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Abstract: 
 
The design of future materials for biotechnological applications via deposition of 

molecules on surfaces will require not only exquisite control of the deposition procedure. 

Of equal importance will be our ability to predict the shapes and stability of individual 

molecules on various surfaces. Furthermore, one will need to be able to predict the 

structure patterns generated during the self-organization of whole layers of 

(bio)molecules on the surface. In this review, we present an overview over the current 

state of the art regarding the prediction and clarification of structures of biomolecules on 

surfaces using theoretical and computational methods. 

 
1 Introduction 
 
Throughout its history, the field of synthetic chemistry has been divided into several 

subfields, depending on the way chemistry has been perceived by its practitioners. One 

of the first divisions, according to classes of compounds, was into organic and inorganic 

chemistry. Subsequently the latter was subdivided into solid state and molecular 

chemistry, while the formed spawned fields like polymer chemistry, biochemistry, or 



metal-organic chemistry. Other divisions took their lead from the actual physical size of 

the material at hand, leading to a distinction between molecular, cluster, surface, or (bulk) 

crystal chemistry. 

 More recently, the field of nanochemistry with its focus on the synthesis of, and 

with, nanosized objects [1-4] has produced hybrid-like compounds, where e.g. complex 

molecules, clusters, or nano-size (mono)-layer flakes, are arranged in layered or 

three-dimensional patterns. Usually, one still employs classical chemical synthesis 

techniques to reach such nano-patterned compounds. But the development of advanced 

deposition techniques [5-7] has allowed us to conceive the generation of compounds, or 

materials in general, by adding one building block, i.e. molecule, cluster, etc., at a time 

[8]. A precondition for such a way to produce new compounds is the ability to predict and 

control the formation of molecular arrangements on well-defined surfaces. 

 The past couple of decades have seen a plethora of experimental studies of the 

deposition of molecules of various sizes, ranging from simple gases like N2 [9], CO [10], 

Xe [11], etc., to highly complex biomolecules such as proteins [12], spurred at least partly 

by new measurement probes such as scanning tunneling microscopy (STM) [13] or 

atomic force microscopy (AFM) [14]. But just as it had originally been the case in other 

fields of synthetic chemistry, such as molecular or solid state chemistry, the outcome of 

such a deposition with respect to the structure of the individual molecule or the structural 

arrangement of many molecules is very hard to predict without prior experimental input. 

Empirical rules and heuristics can be used to "explain" the structures observed after 

deposition. But we are still far away from an unbiased structure prediction of 

thermodynamically and/or kinetically stable structures of molecules on surfaces. 

Similarly, the a priori design of optimal deposition routes leading to desired specific 

patterns of molecules on surfaces is still farther in the future. 

 Or are we? At least with regard to the prediction of (meta)stable structures, we 

know from our experience with the analogous problem in the fields of molecular [15,16] 

and solid state [17-19] chemistry, how to solve this problem, in principle: we need to 

globally study the energy landscape of molecules on surfaces, and identify kinetically and 

thermodynamically stable regions on this landscape. These so-called locally ergodic 

regions [18-21] correspond in many cases to local minima on the landscape plus their 

surrounding basins. Similarly, the powerful global search techniques that have been 



applied to, and sometimes specifically developed for, the structure prediction of crystals 

and single molecules in vacuum or solvent can also be employed for the prediction of the 

structure(s) of molecules on surfaces. 

 One curious difference between molecules on surfaces and e.g. in crystals is the 

amount of firm atom-level structure information available from experiment. While in 

crystalline compounds one usually knows the positions of all atoms involved from X-ray 

and/or neutron scattering - unless the crystal is disordered -, only in rare cases one 

knows more than the rough shape of the molecule on the surface with resolution down to 

about 1/2 nanometer. Even worse, in many instances the chemical identity of the atoms 

observed with e.g. a scanning tunneling microscope cannot be determined through this 

measurement. As a consequence, most of the theoretical work about structures of 

molecules on surfaces has been aimed at structure clarification, and to a much lesser 

degree at structure prediction, although the computational tools employed could equally 

well be used for the latter endeavor, in principle. 

 In this mini-review, we present an overview over the current state of the field 

regarding the use of theoretical methods for the clarification and prediction of structures 

of medium-sized and large organic molecules and biomolecules on surfaces. This is of 

great interest for basic research and technological applications. Indeed, such hybrid 

bio-inorganic molecular systems [22] might serve as ingredients of electronic or sensor 

devices [23], allow for design of nano-drugs [24], tissue engineering and efficient drug 

delivery [25], improve our understanding of catalysis [26], lead to efficient sequencing 

procedures [27], and constitute controllable model systems for the dynamics of complex 

processes such as protein folding [28]. After a quick summary of the range of 

experimental studies, we shortly describe some of the most popular computational 

methods employed. This is followed by an overview over the types of systems studied so 

far using computational approaches, together with an attempt to draw some preliminary 

conclusions based on these theoretical investigations with respect to their applicability 

and general understanding of molecules on surfaces. 

 

 
2. Experiment 
 



On the experimental side, (bio)molecules on surfaces have been studied for a long time. 

The motivation have been questions like the origin of life [29, 30], neurology [31, 32], 

understanding self-assembled monolayers (SAM) [25, 33-37], surface engineering [8, 

38-40], nanobiotechnological applications [41-43], or catalysis [26]. Proteins and 

peptides have been deposited on metal surfaces of various orientations, such as the 

(100), (110) and (111) surfaces of Cu, Ag, Au, Ni, etc. [44-47], on inorganic (oxide) 

surfaces [29, 30] such as SiO2 [44, 48], TiO2 [49], etc., on self-assembled monolayers 

[50, 51], membranes [52], semiconductors such as Si [53], graphite [44] and graphene 

[54], just to name a few. These investigations have been performed both in vacuum and 

in solution [55]. Of great interest has been the formation of ordered structures at low 

deposition densities (less than one monolayer) ranging from dimers [56] to islands of 

periodic 2D-structures [57], and the generation of complete self-assembled monolayers 

[33]. Figure 1 shows three typical experimental results for large flexible molecules 

(cytochrome C [45], angiotensin II [58], crown-ether [59]) on metal surfaces obtained via 

scanning tunneling microscopy. 

 The main tools for the study of the structures the biomolecules exhibit on surfaces 

have been local probes such as scanning tunneling microscopy (STM) [60, 61] or atomic 

force microscopy (AFM) [62, 63], STM-vibrational spectroscopy [64], probes that address 

single molecules, in principle, but without very high spatial resolution such as IR or 

Raman scattering [65-67], ADXPS [68], NMR [69, 70], LEED [71], X-ray spectroscopy 

[60], and (small angle) X-ray or neutron scattering that in the context of biomolecules 

should be suitable for the identification of periodic features of the structures. These 

methods yield information about structural, electronic and vibrational properties of 

individual molecules, in principle, and possible structural arrangement patterns of small 

and large groups of molecules. However, the in-principle atomic resolution these 

methods could provide is usually only possible to achieve in special instances such as for 

pentacene on Cu [72]; more representative are spatial resolutions of ca. 1/2 nanometer 

(c.f. figure 1). Furthermore, the chemical identities of the atoms observed, or even the 

identities of the molecules themselves, are often not directly available through 

experimental measurements, although dynamic force microscopy appears to be a 

potential way to address this issue [73]. 

 Typical deposition processes [74, 75] are deposition from solution [76], physical 



and chemical vapor deposition [71, 77], and ion soft landing with matrix assisted laser 

desorption/ionization (MALDI) [5], or electrospray ionization (ESI) [6, 7, 12, 48, 78] 

sources. While the deposition from solution has been theoretically analyzed in depth (as 

we will see below), only few theoretical investigations of the processes involved in ion 

soft landing have been performed [7]. 

 

3. Theoretical methods 
3.1 Energy landscape concepts 
 

In the realm of theory, modeling and prediction of the structure of biomolecules has been 

taking place for about forty years, starting with the so-called secondary structure 

prediction and the investigation of the protein folding problem (for a review of the early 

work, c.f. [18, 19] and references therein). The theoretical study of biomolecules on 

surfaces is a more recent field. Nevertheless, in the last years, theoretical and 

computational methods have largely paralleled the experiments mentioned above (e.g. 

[44, 46, 47, 53]), with respect to the large variety of systems investigated, and are often 

guided by experimental information [79].  

 As is the case with all chemical systems, the (meta)stable compounds or the 

kinetically stable conformations of individual molecules or clusters, correspond to 

so-called locally ergodic regions on the energy landscape of the system [20, 21]. The 

energy landscape is the hypersurface of the potential energy or enthalpy for all 

arrangements of the N atoms belonging to the chemical system. Each arrangement 

corresponds to the vector X = (x1,...,xN) in R3N where xi is the position vector for the i'th 

atom in the usual three-dimensional space. As discussed in more detail elsewhere [21], 

subregions R of the state space in which the trajectory of the N-atom system X(t) resides 

long enough to equilibrate on a given observation times scale tobs, teq(R) << tobs, while at 

the same time being confined to this region for a sufficiently long time before escaping, 

tesc(R) >> tobs, are called locally ergodic. This implies that we can compute measurements 

of observables O, <O>t = (1/tobs)∫0tobsO(X(t))dt, by using the standard ensemble average 

formula restricted to the region R, <O>ens = ∑Xi in RO(Xi)exp(-E(Xi)/kBT)/Z(R), with Z(R) = 

∑Xi in R exp(-E(Xi)/kBT). In particular, we can define a local free energy F(R) = -kBT lnZ(R) 

for each such locally ergodic region (for a given time scale tobs). 



 Clearly, if we want to predict the stable phases or conformations of a chemical 

system by determining its locally ergodic regions, we need to first identify such 

candidates and subsequently verify their stability and equilibration on the observational 

time scale of interest, and finally compute their local free energy. In practice, in most 

cases, locally ergodic regions are associated with basins of the energy landscape around 

local minima, and thus various global optimization techniques (for an overview see e.g 

[80], and references therein) are used to find candidate regions. This is followed by an 

analysis of the probability flows between these regions, using barrier exploration 

methods [81]. In many instances, the stability can be characterized by the generalized 

barriers surrounding the regions, which include energetic, entropic and kinetic 

contributions [82, 83], or by rate constants [16, 84] that can be translated into time-scale 

dependent free energy barriers [85]. However, this comprehensive approach already 

employed in the structure prediction of molecules, clusters and crystals, has not been 

realized for molecules on surfaces so far. 

 

 

3.2 Energy functions 
 

Several types of energy functions can be applied to the study of biomolecules on 

surfaces, allowing us to deal with a plethora of systems on many time scales and levels 

of accuracy. We may classify them based on their resolution or degree of accuracy, 

where the most accurate ones are typically also the computationally most expensive 

ones.  

 The most accurate energy functions are those computed via so-called ab initio 

methods based on quantum mechanics (QM). Among the different types of ab initio 

methods, density functional theory (DFT) is most commonly used (e.g. [86]). DFT 

energies are often combined with empirical fitted 1/rn interaction terms that are used to 

model the van der Waals (vdW) interactions among molecules and between molecules 

and surfaces, which are difficult to describe with basic QM methods [87-90]. DFT 

approaches enable us to treat larger systems compared to classical wave-function based 

ab initio methods such as the Hartree-Fock method. Nevertheless, using current 

computational resources, QM methods can only be applied in practice to analyze one or 



a few small-sized biomolecules on a reduced surface model. 

 For larger systems, energy functions based on classical mechanics, usually called 

empirical energy functions or interaction potentials, have to be applied. A plethora of 

such functions can be found in the literature. The empirical energy functions employed 

for the modeling of biomolecules on surfaces are predominantly force fields (see e.g. ref. 

[91, 92]), many of which have been implemented in molecular dynamics codes such as 

GROMACS [93, 94], AMBER [28, 95, 96], NAMD [97] or DL-POLY [98, 99]. For the atom-level 

interactions among molecules and between molecule and surface, Coulomb potentials 

[100, 101] and Lennard-Jones-type potentials - the latter for the description of van der 

Waals forces - are frequently employed [102, 103]. In the case of metallic surfaces, the 

induced polarization is incorporated via explicit image charges or polarization dipoles 

[104-106]. In addition, some potentials are specially designed or adapted to efficiently 

reproduce the peptide-peptide or peptide-metal (surface) interactions [107].  

 In many cases, the empirical force fields are parameterized using QM calculations. 

Very popular has been the recently developed GoIP force field [108] used to describe the 

interaction between organic molecules and gold surfaces. Here, the potentials are 

usually fitted to results of DFT calculations since reliable atom-level experimental 

(structure) data are mostly lacking. Furthermore, empirical potentials are used to 

describe the interactions between the molecule and the surrounding medium, if a solvent 

is assumed to be present [109, 110]. 

 A possible intermediary approach is the combination of different types of energy 

functions, somewhat reminiscent of the QM/MM methods [111]: While the properties of the 

molecules can be modeled with MM-type force-fields, an embedded atom model [112, 113] 

can be applied for the underlying surface. For the interaction between the metallic surface 

and the molecules, a van der Waals and Coulomb-type potential is often assumed to work 

well. However, the quality of the potential is decisive for the reproducibility of known results 

[53, 114]. Therefore, it is necessary - due to a frequent lack of atom-level resolution 

experimental data - to compare the results with ab-initio calculations in order to improve the 

empirical potential parameters.  

 In order to perform simulations of very large systems, or to reduce computing time, 

coarse-grained energy models have also been proposed that model interactions between 

rigid (sub)-groups of atoms inside large molecules [62, 115] or even between whole 



molecules (described e.g. as a single ellipsoid). For instance, a simple Gō-like model can be 

used to represent intra-molecular interactions in peptides or proteins at the amino-acid 

residue level, together with a specific residue-based energy function for the interactions with 

the surface [116].   

 In addition to the aforementioned physics-based energy functions, statistics-based 

approaches can also be applied to model hybrid biomolecule-surface systems [117]. 

Finally, we mention that terms in physical and statistical energy functions can be 

combined, as is done in ROSETTA’s all-atom score function used for protein structure 

prediction, which has been extended to consider biomolecule-surface interactions [118].   

 

 

 

3.3 Exploration and simulation methods 
 

Concerning the methods used to explore the configuration space of the molecules on the 

surface, these fall into several general categories: molecular dynamics (e.g. [119-129]) and 

Monte Carlo simulations [127, 130], global optimization methods [131, 132], and steered MD 

(e.g. [27]) and metadynamics (e.g. [53]) for barrier investigation methods. Perusing the 

theoretical studies of molecules on surfaces available up to now, it quickly becomes clear 

that 90 % or more of the investigations employ molecular dynamics. The reason for this lies 

both in the intuitively high degree of "realism" of the method regarding the reproduction of the 

kinetic processes involved in structure formation, and in the wide availability of large and 

well-developed MD-codes suitable, and often specifically designed for efficiently simulating 

large molecules in solutions or at the interfaces between solid, liquid, and vacuum. 

 Since the first simulations performed by Alder and Wainwright in the 1950s [133], the 

method of (classical) molecular dynamics has become an appropriate instrument to 

investigate structures, conformations, dynamics, and thermodynamics of atomic systems. In 

the last decades the growth in the field of applications is coupled with the development of 

both computer power (hardware and architecture) and fast energy functions (see above). 

While the first enables the investigation of large systems (up to several millions of atoms 

[134]) via parallel computing, which can be performed by the linked cell algorithm or the 

replica data method, the latter enables the modeling of realistic systems. 



 The systems investigated range from inorganic materials, e.g. crystalline phases or 

amorphous substances, over organic (polymers) up to complex biomolecules. Using different 

computational set-ups (external pressures can be applied and the system temperature can 

be controlled by Nose-thermostats) and environments (for example surface effects / 

gradients / solutions) will generate appropriate ensembles. These can be applied in order to 

compare the results of molecular dynamics simulations to those of experiments. In order to 

determine structural, dynamic and thermodynamic quantities, one typically explores time 

averages and correlation functions, e.g. determination of the van Hove correlation gives 

insight into the radial distribution of atomic distances, and the calculation of the velocity 

autocorrelation [135] or displacement autocorrelation [136] reveals the vibrational spectrum 

of configurations. This is often combined with periodic local minimizations, in order to gain an 

overview of possible candidates for kinetically stable structures in the system; this method 

was first used to identify so-called inherent structures in amorphous solids and liquids. 

However, due to internal high frequency vibrations, the time steps used in MD 

simulations are typically about 1 fs, limiting the simulation time to nano-seconds. Applications 

of multiple time steps [137] can elongate the simulation time by a factor five. Efforts to reach 

long simulation times are necessary to address the long-time processes which play a crucial 

role in biomolecular systems, e.g. protein folding [138]. Furthermore, in the context of many 

biomolecular simulations a computational set-up which should resemble an experimental 

one has to include lipids, water molecules or carbohydrates in addition to the biomolecule 

under investigation. As a consequence, the simulation of such complex systems has led to 

the development of sophisticated and very specialized interaction potentials, and also to the 

construction of a number of dedicated MD codes such as AMBER, GROMACS or NAMD. 

 By now, MD simulations, often incorporating new sampling methods [132, 139-141], 

have become an established method to reproduce and predict the structures of biomolecules 

under physiological conditions to elucidate their interactions and to mimic the local dynamics 

on a time scale of several hundreds ns. Various groups have simulated carbohydrates on 

metals using DFT [142], the folding of macromolecules on metal surfaces [143], or the 

adsorption of molecules on various surfaces [144-149].  

 Concerning the global exploration and optimization methods, we find that most of 

the other (i.e. not-MD-based) standard procedures have been employed in the context of 

structure prediction of (bio)molecules or clusters in vacuum [16], but much more rarely or 



not at all for molecules on surfaces. Firstly, there are various types of simulated 

annealing, i.e. Monte Carlo or MD simulations with slowly decreasing temperature [150], 

multiple local optimizations such as stochastic quenches or gradient minimizations, or 

basin hopping [151] that is analogous to stochastic simulated annealing but with large 

changes in configurations followed by local minimizations [152]. Other methods suitable 

for biomolecules, in vacuum or on surfaces, are e.g. the recently proposed so-called 

threshold-minimization algorithm for the investigation of flexible molecules [153], and a 

variety of genetic or evolutionary algorithms [154-156], and numerous hybrid approaches 

combining elements of several methods.  

 For the exploration of the connectivity and barrier structure of the energy 

landscape of molecules, various search methods such as standard saddle-point search 

procedures [16], the threshold algorithm [157] where random walkers explore the 

landscape below a given set of energy lids [81, 158], and metadynamics [140] where MD 

or MC simulations are combined with elements of taboo-searches [159] that prevent a 

return to previously explored parts of the energy landscape [53], are available and have 

been employed to study molecular systems. Besides these global search methods, there 

are procedures for detailed studies of the local barrier structure, such as the nudged 

elastic band methods [160], the string method [161], transition path sampling [84], 

discrete path sampling [16], the prescribed path method [162], and the pathopt algorithm 

[163].  

 Most of the methods listed above are well known, and they have been employed for 

many global optimization problems and landscape explorations within and without chemistry 

(for more details we refer to [18, 19, 21, 80] and references cited therein). However, the 

limited speed of these very general exploration methods - that can be easily employed for all 

types of optimization problems, however, - is still a central issue. Thus, of special interest in 

recent years has been a new class of search methods originating from robotics. Relying on 

the analogy between problems in robotics and structural biology [164], methods originally 

developed to compute robot motions have been extended and applied to the simulation of 

molecular systems. In particular, computationally efficient methods have been developed for 

sampling and exploring the conformational space of biological macromolecules (see [165] for 

a survey). Algorithms have been proposed to generate conformational ensembles of flexible 

segments in proteins (i.e. protein loops) [166-169] and to simulate their motions [170-172]. 



Combined with methods in computational physics such as normal mode analysis [173], or 

using appropriate multi-scale molecular models [174], robot path-planning algorithms are 

able to compute large-amplitude conformational transitions in proteins several orders of 

magnitude faster than standard simulation methods such as molecular dynamics. In tandem 

with other optimization methods, robotics-inspired algorithms have also been proposed for 

the global exploration of the energy landscapes of highly flexible biomolecules [175-177].  

 

 
3.4 Comparison with experiment 
 

Most often, no precise atom-level structure information is available to easily verify the 

predicted structures. Therefore, one usually tries to reproduce the actual experimental 

measurements, at least approximately. For such a direct comparison with experiment, 

primarily STM images have been calculated [59], using e.g. the Tersoff-Hamann 

approach [178], where in many instances just the charge distribution of the molecule on 

the surface (or even without the surface) has been computed. Computations of STM 

images taking the shape of the tip of the STM-probe explicitly into account have been 

performed [179, 180], but can be highly problematic since the tip-shape is usually not 

known with sufficient accuracy.  

 Another quantity that is, in principle, suitable for a comparison with experiment is 

the vibrational density of states of molecules on surfaces. This can be calculated either 

directly from the Hessian for empirical potentials and from approximations to the Hessian 

via the frozen phonon approximation, or via the Fourier transformation of the 

velocity-velocity autocorrelation obtained during molecular dynamics simulations [136, 

181, 182]. In particular, the combination of both methods might be suitable for studying 

the vibrational density of states of biomolecules on a surface, since this combination also 

allows the computation of decay times of the eigenmodes of the molecule on the surface, 

and a comparison between the modes of the molecule in vacuum or solution and the 

ones on the surface. Of course, the modes will contain contributions from both the 

molecule and the surface. But in many instances one can expect that the molecule and 

the surface are rather weakly coupled, and thus the individual modes will be dominated 

by either the molecule or the surface. Figure 2 is a snapshot taken from such a 



MD-simulation, and shows the deformation of a C240 bucky-ball right after hitting a 

graphene monolayer [183].  

 

 

4. Procedures and examples 
 

Nearly all theoretical studies of structures of molecules on surfaces have taken place in 

close association with experiments. Important classes of molecules investigated have 

been e.g. amino acids, peptides, proteins, and large organic and organometallic 

molecules [47, 93, 143, 144]. In the appendix, we present a summary of many such 

examples in form of a table; we note that this list is far from exhaustive, however. 

 Optimal conformations of individual biomolecules and their multi-molecule patterns 

[46, 184] on many types of surfaces have been proposed, either taken directly from 

experiment, from short or moderately long MD simulations, or, more rarely, from global 

optimizations. Subsequent verification of their stabilities is usually restricted to a local 

optimization or relatively short molecular dynamics simulations starting from the 

proposed structure. In most instances, experimental data, within the resolution limits 

mentioned above, had already been available to guide the theoretical investigations by 

suggesting e.g. the overall shape of the molecule or the approximate arrangements of 

groups of molecules. The majority of these studies constitute "structure clarifications", 

where the goal is to show that the experimental measurements are consistent with a 

proposed structure and / or that the suggested structure is a likely outcome of the 

deposition route employed in the experiment. In fact, by now, it has become almost 

routine to add some kind of structure calculation to interpret experimental data; 

summaries of such instances going beyond those listed in the appendix can be found in a 

number of reviews [30, 39, 60, 130, 185-187]. In a number of studies, these kinds of 

calculations have been expanded to study in-depth the details of the interactions 

between the molecule and the surface, with the goal to explain the molecule-surface 

binding mechanism. 

 Figure 3 shows a generic flow diagram that contains all the elements of a 

multi-stage set-up that would allow us to derive the structures of molecules on surfaces a 

priori, based only on the information which type of molecules are to be adsorbed on 



which type of surface. Starting from the results of global and local optimizations of the 

individual molecule in vacuum and/or in a solvent, in a second step we either simulate the 

actual deposition process on the surface, randomly deposit the molecule(s) on the 

surface, or use chemical intuition to select specific surface locations for the molecule. 

The third stage consists of the global search for optimal conformations of the molecule on 

the surface, and for optimal patterns of many interacting molecules on the surface. The 

final step is the computation of the physical properties of these optimal configurations, in 

order to be able to compare them with experimental data and to analyze the physical and 

chemical reasons underlying the existence and particular features of the observed 

structures. Essentially all the studies discussed in this review follow at least some partial 

route of this flow diagram, but only very few are comprehensive enough to merit being 

classed as unbiased structure predictions.  

 At the two extremes lie the straightforward minimization of a single proposed 

structure candidate and the careful long MD simulation of the deposition process (often 

modeled in a multistage fashion following the flow diagram outlined in figure 3). In some 

instances, the latter procedure is general and comprehensive enough to be roughly 

equivalent to a true global optimization that would have predictive power regarding the 

outcome of the experiment without any prior experimental measurement available. 

Between these two extremes, we find MD simulations of varying lengths with empirical 

potentials, resulting in a number of (meta)stable structure candidates that could be 

re-optimized on ab initio level and compared with experimental data. However, the true 

prediction - in contrast to the verification of experimental data - of the feasible 

conformations and patterns of biomolecules on metal surfaces requires exhaustive global 

searches on highly complex landscapes, as discussed above. In the following, we will 

discuss some important features of the procedures commonly used for structure 

clarification and prediction, and mention some exemplary studies. 

 

 
4.1 Structure clarification 
 

The starting point, either directly or indirectly, of all the structure clarification studies is 

some experimental information about the structure of the molecule on the surface. 



Typically, this data is available with a resolution down to one, perhaps one half, 

nanometer, if at all. Combined with chemical information and intuition about the molecule 

- is the molecule rigid or flexible?, would we expect the formation of covalent bonds 

between (parts of) the molecule and the surface?, can the molecule form metal-organic 

complexes with individual metal atoms usually expected to be present on the surface?, 

etc. -, this is often sufficient to propose a candidate structure for the molecule or whole 

patterns of molecules on the surface. In this situation, the theoretical contribution 

commonly addresses the following issues: a) If the molecule is flexible, what is its actual 

shape, and does it differ from the shape in vacuum / solution / crystal? b) How is the 

molecule aligned / positioned / oriented with respect to the underlying surface? c) Does 

the surface reorganize due to the presence of the molecule? d) Is the proposed shape / 

positioning / arrangement pattern of the molecule(s) on the surface a stable 

configuration? 

 In the literature, we find a number of procedures, of increasing complexity, that are 

applied to answer these questions. Very frequently, one or a few positions and/or shapes 

of the molecule are constructed by hand and locally minimized with respect to energy, 

often on ab initio level. This is particularly common for rigid molecules where only one or 

two different shapes are feasible and only minor changes are expected upon placing the 

molecule onto the surface. An example of this very common procedure, called type A in 

the table in the appendix, is the formation of supramolecular islands of deprotonated 

1,3,5-tris(4-ethynylphenyl) benzene (ext-TEB) on Cu(111) [184]. Here, careful 

DFT-minimizations of individual molecules and multi-molecule arrangements in 

agreement with experimental observations were used to analyze and interpret the 

experimental data and to understand the types of bonding among the molecules and 

between the molecules and the surface. 

 An extension of this approach, called type B, uses the minimized candidates as 

starting points of additional relatively short MD-simulations, usually with an empirical 

potential, in order to verify the stability of the proposed structure. Examples of this type 

are more rare. For instance, there is the study of the surface immobilized peptide 

cecropin P1 (cCP1) on a self-assembled monolayer [124]. Here, two very different 

conformations in aqueous solution were used as starting points of MD-simulations, 

demonstrating the different behavior and stability of the deposited or tethered, 



respectively, protein, compared to its behavior in solution far away from the surface. 

 If the molecule exhibits a noticeable degree of flexibility, then systematically using 

approach A would force us to test an extremely large number of candidates. To avoid 

this, multistage procedures have been developed, with all the advantages and 

disadvantages associated with such methods: on the one hand, multistage methods 

constitute efficient divide-and-conquer approaches to sampling the configuration space 

of interest, but the price we often pay is a lack of proof that all relevant configurations 

have been considered. The most basic of these procedures, called type C in this review, 

consists of a pre-optimization of the shape of the individual molecule in vacuum or 

solution before placing the most promising pre-optimized polymorph of the molecule onto 

the surface at the location suggested by experiment, for the final optimization. An 

example using this type of procedure is the investigation of the role of van der Waals 

forces in the adsorption of PTCDA (3,4,9,10-perylene-tetracarboxylic-dianhydride) 

molecules on KBr [88]. Here, the authors used DFT and DFT+vdW energy minimizations 

to first pre-test a variety of adsorption sites, upon which careful high-accuracy 

minimizations followed, demonstrating the importance of the van der Waals term for the 

energy ranking of the binding sites and the diffusion barriers along selected displacement 

paths. 

 Closely related but more complex is procedure D, where the ab initio / high quality 

empirical potential (local) optimization of a random or e.g. protein-database based 

starting structure in vacuum (or implicit solvent) is followed by a second local optimization 

/ equilibration in solution via a short MD simulation using an empirical potential. Finally, 

the solution-equilibrated molecule is placed on top of the surface, usually together with 

the solution molecules, for the third minimization or local equilibration step. An example 

of this quite frequently applied procedure is the study of the adsorption orientation and 

conformation of myoglobin on rutile surfaces [127]. As a first step, the rutile surface was 

constructed, followed by the construction of the protonated state of the protein in solution. 

Keeping the protein rigid, parallel tempering Monte Carlo simulations were performed to 

determine a starting orientation of the protein on the surface. The configuration with the 

lowest energy was then used as starting point of the MD-simulations of the protein on the 

surface, where in addition the protein was immersed in a box of water molecules. It was 

found that depending on the type of rutile surface (001 or 110), the heme group of the 



protein was close or far away from the surface, respectively, demonstrating the 

importance of surface features in the adsorption of proteins. 

 

4.2 Structure prediction 
 

The multistage procedure type D presented in the previous subsection has already the 

potential to evolve into an unbiased global search procedure if the final minimization is 

replaced by very long MD simulation that can explore a representative sample of the full 

configuration space of the molecule-surface system. Of course, up to now such 

simulations cannot be performed on ab initio level, and thus one is often forced to add a 

further local optimization on ab initio level afterwards. Furthermore, one would want to 

also employ global optimization techniques during the first stages of the procedure, and 

use as many of the outcomes of the early stages as possible for starting points of the 

long MD simulations. Computational schedules that follow this route at least to some 

degree are denoted type E procedures in the table, while those that are fully global and 

unbiased would be a type F procedure when they are based on MD-simulations and type 

G if they do not involve MD simulations as part of the global optimization. Finally, there 

are investigations employing essentially one moderately long MD-simulation stage; these 

studies are summarized in the table as type H procedures.  

 An example of type E studies which only weakly rely on experimental structure 

information but are not yet fully global is the modeling of a 2D-molecular self-assembly of 

1,3,5-tris(4'-X-Y-phenyl) benzene molecules (X = H, Br; Y = mono, bi) on a Si:B surface 

[53]. In this study, the first step consists of a DFT-investigation of the individual 

molecules. Next, metadynamics simulations with empirical force fields are performed for 

single molecules on the surface, yielding elementary building blocks. From these, one 

constructs by hand two-dimensional lattices (presumably roughly in agreement with 

experimental images), which serve as starting points of long MD-simulations. Finally, the 

outcomes of the simulations are compared with the experiment, where one finds that the 

results of the simulations are in good agreement with what chemical intuition would 

suggest for the experimentally observed patterns. 

 We note that procedures F or G (and possibly already C, D or E) usually include a 

global optimization of the individual molecule in vacuum or solution. Such global 



structural optimizations of individual molecules without a surface have been frequently 

performed in the past for relatively small (< 50 atoms) isolated molecules in vacuum or in 

solution [152, 155, 184], where the latter one was often modeled as an effective medium 

[188]. For small systems like e.g. inorganic [81] or intermetallic [158] clusters in vacuum, 

such searches could be performed on the ab initio energy level [156], but for larger ones, 

empirical potentials were employed, often combined with ab initio local optimizations 

[189]. In contrast, no single-step global optimization studies of individual biomolecules or 

groups of such molecules on surfaces have been performed so far; the closest to this 

ideal case are studies where multi-stage procedures of types F or G have been 

employed. One problem is that the computational effort needed to perform a global 

optimization even of a small molecule on a surface on ab initio level (for both molecule 

and surface!) is prohibitively high. Thus the situation for molecule + surface systems is 

comparable to the one in crystal structure prediction twenty years ago when empirical 

potentials were used for the global search followed by a local ab initio minimization of all 

candidate structures found.  

 Nevertheless, there are some studies following the procedure type F, which could 

be considered global searches. Such a case is the exploration of the 

statherin-hydroxyapatite system [190]. The procedure used in this study takes its 

inspiration from the prediction of protein docking and folding in solvent or vacuum, i.e. it is 

an analogous algorithm for docking and folding of proteins on surfaces. This algorithm 

folds a peptide from a fully extended conformation to a solution- and an adsorbed-state 

structure, and repeats this procedure ca. 105 times, yielding an ensemble of protein + 

substrate structure candidates, from which the ones with the lowest energies are 

selected for a further analysis and comparison with experiment. One finds that large 

scale features of the molecule in solution and on the surface are predicted reasonably 

well. 

 We will close this section with an example of a recent global optimization following 

procedure G, where no molecular dynamics simulations have been involved, addressing 

the structure prediction of small sugar molecules on a variety of noble metal surfaces 

[191]. First, the most representative energy minimum conformations of a single molecule 

on the surface were determined using a new robotics-inspired stochastic method for 

global optimization [192]. An empirical potential was used at this level for the energy 



computations. Figure 4 shows some low-lying minimum configurations representing 

major basins on the energy landscape of an individual sucrose molecule on a Cu(111) 

surface. Then, ab initio local optimizations of the molecule on the surface were performed 

to improve the quality of the identified conformations. Finally, the self-organization of 

groups of these molecules on the surface was analyzed using a certain variant of basin 

hopping simulated annealing (implemented in G42+ [193]). These global optimizations 

identified stable low-energy structures (such as the one shown in Figure 5) that 

qualitatively agree with experimentally observed STM images [194]. 

 

 
4.3 Structure explanation 
 
Structure clarification to assist the experiment and structure prediction to guide future 

experiments are important goals in the theoretical investigation of the structure of 

molecules on surfaces. Going beyond the issue of correctly assigning a structure model 

to a given molecule on a specific surface, we would like to also explain the mechanism 

underlying the structure formation in the molecule+surface system. Obtaining such an 

explanation would allow us to understand details of the observed structures and of the 

experimental measurements, and thus guide us in the choice of interesting new systems 

to explore. 

 However, a major concern regarding the explanatory power of calculations 

clarifying and predicting such structures is the choice and quality of the energy function 

employed. The empirical potentials usually used for the MD-simulations are inherently 

limited in this respect, even though specially fitted interaction potentials can often 

generate structures that agree with experiment quite well. But in particular when trying to 

identify the dominating interactions among molecules, between molecule and solvent, 

and between molecule and surface, we must employ ab initio energy calculations. In this 

subsection, we summarize a couple of examples, where such an analysis has been 

performed. 

 A system frequently studied is benzene on metal surfaces. For instance, let us 

consider a density functional theory study [195] using the generalized gradient 

approximation (GGA) and the Perdew-Wang exchange-correlation functional to 



investigate benzene on a Pt(111) surface. The authors concluded that the most favorable 

arrangement places the aromatic ring on bridge sites parallel to the surface. In this 

conformation, the molecule is slightly distorted such that it can form six C-Pt bonds with 

four Pt-atoms at the surface. This contrasts with the alternative, a placement on a hollow 

site, where six C-Pt bonds are formed but only with three Pt atoms.  

 Decomposing the adsorption energy into the most important contributions leads to 

three terms. Two of these must be paid for, i.e. they raise the overall energy of the 

system: the distortion energy of the molecule relative to the conformation in the gas 

phase, and similarly the distortion energy of the surface compared to the unperturbed 

surface. These terms are balanced by the interaction energy of the distorted molecule 

with the distorted surface, which stabilizes the adsorbed molecule on the surface. The 

distortion energy is considerably larger on the bridge site (1.51 eV) than on the hollow 

site (0.87 eV), and the distortion energy of the surface is approximately the same (0.33 

eV vs. 0.35 eV). We note that this surface distortion contribution is more important for 

larger aromatic molecules, such as naphthalene and anthracene, than for benzene. But 

this energy price is worth paying: the gain in interaction energy equals 2.74 eV for the 

bridge site, in contrast to only 1.90 eV for the hollow site. The distortion of the molecule 

also affects its HOMO-LUMO gap, which changes from 5.06 eV in the gas phase to 3.94 

eV on the surface, and, of course, leads to a redistribution of the electron density 

depleting the π and π* molecular orbitals. 

 We can contrast this with another study of benzene on a Cu(110) surface [196], 

where the authors include explicit van der Waals interaction terms in addition to their DFT 

energy (GGA and PBE exchange-correlation functional). These calculations show again 

a planar arrangement of the benzene molecule on the metal surface for the optimal 

configuration. The effect of the van der Waals term barely reduces the distance between 

the chemisorbed benzene and the surface from 2.43 Å to 2.35 Å, indicating that the partly 

metallic character of the benzene-metal interaction is not strongly affected by the 

introduction of the van der Waals interaction. A quantitative analysis shows that the 

chemical interaction between molecule and surface increases. This effect is not large for 

benzene, but it becomes quite significant for N-substituted ring molecules such as 

pyridine and pyrazine. For these molecules, the molecule-surface distance also changes 

considerably from 2.98 Å to 2.43 Å for pyridine, and from 2.99 Å to 2.59 Å for pyrazine, 



respectively. This leads to an increase of the metallic character of the molecule-surface 

bond and thus changes the character of the adsorption from physisorption to 

chemisorption in the case of pyridine and pyrazine. 

 A second popular system is fullerene on metal surfaces. In a study of C60 located 

on top of a surface atom for a Au(111) and Ag(100) surface [197], DFT calculations with 

the LDA exchange-correlation functional were performed, in order to investigate the 

C60-surface bonding and the charge transfer involved. It is found that the charge 

transferred from Au(111) to C60 is very small, while it amounts to about 0.2 electrons for 

C60 on Ag(100). While in both cases one would speak of physisorption, it is clear that on 

Au(111) the bonding mechanism is a charge-neutral polarization, similar to what is 

usually modelled via e.g. van der Waals interactions, and the mechanism on Ag(100) is a 

combination of polarization and ionization. 

 Additional information has been gained from another DFT study [198] using GGA 

and a Becke-Perdew exchange-correlation functional, this time for C60 on a Cu(111) 

surface. Here, several positions of the fullerene molecule on the surface were compared, 

showing that several kinetically stable local minimum configurations exist. Regarding the 

bonding, the authors find a considerable charge transfer of about 0.5 electrons indicating 

that we are facing chemisorption in the case of C60 on copper, in contrast to the gold and 

silver substrates. However, we note that neither of these two investigations included 

energy terms that can model the charge localization or electron correlation effects with 

sufficient accuracy to decide which of the sites is the energetically preferred one. 

Furthermore, inclusion of such net-attractive terms might change the classification of the 

C60-Au- and the C60-Ag-surface interactions to chemisorption. 

 As a final example, we consider a study of the formation of a gadolinium - 

(4,1',4',1''-terphenyl-1,4''-dicarbolic acid) network on Cu(111) [199]. The ab initio DFT 

calculations were performed in the generalized gradient approximation for the PBE 

exchange-correlation functional. It was found that the presence of the surface increased 

the binding energy of the network by about 1.7 eV per molecule. The molecules are 

slightly tilted by about 5° with respect to a completely planar arrangement on the surface, 

and the carboxylic groups are rotated by about 45° to increase the amount of bonding 

between the Gd- and O-atoms. Furthermore, there is a large charge transfer between 

gadolinium atoms, terminal oxygen atoms and the surface. Using a Bader analysis, one 



finds that there is a positive charge of about +2.1 electrons associated with the Gd-atom, 

one of -1.1 electrons with each of the oxygen atoms, and a net value of about +0.9 

electrons transferred from the surface to the metal-organic assembly unit, respectively. 

Thus, the authors of the study conclude that there are strong ionic features controlling the 

optimal structure of the metal-organic network. 

 

4.4 Other interesting non-standard studies 
 

One type of theoretical structure investigations that is very common in the case of solid 

state chemistry is the so-called structure determination. Here, important structural 

information is available, such as the unit cell parameters and the unit cell content, and 

perhaps even a powder diffractogram of the sample, but the positions of the atoms inside 

the cell are unknown. Combining this experimental information and global optimizations 

that minimize the energy or a combination of energy and similarity between measured 

and computed structure factors, one can determine the unknown structure with high 

probability. Such a type of study is very rare in the molecule-on-surface system, but might 

occur more often in the future with improvements of e.g. computed and measured 

STM-images that could be combined to deduce the atom positions in the molecule 

directly with high confidence.  

 An example is the study of conformational changes of Cu-tetra-3,5-di-terbutyl- 

phenyl porphyrin molecules on Cu(211) [200]. Using the elastic scattering quantum 

chemistry technique for the energy calculation and the sum of the energy and the 

"difference between computed and experimentally observed STM-images" as the cost 

function of the global optimization (a so-called Pareto-optimization), the authors could 

show that two slightly different STM-images could be associated with an ON and OFF 

state of the molecule, which were characterized by the orientation of one of the legs in 

the porphyrin molecule. 

 While many of the studies mentioned in this review have modeled the adsorption 

process from solution, at least to some degree, only few theoretical studies of some 

aspects of the deposition/adsorption process during ion-soft landing have been 

performed [201]. These include the collision of cytochrome C with a Cu(100) substrate 

[143], the adsorption and self-assembly of pyrene-polyethylene on graphene [144], 



deposition of tripetide on rutile surfaces [145], and the adsorption and patterning of 

DNA-bases on Au(111) [146, 147]. Other interesting studies deal with the dynamics of 

cytochrome C on Au [148], and the RNA adsorption on SAMs [149].  

 Finally, we present an example where steered MD is used to show that different 

DNA-bases can be identified by moving a DNA-fragment through a graphene nanopore, 

essentially associating each base-nanopore interaction with a kind of energy barrier [27]. 

To do so, the molecule was placed close to the nanopore and solvated in a box of water. 

Next, a harmonic spring force was applied to one of the ends of the molecule, forcing it to 

move through the nanopore. Measuring the resistance force acting on the spring during 

the steered MD-simulation yielded characteristic force profiles that could be associated 

with the passage of specific bases (A, T, C, G, and 5-methylcytosine). 

 

 
5. Conclusion and outlook 
 

While most of the work on (bio)molecules on surfaces in the literature is concerned with 

experimental investigations, by now also a considerable oeuvre of theoretical studies 

exists. We can classify these studies according to the degree to which the simulation is 

guided by available experimental data. The vast majority of these studies deal with the 

clarification and interpretation of experimental measurements, thus complementing the 

experimental observations.  

 In principle, those computational procedures that go beyond local minimizations 

by employing MD-simulations would be capable of actually predicting the structures of 

molecules on surfaces without relying on experimental data, in analogy to the by now 

well-established prediction of crystal structures and molecular / cluster conformations in 

vacuum or in a solvent. But the computational efficiency of straightforward deterministic 

MD-simulations is usually not sufficient for this purpose.  

 Thus, it is encouraging that new fast global optimization techniques and energy 

landscape exploration methods are being developed that are dedicated to the unbiased 

structure prediction of molecules on surfaces. Similarly, established stochastic optimization 

algorithms are being adapted to address this exciting problem. Considering the state of the 

field described above, it appears that we are fast approaching a break-through point in the 



prediction of molecules on surfaces. Thus, we expect that within another five to ten years we 

will have reached the ability to predict the structures of molecules on surfaces with 

comparable success to that of crystal structure prediction today. 
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Appendix:  
 

Table 1: List of structure simulation studies of (bio)molecules on surfaces. "Molecule", 

"Solvent" and "Surface" characterize the system that is investigated in paper no. "Ref.". 

In a number of studies, the effects of different solvents and surfaces are compared, thus 

several solvents and surfaces are listed. "S/P" refer to whether the structure of single 

individual molecules (S) or whole structure patterns of many molecules (P), respectively, 

are investigated in the paper (for example, Y/N is short for Yes/No, with the first entry 

referring to single molecules and the second to whole patterns). "Type" denotes the 

simulation strategy according to the classification described in section four in the main 

text, and "Energy" indicates the kind of energy function(s) employed in the study; here, 

"emp." refers to any empirical potential. Finally, "Focus" informs about the main focus of 

the study, as far as the theoretical aspects are concerned. This list aims to give an 

overview over many typical studies in the field ordered by the name of the molecule 

involved, but it is far from exhaustive, of course. 

  



 



Molecule Surface Solv. S/P Ener. Type Focus Ref. 

Adenine Au(111) No Y/Y DFT, 
emp. 

E Conformations 
and aggregation 
patterns of the 
DNA-base as 
function of surface 
coverage 

146 

Adenine Au(111) No,  
H2O 

Y/Y DFT, 
emp. 

E Energetic and 
entropic aspects 
of conformations 
and monolayer 
structures of the 
DNA-base on Au 

147 

Alanine Ni(111) No Y/Y DFT, 
emp. 

D Structure of 
alanine adsorbed 
on Ni surface 

202 

L-Alanine-L-gl
utamic acid 
dipeptide 
(ALA-GLU) 

TiO2 rutile H2O Y/N emp. 
 

C Identification of 
contact points of 
adsorbed 
dipeptide on rutile 
for different 
conformations 

122 

L-Alanine-L-ly
sine dipeptide 
(ALA-LYS) 

TiO2 rutile H2O Y/N emp. C Identification of 
contact points of 
adsorbed 
dipeptide on rutile 
for different 
conformations 

122 

4-Alkoxybenzo
ic acids 
(4-ABA) 

HOPG 
(graphite) 

No, 
1-oct
anoic 
acid 

Y/Y by 
hand 

A Self-assembly at 
the liquid-solid 
interface 
dependent on 
substrate / solvent 

76 

Amino acids 
(Asp, Glu, Arg, 
Lys, His, Phe, 
Trp, Asn, 
CysH, Gln, 
Ser, Thr, Ala, 
Gly, Ile, Leu, 
Met, Pro, Val) 

Au(111) No Y/N emp. D Testing force field 
design by 
computing binding 
energies and 
optimal structures 
of capped amino 
acids on Au 

107 



Amino acids 
(Asp, Glu, Arg, 
Lys, His, Phe, 
Trp, Asn, Cys, 
Gln, Ser, Thr, 
Ala, Gly, Ile, 
Leu, Met, Pro, 
Val,Tyr) 

Au(111) No, 
H2O 

Y/N DFT, 
emp. 

E Comparison of 
amino acid 
conformations and 
orientations on 
Au(111) surface 

105 

Amyloid-beta 
peptide Aβ42 

Lipid 
membran
e 

H2O Y/N emp. 
 

D Interaction 
between peptide 
and membrane, 
with surface 
charge and lipid 
tail type being 
crucial for 
transmembrane 
stability 

203 

Models of  
amyloidogenic 
peptides 

implicit 
surface 

implic
it 

N/Y emp. H Dependence of 
growth features of 
the oligomers on 
the systems 
surface/bulk ratio 

32 

Angiotensin I 
(DRVYIHPFH
L), 
Angiotensin II 
(DRVYIHPF) 

Au(111) No Y/Y emp. D Determination of 
conformations of 
individual 
molecules via 
simulations of 
soft-landing + 
relaxation of 
single molecules, 
and stability 
analysis of 
multi-molecule 
patterns 

58 

Anthracene 
 

Pt(111), 
Rh(111) 

No Y/N DFT A Comparison of the 
effect of different 
locations of the 
aromatic rings in 
flat adsorption 
conformations of 
anthracene on 
metal surfaces 

195 



Arginine-glycin
e-aspartic acid 
tripeptide 
(RGD) 

TiO2 rutile H2O Y/N emp. D Dynamics and 
adsorption of 
RGD with 
electrostatic 
interactions 
between charged  
peptide regions 
and substrate 

145 

Aspartic acid Calcite 
crystal 
with 
surface 
kinks 

H2O Y/N emp. D Dependence of 
the amino acid's 
conformations and 
dynamics on the 
surface features 

99 

BBA protein: 
mixed α/β; 
PDB-ID: 1FME 

Graphen
e 

H2O Y/N emp. D Effect of graphene 
surface on 
structure of 
adsorbed protein 

123 

Benzene Ni(111) No Y/Y DFT, 
emp. 

D Structure of 
benzene 
adsorbed on Ni 
surface 

202 

Benzene Cu(110) No Y/N DFT A Role of van der 
Waals interactions 
for a flat 
adsorption 
geometry of 
benzene 

196 

Benzene 
 

Pt(111), 
Rh(111) 

No Y/N DFT A Comparison of the 
effect of different 
locations of the 
aromatic rings in 
flat adsorption 
conformations of 
benzene on metal 
surfaces 

195 

Bisphenol-A-p
olycarbonate 
(BPA-PC) 
 

Ni(111) No Y/Y DFT, 
emp. 

D Structure of 
adsorbed BPA-PC 
and interplay of 
adsorption 
energies and 
conformational 
entropy 

202 

n-Butane Mg,Al,Cu, 
Ru,Ag,Pt, 
Au 

No Y/N DFT A Dependence of 
conformations on 
type of metal 
surface 

142 



Cecropin P1 
(cCP1) 
peptide: 
SWLSKTAKK
LENSAKKRIS
EGIAIAIQGGP
R 

Silane-ty
pe SAM 

H2O, 
TFE+ 
H2O 

Y/N emp. B Stability analysis 
for two different 
conformations of 
cCP1 on the 
self-assembled 
monolayer surface 
in H2O vs. in TFE/ 
H2O-mixture 

124 

Collagen 
segment 
(2KLW) 

TiO2 rutile 
(110) with 
step 
defects 

H2O Y/N emp. D Adsorption 
mechanisms for 
collagen on a 
hydrated defective 
rutile surface 

204 

Collagen 
molecules 
(simplified 
model) 

implicit 
surface 

implic
it 

Y/Y emp. H Elucidation of the 
interactions that 
govern the 
self-assembly of 
collagen type 
molecules on a 
substrate 
(modeled as 
implicit surface) 

62 

Cytochrome C 
(Cyt C) 

Cu(100) No Y/N emp. D Simulation of the 
landing process 
and relaxation of 
the unfolded 
protein Cyt C 

143 

Cytochrome C 
(Cyt C) 

Cu(001), 
Au(111), 
BN on 
Rh(111) 

No Y/N emp. H Simulation of 
folding process 
conformations on 
surface in vacuum 

45 

Cytochrome C 
(Cyt C) 

Au(111) H2O Y/N DFT,
emp. 

E Influence of 
structure and 
dynamics of Cyt C 
on the protein's 
redox-potential 

148 

Cytosine Au(111) No Y/Y DFT,
emp. 

E Conformations 
and aggregation 
patterns of the 
DNA-base as 
function of surface 
coverage 

146 



Cytosine Au(111) No, 
H2O 

Y/Y DFT,
emp. 

E Energetic and 
entropic aspects 
of conformations 
and monolayer 
structures of the 
DNA-base on Au 

147 

Dibenzo-24-cr
own-8-alkali 
complexes 
(Cs+, Na+, H+) 

Cu(100) No Y/N DFT A Adsorption 
geometry as 
function of alkali 
cation 

59 

Dichloropheno
xyacetic acid - 
Ca2+ complex 

Montmo- 
rillonite 

H2O, 
No 

Y/N DFT D Comparison 
between sorption 
on dry and 
hydrated clay 
surface and 
intercalation 
between layers 

205 

Diethynyl-anth
racene 
(DEAN) 

Cu(111) No Y/N DFT A Self-assembly 
based on weak 
directional 
inter-molecular 
interactions - ionic 
hydrogen bonding 
- and strong 
surface-anchoring 

184 

Dinapthalenyl-
benzene 
(DNYB) 
 

Cu(110), 
Au(111) 

No Y/Y DFT A Influence of the 
metal surface on 
the on-surface 
self-assembly of 
DNYB 

206 

Di(tert-butyl)te
rphenyl 
(DTBT) 
 

Cu(110), 
Au(111) 

No Y/Y DFT A Influence of the 
tert-butyl group 
and type of metal 
surface on the 
on-surface 
self-assembly of 
DTBT 

206 

Fibronectin 
(FN-III10) 

Hydroxy- 
apatite 
(001) with 
calcium 
vacancy 
defects 
(HAP) 

H2O Y/N emp. D Mechanism of 
conformational 
and orientational 
changes during 
the adsorption of 
fibronectin 
molecules on HAP 

207 



Fibronectin 
(FN-III7-10) 

Hydroxy- 
apatite 
(001) with 
calcium 
vacancy 
defects 
(HAP) 

H2O Y/N emp. D Mechanism of 
conformational 
and orientational 
changes during 
the adsorption of 
fibronectin 
molecules on HAP 

207 

Fullerene C60 Au(111), 
Ag(100) 

No Y/N DFT A Comparison of C60 
substrate bonding 
and charge 
transfer on noble 
metal surfaces 

197 

Fullerene C60 Cu(111) No Y/N DFT A Adsorption 
geometries of C60 
molecules on 
Cu(111) including 
their orientation 

198 

Glycyl-glycyl-h
istidine 
(Gly-Gly-His) 
peptide 

Au(111) H2O Y/N emp. D Mechanism of 
adsorption of 
peptide on Au 
surface 

106 

Glycyl-histidin
e (Gly-His) 
peptide 

Au(111) H2O Y/N emp. D Mechanism of 
adsorption of 
peptide on Au 
surface 

106 

Glycyl-histidin
e-glycine 
(Gly-His-Gly) 
peptide 

Au(111) H2O Y/N emp. D Mechanism of 
adsorption of 
peptide on Au 
surface 

106 

Glycine4-Glyci
ne-Glycine4 
peptide 

Alkanethi
ol SAM 
on gold, 
oligoethyl
ene oxide 
SAM 

H2O 
with 
Na/Cl 
ions 

Y/N emp. D Testing force 
fields for 
description of 
peptide adsorption 

102 

Glycine4-Lysin
e-Glycine4 
peptide 

Alkanethi
ol SAM 
on gold, 
oligoethyl
ene oxide 
SAM 

H2O 
with 
Na/Cl 
ions 

Y/N emp. D Testing force 
fields for 
description of 
peptide adsorption 

102 

Guanine Au(111) No Y/Y DFT, 
emp. 

E Conformations 
and aggregation 
patterns of the 
DNA-base as 
function of surface 
coverage 

146 



Guanine Au(111) No, 
H2O 

Y/Y DFT, 
emp. 

E Energetic and 
entropic aspects 
of conformations 
and monolayer 
structures of the 
DNA-base on Au 

147 

Histidine (Hys) Au(111) H2O Y/N emp. D Mechanism of 
adsorption of 
peptide on Au 
surface 

106 

λ-repressor: 
α-helices;  
PDB-ID: 1LMB 

Graphen
e 

H2O Y/N emp. D Effect of graphene 
surface on 
structure of 
adsorbed protein 

123 

Mannose 
 

Calcite 
(10.4) 
surface 

H2O, 
No 

Y/N emp. E Computation of 
the entropy of 
adsorption via 
thermodynamic 
integration from 
solvent-free 
system to system 
with solvent 

208 

Methanoic 
acid 

Calcite 
(10.4) 
surface 

H2O, 
No 

Y/N emp. E Computation of 
the entropy of 
adsorption via 
thermodynamic 
integration from 
solvent-free 
system to system 
with solvent 

208 

Methylthiolate
CH3S 

Au(111) No Y/N DFT B Formation of 
superstructures in 
self-assembled 
monolayers of 
CH3S on Au 

209 

Myoglobin TiO2 rutile 
(110), 
(001) 

H2O Y/N emp. D Dependence of 
orientation and 
conformation of 
adsorbed 
myoglobin on type 
of rutile surface 

127 



Napthalene Pt(111), 
Rh(111) 

No Y/N DFT A Comparison of the 
effect of different 
locations of the 
aromatic rings in 
flat adsorption 
conformations of 
naphthalene on 
metal surfaces 

195 

p-Nitro-analine p-Nitro- 
analine 

Octa
nol, 
H2O 

Y/Y DFT, 
emp. 

D Ordering 
phenomena at the 
solid-liquid 
interface (e.g. 
hydration 
structures) in 
different solvents 

63 

Nitronaphthale
ne (NN) 

Au(111) NO Y/Y DFT, 
emp. 

B Influence of 
hydrogen bonds 
and electrostatic 
(repulsive) forces 
on self-assembly 

210 

Oligoyne 
derivatives 
with six 
acetylene 
units 

Au(111) No Y/N DFT A Structure and 
electron density 
map of molecule 
in gas phase 
(representing soft- 
landed molecule) 

46 

Peptide 
AFILPTG 
(overall 
neutral) 

Na-silica H2O 
+ 
ions 

Y/N 
 

emp. H Prediction of 
adsorption of 
peptides on 
various silica 
surfaces as 
function of pH and 
particle size 

211 

Peptide A3 
(AYSSGAPPM
PPF) 

Pt(111) H2O Y/N emp. D Identification of a 
molecular level 
mechanism for 
peptide adsorption 
for uncharged 
surfaces 

121 

Peptide A3 
(AYSSGAPPM
PPF) 

Au-nano- 
particles: 
Au(111) 
surfaces 

H2O Y/N emp. H Influence of the 
shape of the 
nano-particle 
surface on the 
adsorption 

104 



Peptide 
AYSSGAPPM
PPF (A3) 

Au nano- 
particle 

H2O Y/N emp. D Influence of the 
peptide's structure 
on hydrated Au 
nano-particles of 
different sizes 

212 

Peptide 
FLG-Na3 
(DYKDDDDK - 
3 Na+) 

Au-nano- 
particles: 
Au(111) 
surfaces 

H2O Y/N emp. H Influence of the 
shape of the 
nano-particle 
surface on the 
adsorption 

104 

Peptide 
EQLGVRKEL
RGV (AgBP2) 

Ag(111), 
Au(111) 

H2O Y/N emp. H Comparison of 
peptide adsorption 
on Ag and Au 
surfaces including 
solvent and 
surface 
contributions to 
free energies and 
binding energies 

119 

Peptide 
Gly2-Lys-Gly2-
Lys-Gly2-His6 

Ni,Cu,Au 
(100) 

H2O Y/N emp. C Strength of the 
interactions 
between peptide 
and metal surface, 
and their effect on 
adsorption 
geometries 

129 

Peptide 
GNNQQNY 
(part of yeast 
prion Sup35) 

Paraffin-li
ke(hydro
phobic), 
silica-like 
(hydrophil
ic) model 
surfaces 

H2O N/Y emp. D Influence of water 
surface interaction 
on the structure of 
the peptides and 
their degree of 
self-aggregation 

213 

Peptide 
KLPGWSG 
(positively 
charged) 

Na-silica H2O 
+ 
ions 

Y/N emp. H Prediction of 
adsorption of 
peptides on 
various silica 
surfaces as 
function of pH and 
particle size 

211 

Peptide 
LDHSLHS 
(negatively 
charged) 

Na-silica H2O 
+ 
ions 

Y/N emp. H Prediction of 
adsorption of 
peptides on 
various silica 
surfaces as 
function of pH and 
particle size 

211 



Peptide LE10 Lipidic 
bilayers 

H2O N/Y emp. D Interaction of the 
peptide with the 
membrane, in 
particular via 
electrostatic 
interactions 

52 

Peptide 
NFGAIL (part 
of islet amyloid 
peptide) 

Paraffin-li
ke(hydro
phobic), 
silica-like 
(hydrophil
ic) model 
surfaces 

H2O N/Y emp. D Influence of water 
surface interaction 
on the structure of 
the peptides and 
their degree of 
self-aggregation 

213 

Peptide 
SD152 

Pt(111) H2O Y/N emp. D Identification of a 
molecular level 
mechanism for 
peptide adsorption 
for uncharged 
surfaces 

121 

Peptide Ser12 
(SSSSSSSSS
SSS) 

Au-nano- 
particles: 
Au(111) 
surfaces 

H2O Y/N emp. H Influence of the 
shape of the 
nano-particle 
surface on the 
adsorption 

104 

Peptide 
TGIFKSARAM
RN (AgBP1) 

Ag(111), 
Au(111) 

H2O Y/N emp. H Comparison of 
peptide adsorption 
on Ag and Au 
surfaces including 
solvent and 
surface 
contributions to 
free energies and 
binding energies 

119 

Peptide  
WAGAKRLVL
RRE (AuBP1) 

Ag(111), 
Au(111) 

H2O Y/N emp. H Comparison of 
peptide adsorption 
on Ag and Au 
surfaces including 
solvent and 
surface 
contributions to 
free energies and 
binding energies 

119 



Peptide 
WALRRSIRR
QSY (AuBP2) 

Ag(111), 
Au(111) 

H2O Y/N emp. H Comparison of 
peptide adsorption 
on Ag and Au 
surfaces including 
solvent and 
surface 
contributions to 
free energies and 
binding energies 

119 

Peptide Tyr12 
(YYYYYYYYY
YYY) 

Au-nano- 
particles: 
Au(111) 
surfaces 

H2O Y/N emp. H Influence of the 
shape of the 
nano-particle 
surface on the 
adsorption 

104 

Peptide 
fragments of 
the nerve 
growth factor, 
NGF(1-14), 
and of the 
brain derived 
neurotrophic 
factor, 
BDNF(1-12) 

Au2O3 H2O Y/Y emp. D Conformations, 
orientations, and 
aggregates of 
individual peptide 
fragments and of 
the homo- and 
hetero-dimers of 
the peptide 
fragments, and 
mechanisms of 
adsorption of the 
polypeptides 

126 

Perylene-tetra
carboxylic-dia
nhydride 
(PTCDA) 

KBr(001) No Y/N DFT C Importance of van 
der Waals forces 
in controlling 
diffusion and 
adsorption 

88 

Phenanthrene Pt(111), 
Rh(111) 

No Y/N DFT A Comparison of the 
effect of different 
locations of the 
aromatic rings in 
flat adsorption 
conformations of 
phenanthrene on 
metal surfaces 

195 

Phenylalanine Ni(111) No Y/Y DFT, 
emp. 

D Structure of 
phenylalanine 
adsorbed on Ni 
surface 

202 



Polybrominate
d diphenyl  
ether (PBDE) 
congeners: 
BDE 15, BDE 
28, BDE 47, 
BDE 99, BDE 
153, BDE 154, 
BDE 183, BDE 
194, BDE 209  
 

Graphen
e 

H2O Y/N DFT, 
emp. 

B Interaction 
between PBDE 
and graphene 
during adsorption, 
and the effect of 
bromination on 
the adsorption 
process 

92 

Polyethylene Mg,Al,Cu, 
Ru,Ag,Pt, 
Au 

No Y/N DFT A Dependence of 
conformations on 
type of metal 
surface 

142 

Polytetrafluoro
ethylene 
(PTFE) 

Al2O3 for 
different 
surface 
atoms: F, 
OH, Al 

No Y/Y emp. H Structure and 
formation of a 
PTFE transfer film 
between an 
Al2O3-surface and 
a PTFE crystal 

214 

Protein 
CALNNGKGA
LVPRGSKGT
AK, 
with/without 
Bis(sulfosucci
niimidyl)suber
ate (BS3) 
linker 

Peptide 
SAM 
nano-part
icle 

No Y/N emp. B Influence of the 
linker molecule on 
the size of the 
space of molecule 
conformations 
accessible to the 
peptide on the 
surface 

215 

Pyrazine 
C4N2H4 

Cu(110) No Y/N DFT A Role of nitrogen 
heteroatom and 
van der Waals 
interactions for a 
flat adsorption 
geometry of 
pyrazine 

196 

Pyrene-polyet
hylene glycol 
(Py-PEG9, 
Py-PEG45, 
Py-PEG113) 

Graphen
e 

H2O / 
No 

Y/N emp. D Dynamics of 
adsorption on 
graphene, and 
analysis of the 
influence of the 
solvent on the 
process 

144 



Pyridine 
C5NH5 
 

Cu(110) No Y/N DFT A Role of nitrogen 
heteroatom and 
van der Waals 
interactions for a 
flat adsorption 
geometry of 
pyridine 

196 

Ribonuclease 
A (RNase A) 

SAMs: 
HS(CH2)1

0COOH, 
HS(CH2)1

0NH2 

H2O Y/N emp. E Dependence of 
orientation and 
conformation of 
adsorbed RNase 
A on the charge of 
the surface 

149 

[2]Rotaxane Au(111) No Y/Y DFT, 
emp. 

D Structure and 
properties of 
disulfide tethered 
rotaxane 
self-assembled 
monolayers on Au 
surfaces 

125 

Statherin Hydroxy- 
apatite 
crystal 

implic
it 

Y/N emp. F Approach to 
structure 
prediction of 
foldable proteins 
on surfaces 

190,
131 

Gd:Terphenyl 
-dicarboxylic 
acids 
(Gd-TDA) 

Cu(111) No Y/Y DFT A Rationalization of 
supramolecular 
networks 

199 

Cu-Tetra-3,5 
di-ter-butyl-ph
enyl porphyrin 
(Cu-TBPP) 

Cu(211) No Y/N DFT 
+  
expe
rime
ntal 
data 

A Orientation and 
intramolecular 
conformation of 
Cu-TBPP on 
Cu-surface via 
combining DFT + 
experimental data 
 

200 



Tetrafluoro- 
tetracyanoquin
odimethane 
(F4-TCNQ) 

Cu(111) No Y/N DFT A Explanation of the 
interfacial 
electronic 
structure by a 
combination of 
bidirectional 
charge transfer 
between molecule 
and metal and 
geometric 
distortions of the 
molecule 

216 

Thymine Au(111) No Y/Y DFT, 
emp. 

E Conformations 
and aggregation 
patterns of the 
DNA-base as 
function of surface 
coverage 

146 

Thymine Au(111) No, 
H2O 

Y/Y DFT, 
emp. 

E Energetic and 
entropic aspects 
of conformations 
and monolayer 
structures of the 
DNA-base on Au 

147 

Tri-peptides 
(8000 different 
combinations 
of 20 amino 
acids) 

No H2O N/Y emp. F Development of a 
set of design rules 
for 
self-assembling 
sequences via 
joint optimization 
of aggregation 
propensity and 
hydrophilicity 

115 

Tris(biphenyl) 
benzene 
(THBB) 

Si(111):B No Y/Y DFT, 
emp. 

E Energetics of 
different patterns 
of molecular 
lattices on 
passivated 
semiconductors 

53 

Tris(bromobip
henyl) 
benzene 
(TBBB) 

Si(111):B No Y/Y DFT, 
emp. 

E Energetics of 
different patterns 
of molecular 
lattices on 
passivated 
semiconductors 

53 



Tris(bromophe
nyl) benzene 
(TBB) 

Si(111):B No Y/Y DFT, 
emp. 

E Energetics of 
different patterns 
of molecular 
lattices on 
passivated 
semiconductors 

53 

Tris(ethynylph
enyl) benzene 
(Ext-TEB) 

Cu(111) No Y/N DFT A Self-assembly 
based on weak 
directional 
inter-molecular 
interactions - ionic 
hydrogen bonding 
- and strong 
surface-anchoring 

184 

Tris(phenyl) 
benzene 
(THB) 

Si(111):B No Y/Y DFT, 
emp. 

E Energetics of 
different patterns 
of molecular 
lattices on 
passivated 
semiconductors 

53 

Uranyl Kaolinite, 
orthoclas
e 

H2O Y/N emp. H Adsorption of 
uranyl on mineral 
surfaces 

128 

Uranyl 
carbonate 

Kaolinite, 
orthoclas
e 

H2O Y/N emp. H Adsorption of 
uranyl carbonate 
on mineral 
surfaces 

128 

Water (H2O) Ru(0001) 
(111) of 
Rh,Pd,Pt 
Cu,Ag,Au 

No Y/N DFT A Exploration of the 
binding mode of 
H2O during 
adsorption on a 
variety of metal 
surfaces 

217 

Water (H2O) Functio 
nalized Si 

H2O N/Y DFT H Influence of 
surface 
adsorbates on 
interfacial H2O on 
several nonpolar 
hydrophobic 
surfaces 

86 

WW domain: 
β-strands; 
PDB-ID: 1E0L 

Graphen
e 

H2O Y/N emp. D Effect of graphene 
surface on 
structure of 
adsorbed protein 

123 



 

  

Xyloglucan 
(several 
oligosaccharid
es consisting 
of three 
repeating 
units, with 
each unit 
consisting of 
four glucosyl 
type residues) 

Cellulose 
microfibril
s 

H2O Y/N emp. D Comparison of 
adsorption of 
various xyloglucan 
molecules on 
cellulose studying 
the effects of 
surface 
hydrophobicity 
and side-chain 
variation 

218 



Figure captions: 
 
 

Figure 1: Large molecules with conformational freedom on surfaces observed by 

scanning tunneling microscopy. (a) Unfolded proteins (cytochrome c) on a Cu(100) 

surface. Figure based on ref. [45]. (b) Self-assembled network of eight-aminoacid peptide 

angiotensin II molecules on a Au(111) surface. Figure based on ref. [58]. (c) Host-guest 

interaction of crown ether di-benzo-24-crown-8 with different central ions Cs+ and Na+ on 

a Cu(100) surface. Figure based on ref. [59]. 

 

Figure 2: C240-buckyball hitting a graphene surface, Note the deformation of the C240 

molecule and the dip on the graphene surface. Figure based on ref. [183].  

 

Figure 3: Generic flow diagram of the computational elements of a multi-stage procedure 

to predict the structures of molecules on surfaces, i.e. conformations of individual 

molecules and arrangement patterns of assemblies of molecules. The arrows indicate 

that the calculations in the next stage are assumed to be able to start from configurations 

derived in the previous stage. The theoretical studies discussed in this review usually 

include only some stages of the flow diagram, e.g. the investigation might start with a 

global optimization of the molecule in the solvent, followed by a deposition by hand on 

the surface, and finishes with a local optimization of the molecule's conformation on the 

surface. Alternatively, one might perform a local optimization of the single molecule in 

vacuum, which is then placed at random on the surface in vacuum, and globally 

optimized on the surface, followed by a local optimization of a chemically intuitive pattern 

of many molecules created by hand. Of course, the original starting point of all studies 

(not shown explicitly in the diagram) is the choice of the organic molecule or biomolecule 

that can usually be assumed to preserve its topology (the pattern of bonds) throughout 

the process, where its structure is taken from some database. Note that while most 

empirical potentials force the molecule's topology to remain unchanged during the 

simulations, global optimizations on ab initio level can lead to the break-up (or even 

merger) of molecules, in principle, although such a massive reconstruction of the 

molecule will only rarely occur.  

 



Figure 4: Four low-energy minima conformations belonging to different major basins on 

the energy landscape of an individual sucrose molecule on a Cu(111) surface. Colors: 

White = H-atom, red = O-atom, blue = C-atom, golden = Cu-atom. Starting point of the 

search was a sucrose molecule that had been optimized in vacuum (following the 

procedure described in ref. [153]) and then placed on the copper surface. The global 

optimization of the molecule on the surface allowed the variation of all dihedral angles 

and of the position and orientation of the molecule with respect to the Cu-surface. Figure 

based on ref. [191].  

 

Figure 5: Low-energy minimum structure pattern of many sucrose molecules on a 

Cu(111) surface, observed during global optimization using a basin-hopping simulated 

annealing type algorithm. Starting point of the global search were several molecules with 

the conformation shown in Figure 4a), which had been placed at random on the substrate 

inside a variable simulation box with periodic boundary conditions in the two dimensions 

parallel to the substrate surface. During the search, simulation cell parameters, and 

position and orientation of the sucrose molecules were allowed to vary. Note that the aim 

of this figure is to show the overall pattern observed as a result of the global optimization, 

not the atom-level structural details of how the sucrose molecules individually are 

positioned on the surface. Figure based on ref. [191]. 
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