N

N
N

HAL

open science

SycView: Visualize and Profile SystemC Simulations

Denis Becker, Matthieu Moy, Jérome Cornet

» To cite this version:

Denis Becker, Matthieu Moy, Jérome Cornet. SycView: Visualize and Profile SystemC Simulations.
3rd Workshop on Design Automation for Understanding Hardware Designs, DUHDe 2016, Mar 2016,

Dresden, Germany. hal-01295282

HAL Id: hal-01295282
https://hal.science/hal-01295282
Submitted on 30 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01295282
https://hal.archives-ouvertes.fr

SycView: Visualize and Profile SystemC Simulations

Denis Becker*T
Denis.Becker@st.com

Matthieu Moy
Matthieu.Moy @imag.fr

Jérome Cornet*
Jerome.Cornet@st.com

*STMicroelectronics, F-38019 Grenoble, France
tUniv. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France
CNRS, VERIMAG, F-38000 Grenoble, France

Abstract—The design of systems-on-chip requires simulation
of highly abstracted models, such as SystemC Transaction Level
Models (TLM), in addition to traditional register transfer level
models. Due to the growing complexity of products, analyzing
and understanding the behavior of the corresponding SystemC
platforms becomes itself a challenge. Huge code bases are
generally written by multiple authors and it is rare that a
single person has a comprehensive detailed knowledge of the
model. However, models have to be developed, validated and used,
so understanding them is important. Moreover, the increasing
complexity leads to slower simulations, so there is a need to
speed them up.

We propose a tool, SycView, which provides a view of the
profile of a SystemC simulation. This tool helps answering these
two major needs: understanding complex hardware simulations,
and highlighting bottlenecks of SystemC simulations.

I. INTRODUCTION

SystemC is a hardware modeling C++ library standardized
by IEEE. It enables a designer to simulate concurrent pro-
cesses, and thanks to the use of C++, provides an easy way
to simulate mixed software/hardware systems. For this reason,
it is mostly used for systems-on-chip (SoC) modeling. It has
been designed so that it can be used at different levels of
abstraction, thus at different steps of the design workflow.

The increasing complexity of models and components has
led to the need to speed up such simulations. The natural
method to optimize a program, SystemC or not, is first to
analyze it in order to find the bottleneck and then to apply
an optimization on the corresponding part of the program.
Since SystemC is a C++ library, usual profilers for C++
like gprof or valgrind+kcachegrind can be used.
They will however miss important aspects of the execution
of a SystemC program, like: how much time is spent in the
SystemC kernel as opposed to the user-written parts, per-
process statistics, simulated time based visualization. To the
best of our knowledge, there is no turnkey application available
to get these information from a SystemC simulation. Also,
as the complexity of models grows, it becomes necessary to
visualize executions at a high abstraction level to get a better
understanding of the system synchronization.

In this paper, we present SycView, a tool for visualization
and profiling of SystemC simulations. Our purpose is to
provide SystemC users with a tool to get SystemC-aware
information about the execution of their simulations. The
underlying motivation of the tool is to increase the understand-

ability of complex SystemC models and to help the set up of
optimizations and/or parallelization.

II. BACKGROUND

In this paper, the term wall-clock time refers to the time
spent by the execution of the simulation on the host machine,
and the term simulated time to the virtual time spent by
the model during the execution (i.e. what the real hardware
will be supposed to spend). We call a transition any portion
of code in SC_METHODs or SC_THREADS that is executing
atomically from the point of view of SystemC. As an example,
the following code will produce 3 transitions:

{ // declared as SC_THREAD
// transition #1

void compute ()
do_stuff();
wait (15, SC_NS);
do_more_stuff ();
wait (event) ;
do_even_more_stuff ();

// transition #2

// transition #3

III. PROPOSED TOOL

The principle of SycView is simple: it consists in trace
recording during simulation (III-A) and then trace visualization
(ITI-B). In order to print traces, we instrumented the SystemC
kernel, based on the ASI (formerly OSCI) implementation.
For the visualization we developped a graphical user interface
(GUI) written in Java.

A. Trace Recording

The trace recording consists in printing data at interesting
points. For instance, we print a trace each time a transition
yields to the kernel, containing:

e The SystemC process which triggered this transition.
e The type and arguments of the wait performed.
e The wall-clock time duration of the transition.

When the simulation ends, we store those information on
text files. Then for example, we are able to find which SystemC
process (or group of processes) globally consumes most of the
time. We can also use statistical metrics to get the average
execution time of a process and compare it with the number
of executions to highlight how each process spends its time.

We also keep track of the number of runnable processes at
the beginning of each delta cycle. More precisely, what we get
is the maximal number of runnable processes at the beginning
of each immediate notification cycle within each delta cycle.

2] Simplot with Wall-clock Time + -0 X

Export

process 228 m
process_225
process_224
process_223 H
process_222
process 221
process_220
process_219

process 218

process 217 I -
process_216 I I
process_215
process 214
process 213 I
process 212 .
process_211 I .
process 51 |
process_55 = I =
Figure 1: Wall-clock time axis
B. Visualization |£| Runnable Processes by Cycle i =NNCE X
. T . . . Export
We have implemented a GUI providing six different views,
. s e . . # runnable Number of cydes Part
which can be split in two main categories. . oo
. . . . 1 34872|16.168 %
The first category is plo.tt.lng the scenario of an execution 5 N
(order and duration of transitions) as a function of either wall- 3 165472(76.713 %
clock time or simulated time. For example, Figure 1 shows 4 8410.39 %
. . 5 420,019 %
the screenshot of a wall-clock time plot. On this plot we can 5 o005 %
see that there seems to be a chain triggering of the processes 7 2[0.001 %
executing in one order on the left part, and in the reverse order ;’ 599261 ;;ﬁ :"
on the right part. The width of a rectangle is proportional to 3e BT % i
the wall-clock time duration of the corresponding SystemC
———— —

transition. This view, as illustrated by this little example, can
be used to identify patterns in the executions of transitions,
and can highlight which transitions are particularly time-
consuming. Such information could hardly be identified by
a static code analysis, because of its complexity. On the other
hand on Figure 2 we can see an example of a simulated time
plot. The processes are also represented on the left part, and
on the right part, a vertical stroke is placed for each process
execution, in the simulated time it occured. Note that what
appears to be black rectangles are strokes close together. The
blue rectangles represents time ranges in which the transition
may have occured, based on loosely-timed information on the
model. Note that time ranges are not part of the SystemC
kernel so we added that when we instrumented the kernel
because it was part of our industrial context.

The second category consists in giving statistical metrics
about the platform execution. We display the wall-clock time
consumption per process (with statistical metrics), as on Figure
4. We can see that the first process uses almost 13 % of the
time in 10111 transitions, while the third process uses almost
8 % of the time in only 14 transitions. That makes a huge
difference in the mean execution time, and we can deduce
that optimizing the third process may be more efficient than
the first one. We also show the number of runnable SystemC
processes at each delta cycle, shown in Figure 3. This table can
also be displayed for SC_THREADs or SC_METHODs only.

IV. RELATED WORK

We have found that most of the litterature about SystemC
visualization focus on the model description. For example, the

Figure 3: Number of runnable processes

tools presented in [1], [2], [3], [4], [5] and more recently [6]
gives access to the visualization of the hierarchical architecture
of a platform, as well as the exploration of the components
behaviour. Such information are precious and these tools are
complementary with our tool especially when it comes to
understanding a design. But what we found missing in these
tools is a software point of view, in order to understand the
model not as the representation of an SoC, but as a piece of
software. Besides, some of the above mentioned tools need to
instrument the model, which is generally not possible in the
case of huge and complex models.

V. EXAMPLE USAGE

SycView is not only a software engineering tool, the
information given are also useful to characterize a model
theoretically. Initially, this tool was made to help the set up
of a parallel SystemC kernel on an existing industrial model.
We have used SycView outputs in [7] to illustrate the fact that
the existing parallelization approaches are not applicable in the
case of a loosely-timed TLM model, based on the analysis of
the profile of our industrial test case.

VI. CONCLUSION

In this paper, we have presented SycView, for visualization
and profiling of SystemC simulations. The main advantage of

2] simplot with Simulated Time

Export

o _oX

SystemC kernel
process_8
process_7
process_6
process_37
process_36
process_11
process_206
process_205
process 204
P :
process_202
process_201
process_200
process_l9g
process_198
process_253
process_252
process 251
process_250

Aa =

D

D

Figure 2: Simulated time axis

this tool compared to classic C++ profiling tools like gprof
or valgrind is that it understands and exploits SystemC
constructs. Currently the data collected are limited to SystemC
processes, simulation cycles, simulated and wall-clock times.
However the tool can be extended to add data collection about
transactions or event processing for example, that could also
be interesting for analysis purposes.

From the data gathered during the execution of a simula-
tion, the tool can display the following views:

e Simulation timing diagram indexed by either wall-clock
or simulated time.

e Wall-clock time consumption per SystemC process.

e Partition of delta cycles depending on the number of
runnable processes.

The views of the first item are helpful to understand the
sequence of transitions for a simulation. The two other ones
presented in this list can quickly identify which parallelization
approach is likely to work efficiently, and which one cannot
be efficient.

(1]

(2]

[3]

[4]

(5]

(6]

(71

REFERENCES

D. GroBe, R. Drechsler, L. Linhard, and G. Angst, “Efficient Automatic
Visualization of SystemC Designs,” in FDL, 2003, pp. 646—658.

D. Berner, J.-P. Talpin, H. D. Patel, D. Mathaikutty, and S. K. Shukla,
“SystemCXML: An Exstensible SystemC Front end Using XML,” in
FDL, 2005, pp. 405-409.

A. Donlin and T. Lenart, “Performance Analysis and Visualization of
SystemC Models,” 2006.

C. Albrecht, C. J. Eibl, and R. Hagenau, “A Loosely-Coupled Graphical
User Interface for Run-Time Control of SystemC Simulation Models,”
1JSSST, 2006.

C. Genz, R. Drechsler, G. Angst, and L. Linhard, “Visualization of
SystemC Designs,” in Circuits and Systems (ISCAS), IEEE International
Symposium on, 2007, pp. 413—416.

J. U. Stoppe, M. Michael, M. Soeken, R. Wille, and R. Drechsler,
“Towards a Multi-dimensional and Dynamic Visualization for ESL De-
signs,” in Workshop on Design Automation for Understanding Hardware
Designs (DUHDe), 2014.

D. Becker, M. Moy, and J. Cornet, “Challenges for the Parallelization of
Loosely-Timed SystemC Programs,” in IEEE International Symposium
on Rapid System Prototyping (RSP), 2015.

-
| £ Consumptions L — ol S — = E@g
Export
Name Cumulated time (us) Min 1stQ Med 3rdQ Max £ ec M
process_1 12.858 % > 10801025 14 1107 1123 1222 18372 10111 1068.245 P
process_101 17219857 73652 75511 77535 78731.5 84082 ?
process_100 7.969 u 6693732 395202 454460 486617 454005 1495737 14 475123.72 b
process_5 5.91 %o 14964331 1 4 5 &l 1983 128 A ||
process_22 2,882 % 12420655 43 46 1409.5 754 876 5966 405.7417
process_21 2.79 % 12343369 1 88 195 111 181827 121430 109.34993
process_15 2.768 % 12324868 12 13 132 243 377 17896 129.90933
process_13 2.713 % 12279319 14 15 135 239 304 17896 127.364716
process_141 2,696 % 12265016 11 12 129.5 238 386 17896 126.56543
process_41 1.864 % 1565958 84 2730 |222992.5 225330 1226691 10 1565956
process_42 1.66 % 1394581 11 74 87 109 14470 14444 96.55089
process_43 1.158 % 972725 14 22 125 26 66518 8922 109.025444
process_44 1.126 % 1946173 1 64 82 104 37264 19844 95.11672
process_45 1.042 % 875359 9 10 55.5 86 106 17896 48.91367
process_47 1.03 % 1865512 1 12 |74 83 102 17896 48.363434
process_4a8 1.027 % 862644 11 11 |74.5 85 106 17896 48.203175
process_58 0.975 % 1819206 3 5 5 5 1281 164286 49864620
process_49 0.934 % 784960 13 14 31 32 1230 33308 23.566711
process_50 0.891 % 748067 3 4 5 5 1270 164286 4.5534434
process_79 0.885 % 743772 3 4 4 5 145 164286 4.5273
process_78 0.758 % 636525 26 28 40 42 75 17896 35.568005
process_76 0.725 % 009143 14 15 129 53 176 17896 34.03794
process_74 0.716 % 601154 17 19 36 47 96 17897 33.589653
process_72 0.715 % 00779 10 11 41.5 55 114 17896 33.570576
process_71 0.711 % 597516 12 13 126 53 834 17897 33.38638 -
L

Figure 4: Wall-clock time usage of SystemC processes

	Introduction
	Background
	Proposed tool
	Trace Recording
	Visualization

	Related Work
	Example usage
	Conclusion
	References

