presented
hereunder. Define a two player game in which each player i
has two actions

{
a1i , a

2
i

}
, i ∈ {1, 2} . The probability that the

strategy of player i assigns to action aji is πi(a
j
i ), j ∈ {1, 2} .

The correspondence of player 1 is

g1 (π2) =


{
π1 ∈ 4(A1) : π1

(
a11
)
< π1

(
a21
)}

if
π2

(
a12
)
≥ π2

(
a22
){

π1 ∈ 4(A1) : π1

(
a11
)
≥ π1

(
a21
)}

othewise

.

(5)

and the correspondence of player 2 is

g2 (π1) =


{
π2 ∈ 4(Ai)2 : π2

(
a12
)
< π2

(
a22
)}

if
π1

(
a11
)
< π1

(
a21
){

π2 ∈ 4(Ai)2 : π2

(
a12
)
≥ π2

(
a22
)}

othewise

.

(6)
Let π ∈ Π be an arbitrary strategy profile. Then, one of

the following cases holds π2
(
a12
)
≥ π2

(
a22
)

or π2
(
a12
)
<

π2
(
a22
)
. Consider the case π2

(
a12
)
≥ π2

(
a22
)
. Then, player

1 is either in the case in which π1
(
a11
)
< π1

(
a21
)

or else it is
in the case π1

(
a11
)
≥ π1

(
a21
)
. In the former, i.e., π1

(
a11
)
<

π1
(
a21
)
, player 1 is satisfied. In the latter, i.e., π1

(
a11
)
≥

π1
(
a21
)
, player 1 deviates to π′1, with π′1

(
a11
)
< π′1

(
a21
)
.

Either way when player 2 has π2
(
a12
)
≥ π2

(
a22
)
, player 1

converges to a strategy in which π1
(
a11
)
< π1

(
a21
)
. However,

when player 1 is in this case, player 2 is unsatisfied and it
deviates to a strategy π′2

(
a12
)
< π′2

(
a22
)
. This causes player 1

to be unsatisfied in its current strategy π1
(
a11
)
< π1

(
a21
)

and
it deviates to a strategy π1

(
a11
)
≥ π1

(
a21
)
. Since the above

cases cover the entire mixed-strategy space, this game does
not possess a GSE.

D. Complexity of Generalized Satisfaction Equilibria in Pure
Strategies

This section establishes the complexity of the GSE search
problem in pure strategies. The problem is stated as follows:
given the game in satisfaction form in (1), if there is a pure
strategy SE find it, otherwise indicate that it does not exist. The
following proposition asserts its complexity. The method to
establish the time complexity of a problem is the polynomial-
time Karp reduction [24].

Proposition 2. Pure strategy SE search problem is NP-hard.

Proof: The proof of Prop. 1 is presented in [23].
The pure strategy Ns-GSE search problem is: given the

game in satisfaction form in (1) and a natural number Ns,
with 1 ≤ Ns ≤ N , if there is an Ns-GSE, in pure strategies
find it, with the highest possible N , otherwise, indicate that it
does not exist.

Corollary 1. Pure strategy Ns-GSE problem is NP-hard.

Proof: The proof of Prop. 1 is presented in [23].
Finding the complexity of the mixed strategy GSE search

problem is left as an open problem.

E. Satisfaction Response Algorithm

Solving for a pure strategy GSE of the game in (1) is a
hard problem in general, see [23]. However, it is possible to
identify games in satisfaction form that have a special structure
and thus, a pure strategy equilibrium can be efficiently found.
Suppose Y is an ordered set so that ∀(y, y′) ∈ Y2, either
y ≤ y′ or y′ > y holds. Define finite action spaces Ai ⊂ Y ,
∀i ∈ N , so that Ai is totally ordered as well. For all pairs
(a,a′) ∈ A2, the relation a ≤ a′ holds if ∀i ∈ N , ai ≤ a′i.
Alternatively, the relation a < a′ holds if ∀i ∈ N ai ≤ a′i and
for at least one j ∈ N , it holds that aj < a′j . The smallest and
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largest elements of Ai are denoted by ai and ai respectively.
Define the following vectors,

a,(a1, . . . , aN ) and (7)
a,(ā1, . . . , āN ) . (8)

Consider the following mappings:

φ
i
:A−i → Y and (9)

φi:A−i → Y. (10)

Given the condition a−i ≤ a′−i, the mapping φi is called
order-preserving if

φi (a−i) ≤ φi
(
a′−i

)
(11)

and is called order-reversing if

φi (a−i) ≥ φi
(
a′−i

)
. (12)

Then consider the game in satisfaction form in (1) and let the
correspondence gi, ∀i ∈ N , be defined by

gi (a−i) = {ai : φ
i
(a−i) ≤ ai ≤ φ̄i (a−i)

}
(13)

in which both φ
i

and φi are order-preserving.
For a ∈ A, if ai /∈ gi (a−i) and if gi (a−i) 6= ∅, then

there always exists an a′i ∈ gi (a−i) that player i can use to
satisfy its individual constraints. This deviation a′i is called a
satisfaction response and is denoted by SRi (a−i) ∈ gi (a−i).
Let N ′u ⊆ N be the subset of unsatisfied players with
nonempty correspondence, i.e., i ∈ N ′u, if ai /∈ gi (a−i) and
gi (a−i) 6= ∅. Then, consider the discrete time asynchronous
update sequence in which at each instance a subset N ? ⊆ N ′u,
performs satisfaction response. This update process is called
asynchronous, as opposed to synchronous, in which all players
in N ′u simultaneously perform the response and as opposed
to sequential, in which only one of those players at a time
performs the response. Algorithm 1 provides the pseudo code
for asynchronous satisfaction response and Prop. 3 states its
convergence properties.

Algorithm 1 Asynchronous Satisfaction Response
Initialize a = a
While a is not a GSE:

Select N ? ⊆ N ′u
a :=

(
(SRj (a−j))j∈N? , (ai)i∈N\N?

)
Proposition 3. Consider a game in satisfaction form (1) with
gi given by (13), ∀i ∈ N . Then, starting at a ∈ A the
asynchronous satisfaction response algorithm converges to a
pure strategy GSE.

Proof: The proof of Prop. 1 is presented in [23].
Note that in Prop. 3, there exists an implicit assumption

that every player that finds itself in Nu with a nonempty
correspondence performs satisfaction response within a finite
number of future steps. If ∀i ∈ N and ∀a−i ∈ A−i, φi, φi
are order-reversing, then Algorithm 1 converges initialized
at a ∈ A. Worst case iterations for sequential satisfaction
response is O (N max {|Ai| : i ∈ N}) which occurs when all

players are initially in Nu and each player advances to Ns

with SRi (a−i) = φ
i
(a−i) only to be found back in Nu

at the beginning of its next chance to respond. Simultaneous
satisfaction response is bounded by O (max {|Ai| : i ∈ N}) .
Convergence time of the more general asynchronous cases can
be bounded between the sequential and simultaneous limits,
with the minor condition that every player in Nu has to
perform a response at least once in a predetermined time
interval lower than N .

Algorithm 1 applies to infinite action spaces that are closed
intervals in the real line. However in that case convergence
time may depend on the minimum step size. Power control in
continuous domain to achieve a required rate is an example
and is discussed later. Sequential satisfaction response up
to a predefined fixed number of iterations is discussed in
[9] as a possible learning algorithm however, conditions for
convergence are not identified.

III. APPLICATIONS OF GSES

This section presents a particular application of games in
satisfaction form in wireless networks. The objective is to
demonstrate the applicability of GSE into simple but relevant
problems. Power control and channel allocation are the main
focus.

A. Uplink Power Control Game

Power control under per user rate requirements has been
well studied for its feasible region and Pareto optimal solutions
[25]. The possibly infeasible case in which a subset of the
transmitters may not be satisfied has received less attention.
In [26], the over constrained SINR targets are handled by
introducing multiple SINR targets such that the infeasible
users switch to lower targets.

The single-input-single-output (SISO) power control game
in the interference channel is presented in [27] as a general-
ized Nash equilibrium problem. The following development
considers single-input-multiple-output (SIMO) case as a game
in satisfaction form. The baseband equivalent signal at the
destination of transmitter i is

yi =
√
pihiisi +

∑
j∈Nr{i}

√
pjhjisj + zi, (14)

where yi ∈ Cni is the received symbol vector at the receiver of
ith transmitter, ni is the number of receiver antennas, si ∈ C is
the transmitted symbol of i, hji ∈ Cni is the channel between
transmitter j and destination of i, and zi ∼ CN (0, σI)
is the circular symmetric complex additive white Gaussian
noise. The payoff of transmitter i is the achievable rate
ui
(
pi,p−i

)
= log(1 + pih

H
iiR

−1
−ihii) bits/sec/Hz, where

R−i =
∑

j∈N\{i} pjhjih
H
ji +σI is the interference plus noise

covariance matrix. The transmit power is pi ∈ Pi, where
Pi = [p

i
, pi], pi, pi ∈ R≥0. The game in satisfaction form

played by the transmitters is

GPC ,
(
N , {Pi}i∈N , {gi}i∈N

)
, (15)

in which ∀i ∈ N , gi
(
p−i
)

= {pi ∈ Pi : τ i ≤ ui (p) ≤ τ̄i} ,
where 0 ≤ τ i ≤ τ̄i. The upper bound τ i is considered for
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the sake of generality. For instance the transmitter or receiver
may have a maximum operational rate. This model is valid for
τ̄i = +∞, which corresponds to rate unbounded from above.

Define ∀i ∈ N φ
i

(
p−i
)

= inf
pi∈R

{
pi : ui

(
pi,p−i

)
≥ τ i

}
and φ̄i

(
p−i
)

= sup
pi∈R

{
pi : ui

(
pi,p−i

)
≤ τ i

}
. Then restate

the correspondence gi
(
p−i
)
≡ {pi ∈ Pi : φ

i

(
p−i
)
≤ pi ≤

φi
(
p−i
)}
. From the properties of positive (semi-)definite

matrices [28], p−i ≤ p′−i implies R−1−i
(
p−i
)
� R−1−i

(
p′−i
)

which in turn implies ui
(
pi,p

′
−i
)
≤ ui

(
pi,p−i

)
and there-

fore concludes that φ
i

(
p−i
)
≤ φ

i

(
p′−i
)

and φ̄i
(
p−i
)
≤

φ̄i
(
p′−i
)
. The inequalities hold strictly if p−i < p

′
−i. Thus by

extension of Prop. 3 to action spaces that are closed intervals in
the real line Algorithm 1 converges to a GSE in the game (15).
If the upper threshold is removed, by setting τ̄i = +∞, the
stronger condition p−i < p

′
−i implies gi

(
p′−i
)
⊂ gi

(
p−i
)
.

The standard power control game is to minimize the trans-
mit power with per-user rate constraints and one solution can
be a generalized NE. However, a generalized NE might not
always exist when the problem is over constrained. Interest-
ingly, when this problem is modeled as a game in satisfaction
form, there always exists a GSE.

B. Efficient-GSEs and Admission Control

At a pure strategy GSE p ∈ P of (15), an unsatisfied player
i ∈ Nu obtains ui (p) < τ i, but may have pi > p

i
. If a player

in Nu lowers its power, then it is possible that another in Nu

can deviate to satisfaction and thus disrupt the equilibrium. In
some applications it is desirable that at a GSE ∀i ∈ Nu pi =
p
i
. Such profiles are called efficient-GSEs as the Nu poses

the least interference to Ns. Efficient-GSEs do not necessarily
exist.

IV. CONCLUSION

This paper presents a generalization of the notion of
satisfaction equilibrium, namely the generalized satisfaction
equilibrium, (GSE) for games in satisfaction form. When
players attempt to satisfy a required service level, rather than
maximize their utility, the GSE is a more appealing solution.
At a GSE, unsatisfied players are unable to unilaterally deviate
to meet their individual constraints. GSE bridges constraint
satisfaction problems and games in satisfaction form as the
two problems can be transformed into each other.
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