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Abstract

Extremes play a special role in Anomaly Detec-
tion. Beyond inference and simulation purposes,
probabilistic tools borrowed from Extreme Value
Theory (EVT), such as the angular measure, can
also be used to design novel statistical learning
methods for Anomaly Detection/ranking. This
paper proposes a new algorithm based on mul-
tivariate EVT to learn how to rank observations
in a high dimensional space with respect to their
degree of ‘abnormality’. The procedure relies on
an original dimension-reduction technique in the
extreme domain that possibly produces a sparse
representation of multivariate extremes and al-
lows to gain insight into the dependence struc-
ture thereof, escaping the curse of dimensional-
ity. The representation output by the unsuper-
vised methodology we propose here can be com-
bined with any Anomaly Detection technique tai-
lored to non-extreme data. As it performs lin-
early with the dimension and almost linearly in
the data (in O(dn log n)), it fits to large scale
problems. The approach in this paper is novel in
that EVT has never been used in its multivariate
version in the field of Anomaly Detection. Illus-
trative experimental results provide strong empir-
ical evidence of the relevance of our approach.

1 Introduction

In an unsupervised framework, where the dataset consists
of a large number of normal data with a smaller unknown
number of anomalies, the ‘extreme’ observations are more
likely to be anomalies than the others. In a supervised or
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semi-supervised framework, when a dataset made of obser-
vations known to be normal is available, the most extreme
points delimit the outlying regions of the normal instances.
In both cases, extreme data are often in a boundary region
between normal and abnormal regions and deserve special
treatment.

This angle has been intensively exploited in the one-
dimensional setting ([17], [18], [5], [4], [13]), where mea-
surements are considered as ‘abnormal’ when they are re-
mote from central measures such as the mean or the me-
dian. Anomaly Detection (AD) then relies on tail analysis
of the variable of interest and naturally involves Extreme
Value Theory (EVT). Indeed, the latter builds parametric
representations for the tail of univariate distributions. In
contrast, to the best of our knowledge, multivariate EVT
has not been the subject of much attention in the field of
AD. Until now, the multivariate setup has been treated us-
ing univariate extreme value statistics, to be handled with
univariate EVT. A simple explanation is that multivariate
EVT models do not scale well with dimension: dimension-
ality creates difficulties for both model computation and as-
sessment, jeopardizing machine-learning applications. In
the present paper we fill this gap by proposing a statisti-
cal method which is able to learn a sparse ‘normal profile’
of multivariate extremes in relation with their (supposedly
unknown) dependence structure, and, as such, may be em-
ployed as an extension of any AD algorithm.

Since extreme observations typically constitute few per-
cents of the data, a classical AD algorithm would tend to
classify them as abnormal: it is not worth the risk (in terms
of ROC curve for instance) to try to be more precise in
such low probability regions without adapted tools. Thus,
new observations outside the observed support or close to
its boundary (larger than the largest observations) are most
often predicted as abnormal. However, in many applica-
tions (e.g. aircraft predictive maintenance), false positives
(i.e. false alarms) are very expensive, so that increasing pre-
cision in the extremal regions is of major interest. In such
a context, learning the structure of extremes allows to build
a ‘normal profile’ to be confronted with new extremal data.
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In a multivariate ‘Peaks-over-threshold’ setting, well-
documented in the literature (see Chapter 9 in [1] and
the references therein), one observes realizations of a d-
dimensional r.v. X = (X1, ..., Xd) and wants to learn
the conditional distribution of excesses, [ X | ‖X‖∞ ≥ u ]
with ‖X‖∞ = max1≤i≤d |Xi| (notice incidentally that the
present analysis could be extended to any other norm on
Rd), above some large threshold u. The dependence struc-
ture of such excesses is described via the distribution of
the ‘directions’ formed by the most extreme observations
- the so-called angular probability measure, which has no
natural parametric representation, which makes inference
more complex when d is large. However, in a wide range
of applications, one may expect the occurrence of two phe-
nomena: 1- Only a ‘small’ number of groups of compo-
nents may be concomitantly extreme (relatively to the total
number of groups 2d). 2- Each of these groups contains
a reduced number of coordinates (w.r.t.. the dimension d).
The main purpose of this paper is to propose a method for
the statistical recovery of such subsets, so as to reduce the
dimension of the problem and thus to learn a sparse rep-
resentation of extreme – not abnormal – observations. In
the case where hypothesis 2- is not fulfilled, such a sparse
‘normal profile’ can still be learned, but it then looses the
low dimensional property.

In an unsupervised setup - namely when data include un-
labeled anomalies - one runs the risk of fitting the ‘normal
profile’ on abnormal observations. It is therefore essen-
tial to control the complexity of the output, especially in a
multivariate setting where EVT does not impose any para-
metric form to the dependence structure. The method de-
veloped in this paper hence involves a non-parametric but
relatively coarse estimation scheme, which aims at identi-
fying low dimensional subspaces supporting extreme data.
As a consequence, this method is robust to outliers and also
applies when the training dataset contains a (small) propor-
tion of anomalies.

Most of classical AD algorithms provide more than a pre-
dictive label, abnormal vs. normal. They return a real
valued function, inducing a preorder/ranking on the input
space. Indeed, when confronted with massive data, be-
ing able to rank observations according to their supposed
degree of abnormality may significantly improve opera-
tional processes and allow for a prioritization of actions
to be taken, especially in situations where human exper-
tise required to check each observation is time-consuming
(e.g. fleet management). Choosing a threshold for the
ranking function yields a decision function delimiting nor-
mal regions from abnormal ones. The algorithm proposed
in this paper deals with this problem of anomaly rank-
ing and provides a ranking function (also termed a scor-
ing function) for extreme observations. This method is
complementary to other AD algorithms in the sense that
a standard AD scoring function may be learned using the

‘non extreme’ (below threshold) observations of a dataset,
while ‘extreme’ (above threshold) data are used to learn
an extreme scoring function. Experiments on classical AD
datasets show a significant performance improvement in
terms of precision-recall curve, while preserving undiluted
ROC curves. As expected, the precision of the standard
AD algorithm is improved in extremal regions, since the
algorithm ‘takes the risk’ not to consider systematically as
abnormal the extremal regions, and to adapt to the specific
structure of extremes instead. These improvements may
typically be useful in applications where the cost of false
positives (i.e. false alarms) is very expensive.

The structure of the paper is as follows. The algorithm is
presented in Section 2. In Section 3, the whys and where-
fores of EVT connected to the present analysis are recalled
before a rationale behind the estimation involved by the al-
gorithm. Experiments on both simulated and real datasets
are performed respectively in Section 4 and 5.

2 A dependence-based AD algorithm

The purpose of the algorithm presented below is to rank
multivariate extreme observations, based on their depen-
dence structure. The present section details the algorithm
and provides the heuristic of the mechanism at work, which
can be understood without knowledge of EVT. A theoret-
ical justification which does rely on EVT is given in Sec-
tion 3. The underlying assumption is that an observation
is potentially abnormal if its ‘direction’ (after a standard-
ization of each marginal) is special regarding to the other
extreme observations. In other words, if it does not belong
to the (sparse) support of extremes. Based on this intuition,
a scoring function is built to compare the degree of abnor-
mality of extreme observations.

Let X1, . . . . ,Xn i .i .d . random variables in Rd with joint
(resp. marginal) distribution F (resp. Fj , j = 1, . . . , d).
Marginal standardization is a natural first step when study-
ing the dependence structure in a multivariate setting. The
choice of standard Pareto margins V j (with P(V j > x) =
1/x, x > 0) is convenient – this will become clear in
Section 3. One classical way to standardize is the prob-
ability integral transform, T : Xi 7→ Vi = ((1 −
Fj(X

j
i ))−1)1≤j≤d, i = 1, . . . , n. Since the marginal distri-

butions Fj are unknown, we use their empirical counterpart
F̂j , where F̂j(x) = (1/n)

∑n
i=1 1Xji≤x

. Denote by T̂ the

rank transformation thus obtained and by V̂i = T̂ (Xi) the
corresponding rank-transformed observations.

Now, the goal is to measure the ‘correlation’ within each
subset of features α ⊂ {1, ..., d} at extreme levels (each α
corresponding to a sub-cone of the positive orthant), that
is, the likelihood to observe a large V̂ which verifies the
following condition: V̂ j is ‘large’ for all j ∈ α, while the
other V̂ j’s (j /∈ α) are ‘small’. Formally, one may as-
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sociate to each such α a coefficient reflecting the degree of
dependence between the features α at extreme levels. In re-
lation to Section 3, the appropriate way to give a meaning
to ‘large’ (resp. ‘small’) among extremes is in ‘radial’ and
‘directional’ terms, that is, ‖V̂‖ > r (for some high radial
threshold r), and V̂ j/‖V̂‖ > ε (resp. ≤ ε) for some small
directional tolerance parameter ε > 0. Note that V̂/‖V̂‖
has unit norm and can be viewed as the pseudo-angle of the
transformed data V̂. Introduce the truncated ε-cones (see
Fig. 2):

Cεα =
{
v ≥ 0, ‖v‖∞ ≥ 1, vi > ε‖v‖∞ for i ∈ α,

(1)

vi ≤ ε‖v‖∞ for i /∈ α
}
,

which defines a partition of Rd+\[0, 1]d for each fixed ε ≥ 0.
This leads to coefficients

µα,εn = (n/k)P̂n ((n/k)Cεα) , (2)

where P̂n(.) = (1/n)
∑n
i=1 δV̂i(.) is the empirical prob-

ability distribution of the rank-transformed data and k =
k(n) → ∞ s.t. k = o(n) as n → ∞. The ratio n/k plays
the role of a large radial threshold r. From our standard-
ization choice, counting points in (n/k) Cεα boils down to
selecting, for each feature j ≤ d, the ‘k largest values’ Xj

i

over the n observations, whence the normalizing factor n
k .

In an Anomaly Detection framework, the degree of ‘abnor-
mality’ of new observation x such that T̂ (x) ∈ Cεα should
be related both to µα,εn and the uniform norm ‖T̂ (x)‖∞
(angular and radial components). As a matter of fact, in
the transformed space - namely the space of the V̂i’s -
the asymptotic mass decreases as the inverse of the norm,
see (10). Consider the ‘directional tail region’ induced by
x, Ax = {y : T (y) ∈ Cεα , ‖T (y)‖∞ ≥ ‖T (x)‖∞} where
x ∈ Cεα. Then, if ‖T (x)‖∞ is large enough, we shall see
(as e.g. in (11)) that P(X ∈ Ax) ' ‖T̂ (x)‖−1∞ µα,εn . This
yields the scoring function sn(x) (4), which is thus an em-
pirical version of P(X ∈ Ax): the smaller sn(x), the more
abnormal the point x should be considered.

This heuristic yields the following algorithm, referred to as
the Detecting Anomaly with Multivariate EXtremes algo-
rithm (DAMEX in abbreviated form). The complexity is
in O(dn log n + dn) = O(dn log n), where the first term
on the left-hand-side comes from computing the F̂j(X

j
i )

(Step 1) by sorting the data (e.g. merge sort). The second
one comes from Step 2.

Remark 1 (INTERPRETATION OF THE PARAMETERS) In
view of (1) and (2), n/k is the threshold beyond which the
data are considered as extreme. A general heuristic in mul-
tivariate extremes is that k is proportional to the number
of data considered as extreme. ε is the tolerance parameter
w.r.t.. the non-asymptotic nature of data. The smaller k,
the smaller ε shall be chosen.

Remark 2 (CHOICE OF PARAMETERS) There is no sim-
ple manner to choose the parameters (ε, k, µmin), as there
is no simple way to determine how fast is the convergence
to the (asymptotic) extreme behavior –namely how far in
the tail appears the asymptotic dependence structure. In
a supervised or semi-supervised framework (or if a small
labeled dataset is available) these three parameters should
be chosen by cross-validation. In the unsupervised situa-
tion, a classical heuristic ([6]) is to choose (k, ε) in a sta-
bility region of the algorithm’s output: the largest k (resp.
the larger ε) such that when decreased, the dependence
structure remains stable. Here, ‘stable’ means that the sub-
cones with positive mass do not change much when the pa-
rameter varies in such region. This amounts to selecting
the maximal number of data to be extreme, constrained to
observing the stability induced by the asymptotic behavior.
Alternatively, cross-validation can still be used in the unsu-
pervised framework, considering one-class criteria such as
the Mass-Volume curve or the Excess-Mass curve ([10, 3]),
which play the same role as the ROC curve when no label
is available. As estimating such criteria involve some vol-
ume estimation, a stepwise approximation (on hypercubes,
whose volume is known) of the scoring function should be
used in large dimension.

Remark 3 (DIMENSION REDUCTION) If the extreme de-
pendence structure is low dimensional, namely concen-
trated on low dimensional cones Cα – or in other terms
if only a limited number of margins can be large together –
then most of the V̂i’s will be concentrated on Cεα’s such that
|α| (the dimension of the cone Cα) is small; then the repre-
sentation of the dependence structure in (3) is both sparse
and low dimensional.

Algorithm 1 (DAMEX)
Input: parameters ε > 0, k = k(n), µmin ≥ 0.

1. Standardize via marginal rank-transformation:
V̂i :=

(
1/(1− F̂j(Xj

i ))
)
j=1,...,d

.

2. Assign to each V̂i the cone Cεα it belongs to.

3. Compute µα,εn from (2) → yields: (small number
of) cones with non-zero mass

4. Set to 0 the µα,εn below some small threshold
µmin ≥ 0 to eliminate cones with negligible mass
→ yields: (sparse) representation of the depen-
dence structure

(µα,εn )α⊂{1,...,d},µα,εn >µmin
(3)

Output: Compute the scoring function given by

sn(x) := (1/‖T̂ (x)‖∞)
∑
α

µα,εn 1T̂ (x)∈Cεα
. (4)
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The next section provides a theoretical ground for Algo-
rithm 1. As shall be shown below, it amounts to learning
the dependence structure of extremes (in particular, its sup-
port). The dependence parameter µα,εn actually coincides
with a (voluntarily ε-biased) natural estimator of µ(Cα),
where µ is a ‘true’ measure of the extremal dependence
and Cα is the truncated cone obtained with ε = 0 (Fig. 1),

Cα =
{
x ≥ 0 : ‖x‖∞ ≥ 1, xi > 0 for i ∈ α, (5)

xi = 0 for i /∈ α
}
.

3 Theoretical framework

3.1 Probabilistic background

Univariate and multivariate EVT Extreme Value The-
ory (EVT) develops models for learning the unusual rather
than the usual. These models are widely used in fields in-
volving risk management like finance, insurance, telecom-
munication or environmental sciences. One major appli-
cation of EVT is to provide a reasonable assessment of
the probability of occurrence of rare events. A useful set-
ting to understand the use of EVT is that of risk monitor-
ing. A typical quantity of interest in the univariate case is
the (1 − p)th quantile of the distribution F of a random
variable X , for a given exceedance probability p, that is
xp = inf{x ∈ R, P(X > x) ≤ p}. For moderate val-
ues of p, a natural empirical estimate is xp,n = inf{x ∈
R, 1/n

∑n
i=1 1Xi>x ≤ p}. However, if p is very small,

the finite sample X1, . . . , Xn contains insufficient infor-
mation and xp,n becomes irrelevant. That is where EVT
comes into play by providing parametric estimates of large
quantiles: in this case, EVT essentially consists in model-
ing the distribution of the maxima (resp. the upper tail) as a
Generalized Extreme Value (GEV) distribution, namely an
element of the Gumbel, Fréchet or Weibull parametric fam-
ilies (resp. by a generalized Pareto distribution). Whereas
statistical inference often involves sample means and the
central limit theorem, EVT handles phenomena whose be-
havior is not ruled by an ‘averaging effect’. The focus is
on large quantiles rather than the mean. The primal – and
not too stringent – assumption is the existence of two se-
quences {an, n ≥ 1} and {bn, n ≥ 1}, the an’s being posi-
tive, and a non-degenerate cumulative distribution function
(c.d.f.) G such that

lim
n→∞

n P
(
X − bn
an

≥ x

)
= − logG(x) (6)

for all continuity points x ∈ R of G. If assumption (6) is
fulfilled – it is the case for most textbook distributions –
F is said to be in the domain of attraction of G, denoted
F ∈ DA(G). The tail behavior of F is then essentially
characterized by G, which is proved to belong to the para-
metric family of GEV distributions, namely to be – up to
rescaling – of the type G(x) = exp(−(1 + γx)−1/γ) for

1 + γx > 0, γ ∈ R, setting by convention (1 + γx)−1/γ =
e−x for γ = 0. The sign of γ controls the shape of the tail
and various estimators of the rescaling sequence as well as
γ have been studied in great detail, see e.g. [11], [19], [2].

The multivariate analogue of the assumption (6) concerns,
again, the convergence of the tail probabilities, namely,

lim
n→∞

n P
(
X1 − b1n
a1n

≥ x1 or . . . or
Xd − bdn
adn

≥ xd

)
(7)

= − logG(x),

(denoted F ∈ DA(G)) for all continuity points x ∈ Rd of
G. Here ajn > 0 and G is a non degenerate multivariate
c.d.f.. This implies that the margins G1(x1), . . . , Gd(xd)
are univariate extreme value distributions, namely of the
type Gj(x) = exp(−(1 + γjx)−1/γj ). Also, denoting
by F1, . . . , Fd the marginal distributions of F, assump-
tion (7) implies marginal convergence, Fi ∈ DA(Gi) for
i = 1, . . . , n. However, extending the theory and esti-
mation methods from the univariate case is far from ob-
vious, since the dependence structure of the joint distribu-
tion G comes into play and has no exact finite-dimensional
parametrization.

Standardization and Angular measure To understand
the form of the limit G and dispose of the unknown
sequences (ajn, b

j
n), it is most convenient to work with

marginally standardized variables, V j := 1
1−Fj(Xj) and

V = (V 1, . . . , V d), as introduced in Section 2. In fact
(see [16], Proposition 5.10), the multivariate tail conver-
gence assumption in (7) is equivalent to marginal conver-
gences Fj ∈ DA(Gj) as in (6), together with regular vari-
ation of the tail of V, i.e. there exists a limit measure µ on
E = [0,∞]d \ {0}, such that

n P
(
V 1

n
≥ v1 or · · · or

V d

n
≥ vd

)
−−−−→
n→∞

µ[0,v]c

(8)

(where [0,v] = [0, v1]× . . .× [0, vd]). Thus, the variable V
satisfies (7) with an = (n, . . . , n), bn = (0, . . . , 0). The
so-called exponent measure µ has the homogeneity prop-
erty: µ(t · ) = t−1µ( · ). To wit, µ is, up to a normalizing
factor, the asymptotic distribution of V on extreme regions,
that is, for large t and any fixed region A bounded away
from 0, we have

tP(V ∈ tA) ' µ(A). (9)

Notice that the limit joint c.d.f. G can be retrieved
from µ and the margins of G, via − logG(x) =

µ
[
0,
(

−1
logG1(x1)

, . . . , −1
logGd(xd)

)]c
. The choice of a

marginal standardization to handle V j’s variables is some-
what arbitrary and alternative standardizations lead to al-
ternative limits.
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Using the homogeneity property µ(t · ) = t−1µ( · ), it can
be shown (see e.g. [7]) that in pseudo-polar coordinates,
the radial and angular components of µ are independent:
For (v1, ..., vd) ∈ E, let

R(v) := ‖v‖∞ =
d

max
i=1

vi

and Θ(v) :=

(
v1
R(v)

, ...,
vd
R(v)

)
∈ S∞d−1

where S∞d−1 is the unit sphere in Rd for the infinity norm.
Define the angular measure Φ (also called spectral mea-
sure) by Φ(B) = µ({v : R(v) > 1,Θ(v) ∈ B}),
B ∈ S∞d−1. Then, by homogeneity,

µ(R > r,Θ ∈ B) = r−1Φ(B) . (10)

In a nutshell, there is a one-to-one correspondence between
µ and the angular measure Φ, and any one of them can be
used to characterize the asymptotic tail dependence of the
distribution F .

Sparse support For α a nonempty subset of {1, . . . , d}
consider the truncated cones Cα defined by Eq. (5) in
the previous section and illustrated in Fig. 1. The fam-
ily {Cα, α ⊂ {1, . . . , d}, α 6= ∅} defines a partition of
Rd+ \ [0, 1]d. In theory, µ may possibly allocate some
mass on each cone Cα. A non-zero value of the cone’s
mass µ(Cα) indicates that it is not abnormal to record si-
multaneously large values of the coordinates Xj , j ∈ α,
together with simultaneously small values of the comple-
mentary features Xj , j /∈ α. On the contrary, zero mass
on the cone Cα (i.e. , µα = 0) indicates that such records
would be abnormal. A reasonable assumption in a lot of
large dimensional use cases is that µ(Cα) = 0 for the vast
majority of the 2d − 1 cones Cα, especially for large |α|’s.

Figure 1: Truncated cones in 3D

Equivalently, the angular measure Φ defined in (10) de-
composes as Φ =

∑
∅(α⊂{1,...,d}Φα corresponding to

the partition S∞d−1 =
∐
∅6=α⊂{1,...,d} Ωα of the unit sphere,

where Ωα = S∞d−1 ∩ Cα. Our aim is to learn the support
of µ or, more precisely, which cones have non-zero total
mass µ(Cα) = Φ(Ωα). The next subsection shows that the
µα,εn ’s introduced in Algorithm 1 are empirical estimators
of the µ(Cα)’s.

Figure 2: Truncated ε-cones in 2D

3.2 Estimation of µ(Cα)

We point out that as soon as α 6= {1, . . . , d}, the cone Cα
is a subspace of zero Lebesgue measure. Real data, namely
non-asymptotic data, generally do not concentrate on such
sets, so that, if we were simply counting the points V̂i in
Cα, only the largest dimensional cone (the central one, cor-
responding to α = {1, . . . , d}) would have non zero mass.
The idea is to introduce a tolerance parameter ε in order
to capture the points whose projections on the unit sphere
are ε-close to the cone Cα, as illustrated in Fig. 2. This
amounts to defining ε-thickened faces on the sphere Sd−1∞ ,
Ωεα = Cεα∩Sd−1∞ (the projections of the cones defined in (1)
onto the sphere), so that

Ωεα =
{
x ∈ S∞d−1, xi > ε for i ∈ α , xi ≤ ε for i /∈ α

}
.

A natural estimator of µ(Cα) is thus µn(Cεα) = µα,εn , as
defined in Section 2, see Eq. (2) therein. Thus, if x is a new
observation, and if T̂ (x) belongs to the ε-thickened cone
Cεα defined in (1), the scoring function sn(x) in (4) is in
fact an empirical version of the quantity

P(X ∈ Ax) := P(T (X) ∈ Cα, ‖T (X)‖∞ > ‖T (x)‖).

Indeed, the latter is (using (9))

P(V ∈ ‖T (x)‖∞Cα) ' ‖T (x)‖−1∞ µ(Cα) (11)

' ‖T̂ (x)‖−1∞ µα,εn = sn(x)

It is beyond the scope of this paper to investigate up-
per bounds for |µn(Cεα) − µ(Cα)|, which should be based
on the decomposition: |µn(Cεα) − µ(Cα)| ≤ |µn −
µ|(Cεα) + |µ(Cεα)−µ(Cα)|. The argument would be to in-
vestigate the first term in the right hand size by approximat-
ing the sub-cones Cεα by a Vapnik-Chervonenkis (VC) class
of rectangles like in [9], where a non-asymptotic bound is
stated on the estimation of the so-called stable tail depen-
dence function (which is just another version of the expo-
nent measure, using a standardization to uniform margins
instead of Pareto margins). As for the second term, since
Cεα and Cα are close up to a volume proportional to εd−|α|,
their mass can be proved close, under the condition that the
density of µ|Cα w.r.t. Lebesgue measure of dimension |α|
on Cα is bounded.
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4 Experiments on simulated data

4.1 Simulation on 2D data

The purpose of this simulation is to provide an insight
into the rationale of the algorithm in the bivariate case.
Normal data are simulated under a 2D logistic distribu-
tion with asymmetric parameters (white and green points in
Fig. 3), while the abnormal ones are uniformly distributed.
Thus, the ‘normal’ extremes should be concentrated around
the axes, while the ‘abnormal’ ones could be anywhere.
The training set (white points) consists of normal obser-
vations. The testing set consists of normal observations
(white points) and abnormal ones (red points). Fig. 3 repre-
sents the level sets of this scoring function (inversed colors,
the darker, the more abnormal) in both the transformed and
the non-transformed input space.

Figure 3: Level sets of sn on simulated 2D data

4.2 Recovering the support of the dependence
structure

In this section, we simulate data whose asymptotic behav-
ior corresponds to some exponent measure µ. This measure
is chosen such that it concentrates on K chosen cones. Ex-
periments illustrate in this case how many data is needed to
recover properly the K sub-cones (namely the dependence
structure) depending on its complexity. If the dependence
structure spreads on a high number K of sub-cones, then a
high number of data will be required.

Datasets of size 50000 (resp. 150000) are generated in R10

according to a popular multivariate extreme value model,
introduced by [22], namely a multivariate asymmetric lo-
gistic distribution (Glog). The data have the following fea-
tures: (i) They resemble ‘real life’ data, that is, the Xj

i ’s
are non zero and the transformed V̂i’s belong to the inte-
rior cone C{1,...,d} (ii) The associated (asymptotic) expo-
nent measure concentrates on K disjoint cones {Cαm , 1 ≤
m ≤ K}. For the sake of reproducibility, Glog(x) =

exp{−
∑K
m=1

(∑
j∈αm(|A(j)|xj)−1/wαm

)wαm
}, where

|A(j)| is the cardinal of the set {α ∈ D : j ∈ α} and
where wαm = 0.1 is a dependence parameter (strong de-
pendence). The data are simulated using Algorithm 2.2 in

[20]. The subset of sub-cones D with non-zero µ-mass is
randomly chosen (for each fixed number of sub-cones K)
and the purpose is to recover D by Algorithm 1. For each
K, 100 experiments are made and we consider the number
of ‘errors’, that is, the number of non-recovered or false-
discovered sub-cones. Table 1 shows the averaged numbers
of errors among the 100 experiments.

# sub-cones K Aver. # errors Aver. # errors
(n=5e4) (n=15e4)

3 0.07 0.01
5 0.00 0.01

10 0.01 0.06
15 0.09 0.02
20 0.39 0.14
25 1.12 0.39
30 1.82 0.98
35 3.59 1.85
40 6.59 3.14
45 8.06 5.23
50 11.21 7.87

Table 1: Support recovering on simulated data

The results are very promising in situations where the num-
ber of sub-cones is moderate w.r.t. the number of observa-
tions. Indeed, when the total number of sub-cones in the
dependence structure is ‘too large’ (relatively to the num-
ber of observations), some sub-cones are under-represented
and become ‘too weak’ to resist the thresholding (Step 4
in Algorithm 1). Handling complex dependence structures
without a confortable number of observations thus requires
a careful choice of the thresholding level µmin, for instance
by cross-validation.

5 Real-world data sets

5.1 Sparse structure of extremes (wave data)

Our goal is here to verify that the two expected phenomena
mentioned in the introduction, 1- sparse dependence struc-
ture of extremes (small number of sub-cones with non zero
mass), 2- low dimension of the sub-cones with non-zero
mass, do occur with real data.

We consider wave directions data provided by Shell, which
consist of 58585 measurements Di, i ≤ 58595 of wave
directions between 0◦ and 360◦ at 50 different locations
(buoys in North sea). The dimension is thus 50. The an-
gle 90◦ being fairly rare, we work with data obtained as
Xj
i = 1/(10−10 + |90 − Dj

i |), where Dj
i is the wave di-

rection at buoy j, time i. Thus, Dj
i ’s close to 90 corre-

spond to extreme Xj
i ’s. Results in Table 2 (µtotal denotes

the total probability mass of µ) show that, the number of
sub-cones Cα identified by Algorithm 1 is indeed small
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Figure 4: sub-cone dimensions of wave data

compared to the total number of sub-cones (250-1) (Phe-
nomenon 1). Extreme data are essentially concentrated in
18 sub-cones. Further, the dimension of those sub-cones is
essentially moderate (Phenomenon 2): respectively 93%,
98.6% and 99.6% of the mass is affected to sub-cones of
dimension no greater than 10, 15 and 20 respectively (to be
compared with d = 50). Histograms displaying the mass
repartition produced by Algorithm 1 are given in Fig. 4.

non-extreme extreme
data data

# of sub-cones with positive
mass (µmin/µtotal = 0) 3413 858
ditto after thresholding
(µmin/µtotal = 0.002) 2 64
ditto after thresholding
(µmin/µtotal = 0.005) 1 18

Table 2: Total number of sub-cones of wave data

5.2 Anomaly Detection

Figure 5: Combination of any AD algorithm with DAMEX

The main purpose of Algorithm 1 is to deal with extreme
data. In this section we show that it may be combined
with a standard AD algorithm to handle extreme and non-
extreme data, improving the global performance of the cho-
sen standard algorithm. This can be done as illustrated in
Fig. 5 by splitting the input space between an extreme re-
gion and a non-extreme one, then applying Algorithm 1 to
the extreme region, while the non-extreme one is processed
with the standard algorithm.

One standard AD algorithm is the Isolation Forest (iForest)
algorithm, which we chose in view of its established high
performances ([15]). Our aim is to compare the results

obtained with the combined method ‘iForest + DAMEX’
above described, to those obtained with iForest alone on
the whole input space.

number of samples number of features
shuttle 85849 9
forestcover 286048 54
SA 976158 41
SF 699691 4
http 619052 3
smtp 95373 3

Table 3: Datasets characteristics

Six reference datasets in AD are considered: shuttle, forest-
cover, http, smtp, SF and SA. The experiments are per-
formed in a semi-supervised framework (the training set
consists of normal data). In a non-supervised framework
(training set including abnormal data), the improvements
brought by the use of DAMEX are less significant, but the
precision score is still increased when the recall is high
(high rate of true positives), inducing more vertical ROC
curves near the origin.

The shuttle dataset is available in the UCI repository [14].
We use instances from all different classes but class 4,
which yields an anomaly ratio (class 1) of 7.15%. In the
forestcover data, also available at UCI repository ([14]), the
normal data are the instances from class 2 while instances
from class 4 are anomalies,which yields an anomaly ratio
of 0.9%. The last four datasets belong to the KDD Cup
’99 dataset ([12], [21]), which consist of a wide variety of
hand-injected attacks (anomalies) in a closed network (nor-
mal background). Since the original demonstrative purpose
of the dataset concerns supervised AD, the anomaly rate is
very high (80%). We thus transform the KDD data to ob-
tain smaller anomaly rates. For datasets SF, http and smtp,
we proceed as described in [23]: SF is obtained by pick-
ing up the data with positive logged-in attribute, and focus-
ing on the intrusion attack, which gives 0.3% of anomalies.
The two datasets http and smtp are two subsets of SF corre-
sponding to a third feature equal to ’http’ (resp. to ’smtp’).
Finally, the SA dataset is obtained as in [8] by selecting all
the normal data, together with a small proportion (1%) of
anomalies.

Table 3 summarizes the characteristics of these datasets.
For each of them, 20 experiments on random training and
testing datasets are performed, yielding averaged ROC and
Precision-Recall curves whose AUC are presented in Ta-
ble 4. The parameter µmin is fixed to µtotal/(#charged
sub-cones), the averaged mass of the non-empty sub-cones.

The parameters (k, ε) are chosen according to remarks 1
and 2. The stability w.r.t. k (resp. ε) is investigated over
the range [n1/4, n2/3] (resp. [0.0001, 0.1]). This yields pa-
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Dataset iForest only iForest + DAMEX
ROC PR ROC PR

shuttle 0.996 0.974 0.997 0.987
forestcov. 0.964 0.193 0.976 0.363
http 0.993 0.185 0.999 0.500
smtp 0.900 0.004 0.898 0.003
SF 0.941 0.041 0.980 0.694
SA 0.990 0.387 0.999 0.892

Table 4: Results in terms of AUC

rameters (k, ε) = (n1/3, 0.0001) for SA and forestcover,
and (k, ε) = (n1/2, 0.01) for shuttle. As the datasets
http, smtp and SF do not have enough features to con-
sider the stability, we choose the (standard) parameters
(k, ε) = (n1/2, 0.01). DAMEX significantly improves the
precision for each dataset, excepting for smtp.

Figure 6: ROC and PR curve on forestcover dataset

Figure 7: ROC and PR curve on http dataset

In terms of AUC of the ROC curve, one observes slight or
negligible improvements. Figures 6, 7, 8, 9 represent aver-
aged ROC curves and PR curves for forestcover, http, smtp
and SF. The curves for the two other datasets are available
in supplementary material. Excepting for the smtp dataset,
one observes highter slope at the origin of the ROC curve
using DAMEX. It illustrates the fact that DAMEX is par-
ticularly adapted to situation where one has to work with a
low false positive rate constrain.

Figure 8: ROC and PR curve on smtp dataset

Figure 9: ROC and PR curve on SF dataset

Concerning the smtp dataset, the algorithm seems to be un-
able to capture any extreme dependence structure, either
because the latter is non-existent (no regularly varying tail),
or because the convergence is too slow to appear in our rel-
atively small dataset.

6 Conclusion

The DAMEX algorithm allows to detect anomalies occur-
ring in extreme regions of a possibly large-dimensional
input space by identifying lower-dimensional subspaces
around which normal extreme data concentrate. It is de-
signed in accordance with well established results bor-
rowed from multivariate Extreme Value Theory. Various
experiments on simulated data and real Anomaly Detec-
tion datasets demonstrate its ability to recover the support
of the extremal dependence structure of the data, thus im-
proving the performance of standard Anomaly Detection
algorithms. These results pave the way towards novel ap-
proaches in Machine Learning that take advantage of mul-
tivariate Extreme Value Theory tools for learning tasks in-
volving features subject to extreme behaviors.
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ing the dependence structure of rare events: a non-
asymptotic study. In Proceedings of the 28th Confer-
ence on Learning Theory, 2015.

[10] N. Goix, A. Sabourin, and S. Clémençon. On
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