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Some soft magnetic materials are strongly dependent of the temperature, because of their low Curie temperature. In order to predict their behavior in electrical devices, engineers need hysteresis models able to take into account the temperature. This paper is an attempt to take into account the temperature in an existing model of static hysteresis through its parameters. Variations of some parameters with temperature are issued or build thanks to the literature. At the end, all needed parameters have an analytical law versus temperature. Simulation results are compared to measurements and discussed.

I. INTRODUCTION

I N order to reduce the volume/mass of soft magnetic materials in electrical devices, there are most likely two main solutions: increase the "working" induction level B or the frequency f . The both solutions lead to increase the magnetic losses p mag of the device and consequently increase the temperature T , due to self heating. Moreover, soft magnetic materials that have a low Curie temperature T c are strongly dependent on the temperature and this behavior is highly non-linear. Thus, designers need models able to predict the magnetic behavior in a "large" temperature range (from 25 • C to T c ). In this aim, the authors of [START_REF] Raghunathan | Theoretical model of dependence of hysteresis based on mean field theory[END_REF], [START_REF] Messal | Temperature dependent extension of the jiles-atherton model: Study of the variation of microstructural hysteresis parameters[END_REF], used the static Jiles-Atherthon (JA) model with different parameter variation laws (analytical and/or numerical). Thanks to analytical laws [START_REF] Weiss | La constante du champ moléculaire. equation d'état magnétique et calorimétrie[END_REF] and optimization methods, a good compromise between the error levels and the monotony of the parameters is achieved in [START_REF] Messal | Thermal behavior of iron-nickel-chromium alloys and correlation with magnetic and physical properties -part a: Static effects modeling[END_REF]. Nevertheless, for complex induction b(t) waveforms, JA model generally fails to predict excitation field h(t) with accuracy due to several intrinsic, well detailed in [START_REF] Zirka | On physical aspects of the jiles-atherton hysteresis models[END_REF]. Engineers need, then, a reliable static hysteresis model able to take into account both complex inductions waveforms and the temperature influence on the magnetic material properties. To achieve this goal, an adaptation of an existing hysteresis model called Vector-Play Model (VPM) [START_REF] Bergqvist | Magnetic vector hysteresis model with dry friction-like pinning[END_REF] is proposed in this paper. We chose to test this approach on an alloy, named Phyterm260 commercialized by the APERAM company [7]. This alloy is normally dedicated to induction cookwares. It is a N i 50 F e bal Cr 9 alloy with a Curie temperature around 260 • C. The VPM has been tested and implemented in finite elements by many authors [START_REF] Franc ¸ois-Lavet | Vectorial incremental nonconservative consistent hysteresis model[END_REF], [START_REF] Henrotte | An energy-based vector hysteresis model for ferromagnetic materials[END_REF] and recently been improved in [START_REF] Bergqvist | Temperature-dependent vector hysteresis model for permanent magnets[END_REF] in the case of rotating fields. The same authors also proposed, in [START_REF] Lin | Improved vector play model and parameter identification for magnetic hysteresis materials[END_REF], a method where they considered, linear variations of saturation magnetization and coercive field to take into account the temperature for permanent magnets. In this paper, a brief reminder of the VPM is first presented in order to define some variables that will be used in the temperature dependent Paper sent on June 2015 for peer review Fabien Sixdenier, Alaa Hilal, Christian Martin, Marie-Ange Raulet and Riccardo Scorretti are working at Université de Lyon, Université Lyon 1, CNRS UMR5005 AMPERE, France, emails : fabien.sixdenier@univ-lyon1.fr, alaa.hilal@univ-lyon1.fr, christian.martin@univ-lyon1.fr, marieange.raulet@univ-lyon1.fr, Riccardo.Scorretti@univ-lyon1.fr Oualid Messal is working at Grenoble INP -UJF Grenoble 1 -CNRS UMR 5269 (G2Elab), France, email : oualid.messal@g2elab.grenoble-inp.fr corresponding author: Fabien Sixdenier extension. Then the temperature dependent extension is introduced associated to its parameters identification protocol for soft magnetic materials. Finally, the robustness of the model is tested with complex signals and temperatures that are not part of the identification protocol. The ability of the developed model to qualitatively retrieve the Hopkinson effect [START_REF] Hopkinson | Magnetic and other physical properties of iron at a high temperature[END_REF] is also tested. Simulations are compared to measurements that were performed on ring samples wound with high temperature enameled wires (placed in an oven) following the fluxmetric method with respect to the IEC 60404-4 standard [START_REF] Fausto | Characterization and Measurement of Magnetic Materials[END_REF].

II. VECTOR PLAY MODEL

A. Original Model

The evaluation of magnetization M from the applied field h is performed in two steps. First, the vector play operator h re has to be evaluated with [START_REF] Raghunathan | Theoretical model of dependence of hysteresis based on mean field theory[END_REF], with χ linked to the coercivity, h the applied field and h re0 the initial value of h re . In (1), the applied field h is decomposed into a reversible part h re and an irreversible part h ir . Fig 1 shows the vector diagram in each case. Then the magnetization M is calculated thanks to [START_REF] Messal | Temperature dependent extension of the jiles-atherton model: Study of the variation of microstructural hysteresis parameters[END_REF], where M an (h re ), is the anhysteretic curve and h re is the absolute value of h re .

h re = h re0 if|h -h re0 |< χ h -χ • h-hre0 |h-hre0| if|h -h re0 |≥ χ (1) 
χ h re = h re0 h h ir h re0 h re h χ |h ir | = χ h ir
M = M an (h re ) • h re /h re (2) 
Finally, the induction b is obtained by solving (3)

b = µ 0 • (h + M) (3) 
Qualitative interesting results for major loops are given by VPM, in this way. In order to improve the model accuracy, the magnetization M can be separated into several parts M k that have their own χ k . Each M k associated to χ k will now be called a cell. If ω k are the the fraction coefficients, then N k=1 ω k = 1 and ω k M ≡ M k are properties that have to be respected. For each cell, the first step is still valid and implies [START_REF] Messal | Thermal behavior of iron-nickel-chromium alloys and correlation with magnetic and physical properties -part a: Static effects modeling[END_REF].

h = h k re -h k ir ( 4 
)
Each cell is tested independently and each h k re depending on each χ k is calculated. Then the global magnetization M is calculated by [START_REF] Messal | Temperature dependent extension of the jiles-atherton model: Study of the variation of microstructural hysteresis parameters[END_REF] with

h re = N k=1 ω k h k re .

B. Parameters identification 1) Anhysteretic function

The model is vectorial and so able to deal with rotating fields or ellipsoidal fields, but it is generally easier to identify the parameters for alternating fields. In this paper, all the applied fields h are unidirectional, so the magnetic magnetization M is automatically in the same direction. The magnetization M is calculated thanks to [START_REF] Messal | Temperature dependent extension of the jiles-atherton model: Study of the variation of microstructural hysteresis parameters[END_REF], where M an (h re ), is the anhysteretic curve. Even if the model is phenomenological, it makes sense to use some functions and parameters from physics of ferromagnetism. In paramagnetic materials, M is generally estimated by the "Langevin" function [START_REF] Zirka | On physical aspects of the jiles-atherton hysteresis models[END_REF].

M = M s coth |H| a - a |H| • H |H| (5) 
M s is the saturation magnetization at a given temperature, H is a local magnetic field and a is a shape parameter. Let's also remember that a = k B T /(µ 0 m), with k B ≈ 1.38•10 -23 J/K, the Boltzmann constant, µ 0 = 4π •10 -7 H/m, the vacuum permeability and m the effective atomic magnetic moment. For ferromagnetic materials, the local magnetic field is assumed as H = h + αM, with α, the molecular field constant in the Weiss mean field theory [START_REF] Weiss | La constante du champ moléculaire. equation d'état magnétique et calorimétrie[END_REF]. It means that the applied field h in (1) has to be replaced by H. For a given temperature, three parameters (M s , α and m) have to be identified. This will be discussed in another section.

2) Cell separation As said earlier, the model accuracy can be improved if the magnetization M is separated into several parts that have their own χ k . The authors of [START_REF] Franc ¸ois-Lavet | Vectorial incremental nonconservative consistent hysteresis model[END_REF] have shown that the accuracy is improved by increasing the number of cells. However, a number of cells superior to 8 did not improve the accuracy significantly anymore. For these reasons, we chose 7 as a reasonable number of cells. The last cell should be reserved to represent an image of the coercive field H c (obtained on a major loop). In this case, χ last = H c . One can write M = N k=1 ω k M and χ k = p k H c (with 0 < p k < 1, a weight parameter). It makes sense to assume that χ 1 = 0 associated to ω 1 M, would represent the reversible magnetization (bending of Bloch walls). The different weights (ω k and p k ) can be identified thanks to the h coer (h peak ) [START_REF] Henrotte | An energy-based vector hysteresis model for ferromagnetic materials[END_REF] and M peak (h peak ) curves. These curves are traced by measuring symmetrical loops with increasing values of h peak (amplitude of applied field). The relative h coer (h peak ) and M peak (h peak ) curves look approximately the same (see Fig. 2 (left)) in the case of this material. The weights ω k and p k have to be adjusted in order to fit as best as possible the M peak (h coer ) curve (see Fig. 2 

III. TEMPERATURE DEPENDENT EXTENSION

All equations and principles of the model seen before remain valid, only some parameters will have their value changed. This section is devoted to find analytical/numerical relations of some parameters with temperature. All results of identification are reported in the table II.

A. Saturation Magnetization M s

As the saturation magnetization M s of a ferromagnetic material can be assumed to be function of the temperature T following the law (6) [START_REF] Weiss | La constante du champ moléculaire. equation d'état magnétique et calorimétrie[END_REF], with M s0 the magnetization at T = 0 K and T c the Curie temperature.

M s M s0 = tanh M s /M s0 T /T c (6) 
The value of M s , at a given temperature, is calculated with (6) and its value is used in [START_REF] Zirka | On physical aspects of the jiles-atherton hysteresis models[END_REF]. A few measured major loops at different temperatures in order to identify M s0 and T c with accuracy were necessary.

B. Molecular field constant α and effective atomic magnetic moment m

Anhysteretic curves extracted from measured major loops can be compared to those calculated by [START_REF] Zirka | On physical aspects of the jiles-atherton hysteresis models[END_REF] where both m and α are present in the equation. For a given temperature, the previous unknown M s in ( 5) is now calculated by [START_REF] Bergqvist | Magnetic vector hysteresis model with dry friction-like pinning[END_REF]. One has to identify m and α to minimize the error between the measured and simulated anhysteretic curves. Weiss showed, in [START_REF] Weiss | La constante du champ moléculaire. equation d'état magnétique et calorimétrie[END_REF], that the calculation of the energy of magnetization at T ≈ 0 K and at high temperatures with α = cte give values that agree with those deduced from measurements of specific heats of pure nickel element. He concluded that α was independent:

• of the applied field • of the temperature Thus, we assume in the following that α can be considered as constant in the whole range of temperature (0 < T < T c ). In [START_REF] Gersdorf | Ferromagnetic properties of fe and ni in relation to their band structure[END_REF] the effective atomic magnetic moment m is assumed to depend on temperature, volume and external magnetic field for temperatures close to T c . In the empirical model developed by the author, a constant of the main equation depends on the density of states of the 3d-electron bands. For engineering purposes, the needed data of this approach are mostly unavailable. Nevertheless, the author mentioned that far above the Curie point, m was "stable" with temperature but that the change in volume near the Curie point (spontaneous volume magnetostriction) was sufficiently enough to modify the "apparent" atomic magnetic moment. In [START_REF] Raghunathan | Theoretical model of dependence of hysteresis based on mean field theory[END_REF], the authors made the assumption that a showed an exponential decay with temperature such as a = a 0 exp -T /(γTc) (with a 0 the value of a at T = 0 K). With this assumption and knowing that a = k B T /(µ 0 m), one can identify m as (7).

m = k B T µ 0 a 0 exp T /(γTc) (7) 

C. Coercive field H c

As said earlier, χ k = p k H c , and the weight parameters p k are kept constant with temperature. One has just to identify the evolution of the coercive field H c with temperature and find an analytical law to represent its behavior. In [START_REF] Bergqvist | Temperature-dependent vector hysteresis model for permanent magnets[END_REF], the authors assumed linear dependance of H c versus temperature because the maximum temperature tested in their case was far above the Curie temperature of the permanent magnet tested (Sm 2 Co 17 , T max = 150 • C, T c ≈ 800 • C). As our need is to simulate the behavior of our magnetic material from 25 • C to Curie temperature , this approach can not be applied. In [START_REF] Raghunathan | Theoretical model of dependence of hysteresis based on mean field theory[END_REF], the authors chose an exponential decay with temperature of the parameter representing the coercive field [START_REF] Franc ¸ois-Lavet | Vectorial incremental nonconservative consistent hysteresis model[END_REF], with H c0 , the coercive field at T = 0 K and β the exponential decay coefficient.

H c = H c0 exp -T /(βTc) (8) 

D. Parameters evolution with temperature

This subsection resumes the parameters M s , m and α, evolution with temperature obtained with the protocol mentioned above. All the needed values mentioned in ( 6), ( 7) and ( 8) are reported in the table II. Fig. 3 shows the per unit variations of M s , m and H c versus temperature. One can see that the measured values of M s and H c are in good agreement with those calculated by ( 6) and ( 8) respectively. Fig. 3 also shows that the calculated atomic magnetic moment slowly increases for very low temperatures (linear dependance k B T /(µ 0 a 0 ) part) showing a "stable" value [START_REF] Gersdorf | Ferromagnetic properties of fe and ni in relation to their band structure[END_REF], then increases very fast when T > 200 K. We observed that simulated anhysteretic curves were very sensitive to m and α. We checked that, when m and α were fitted as free parameters, the obtained values were very close to the ones computed analytically, and the shape of the anhysteretic curves were not modified significantly: this justifies the use of the analytical expressions instead of a "brute force" numerical fit. IV. RESULTS

A. Major loops

Fig. 4 shows the measured and simulated major loops at different temperatures. The simulated hysteresis loops are globally in good agreement with the the measured ones. The L1 norm between the measured and simulated loops was 4.11 < < 8.73 % within the temperature range.

B. "Complex" signals and temperature

In order to test the model in "complex" conditions, the applied field waveform is as h(t) = 4 (sin (ωt) + sin (3ωt)). The model had no problem to simulate harmonics (closed small loops at the tips of each loop at a given temperature in Fig. 5) as it has already been shown in [START_REF] Franc ¸ois-Lavet | Vectorial incremental nonconservative consistent hysteresis model[END_REF] . However, the simulated levels of b, for the same h input, are not respected. First (2) is not a good approximation of the measured anhysteretic curve (for this material). Second, m, γ and α parameters have been identified thanks to major loops with an amplitude much higher than the test signals (ratio of 66). In Fig. 5 

C. Hopkinson effect

Fig. 6 shows the measured (m) and simulated (s) per unit magnetic permeability versus temperature. It can be seen that the shapes of the two curves are similar, but the measured curve is shifted on the high temperatures. The same behavior has been observed in Fig. 5, where after T = 160 • C, the loops start to shrink but slower in the case of the measured loops.

V. CONCLUSION

In this paper, a first attempt to take into account the temperature in an existing hysteresis model has been made. The purely magnetic behavior b(h) showed some errors for "complex" low amplitude signals. These errors could be explained by (5) used to approximate measured anhysteretic curves, which is known to be not so accurate. Accuracy might be improved by interpolating measured anhysteretic curves at different temperatures M an (h, T ), but this "black-box solution" will hide the physics of the model. However the Vector Play Model (VPM) showed no difficulties to adapt itself to the temperature dependence, by allowing some parameters to change their values. The thermal behavior is qualitatively well retrieved, loops expand or shrink ), have to be tested, in order to know if this approach can be generalized.
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 1 Fig. 1. Vector diagram for vector play operator in 2 cases: |h -h re0 |< χ (left) ; |h -h re0 |≥ χ (right)
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 3 Fig. 3. Per unit variations of Ms, m and Hc versus temperature ((m): measured values), (s): simulated values)
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 45 Fig. 4. Measured (m) and simulated (s) major loops at different temperatures
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 6 Fig.[START_REF] Bergqvist | Magnetic vector hysteresis model with dry friction-like pinning[END_REF]. Measured (m) and simulated (s) per unit magnetic permeability versus temperature

  (right)). Fig. 2. left figure: Measured per unit hcoer(h peak ) and M peak (h peak ) curves ; right figure: M peak (hcoer) measured (Mea) and simulated (Sim) curves After identification, the ω k and p k coefficients are shown in tableI. It is assumed, after this section, that all ω k and p k are independent of the temperature.
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TABLE I ω

 I k AND p k VALUES

	k	1	2	3	4	5	6	7
	ω k	0.1	0.2	0.15	0.1 0.15	0.15	0.15
	p k	0	0.1	0.3	0.5	0.6	0.7	1