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AN INTRODUCTION TO THE UNILATERAL CONTACT PROBLEMS IN MECHANICS

RESUMEN

Se presenta en este trabajo el problema del contacto unilateral den tro de la teor!a lineal de la elastoestatica. El problema es,formuladocomo una inecuacion variacional o como el problema de la minimizacion de un funcional definido en un convexo. La obtencion de soluciones aproxima das es realizada a traves del metodo de los elementos

INTRODUCTION

In the several areas of the engineering sciences are frequently found structures which are in contact with their supports (or other components) but without being perfectly bounded to it, In order to emphasize the possibility that the structure will lose contact with the support and/or the possibility of slippage are not excluded one uses the expression unil4t~ contact.

As classical examples of the several engineering problems related to the analysis and design of structures with unilateral supports, one may enumerate piping in petrochemical plants, piping in nuclear power plants, joints between mechanical components, etc.

As one will notice ,in this paper, the unilateral contact leads to a non-linear problem, independently of the characteristics of the materials behaviour with which the structural elements in contact are build up. As a result most work related to numerical solutions for contact problems in elasticity is done according to one of the two following approaches: i ) Incremental techniques which almost always require some sort of iterative procedure and/or the introduction of special artificial interface elements [1,2].

ii) Direct formulation based upon variational principles that. lead to an optimization problem which is solved by mathematical programming techniques [3][4][5][6][7][START_REF] Glowinski | Analyse nllllll!rique des inequations variationelles[END_REF][START_REF] Kikuchi | Contact problems in elasticity[END_REF][START_REF] Brtzis | Problemes unilateraux[END_REF][START_REF] Kikuchi | Contact problems in elastostatics[END_REF][START_REF] Panagiotopoulos | Inequality problems in Mechanics and Applications[END_REF][START_REF] Del Piero | Unilateral problems in structural analysis[END_REF][START_REF] Piero | ores) Unilateral Problems in Structural Analysis[END_REF][START_REF] Fichera | Boundary value problems of elasticity with unilateral constraints[END_REF].

• •

Efforts along (i) seem to be motivated by the desire. to red~~e development costs by introducing special elements and procedures in existing finite element computer codes for linear and non-linear analysis. However the resulting algorithms often lack a convergence proof.

In this paper the second approach will be followed since, as one shall see later•on, ~t enables a more accurate formulation from both the mechanical and mathematical point of view, where the numerical algorithms arise in a much more natural way and where mathematical results concerning existence and uniqueness of the solution as well as convergence of numerical algorithms are available [7][START_REF] Glowinski | Analyse nllllll!rique des inequations variationelles[END_REF][START_REF] Kikuchi | Contact problems in elasticity[END_REF][START_REF] Brtzis | Problemes unilateraux[END_REF][START_REF] Kikuchi | Contact problems in elastostatics[END_REF][START_REF] Panagiotopoulos | Inequality problems in Mechanics and Applications[END_REF][START_REF] Del Piero | Unilateral problems in structural analysis[END_REF][START_REF] Piero | ores) Unilateral Problems in Structural Analysis[END_REF][START_REF] Fichera | Boundary value problems of elasticity with unilateral constraints[END_REF][START_REF] Cea | Optimisation, theorie et algoritm.s[END_REF][START_REF] Bazaraa | Nonlinear programming: theory and algorithms[END_REF][START_REF] Cottle | Some recent developments in linear complementarity theory[END_REF][START_REF] Luenberger | Optimization by vector space methods[END_REF].

On this presentation, which should be considered as a simple introduction to the unilateral contact problem, one will analyse this problem in the context of the classicai elasticity theory (displacements and infinitesimal deformations) and where only equilibrium problems in terms of displacements will be presented. The formulation in terms of stresses or mixed formulations [3,4,5] and.dynamic problems [7,[START_REF] Panagiotopoulos | Inequality problems in Mechanics and Applications[END_REF] will not be considered in this introduction.

In order to establish the variational formulation which one has referred to, one uses the principle of virtual work where the unilateral characteristic of the kinematical restriction• will be considered.

Therefore the equilibrium will be characterized by a variational inequality instead•of a variational equation (as proposed by the other formulations (i)) which, for the type of material that has been adopted, .is equivalent to the minimization of a functi~nal defined in a convex set.

As naturally suggested by this variational formulation the numerical algorithm to obtain approximate solutions will consist in the redefinition of this problem in a subspace of finite dimension. This will lead to a mathematical programming problem.

Historically this problem has been formulated by Signorini in 1933 [6], but it vas recently from 1970 on, that the problem was deeply studied from the mechanical and mathematical points of view. In the works [7][START_REF] Glowinski | Analyse nllllll!rique des inequations variationelles[END_REF][START_REF] Kikuchi | Contact problems in elasticity[END_REF][START_REF] Brtzis | Problemes unilateraux[END_REF][START_REF] Kikuchi | Contact problems in elastostatics[END_REF][START_REF] Panagiotopoulos | Inequality problems in Mechanics and Applications[END_REF][START_REF] Del Piero | Unilateral problems in structural analysis[END_REF][START_REF] Piero | ores) Unilateral Problems in Structural Analysis[END_REF][START_REF] Fichera | Boundary value problems of elasticity with unilateral constraints[END_REF] the reader will also find a vast bibliography. On aeu the displacements are prescribed and will be considered nule in order to simplify the presentation: u. 0 on ao u On 30f the surface forces are also prescribed and characterized by the V@etor valu@ funetioa a. Oa 3Gc the body is assumed to be supported without friction by a rigid unilateral support S.

Since the contact is unilateral, the actual displacement u of the body when submitted to the action of the surface loads a and body forces b, will be such that:

u•n • u :S 0 n Six e ao c ( 2 
)
where n is the unit outward normal vector to the candidate contact boundary anc. On the other hand at those points of aoc which remain in contact with the support the reaction will be such that:

lt.•Jtn n Six e ao c
since it is supposed that the friction is nule.

(3)

Due to the unilateral nature of the contact, the reaction points away from the support. Hence:

.It s 0 n .It -0 n if 11 -o n if u < 0 n (4)
The expressions (2) and (4) can be rewritten in the following way:

Jt.•u • II. u • 0 n n
known as the compl.eme.n.t.a~Li.tq cortd.UA.on.

Vx e 30 c

The elastostatic equilibrium problem therefore will be: PI) Find u sufficiently regular so that satisfy:

divODE(u)) + b•• 0 in 0 DE(u)n • a u -0 II. • DE(u)n•n :S 0 ,
n where:

II. u -0 n n E(•) • I (V(•)+V(•)T) : is the strain operator V : is the gradient operator (5)
and where D is the fourth-order elasticity tensor field which satisfies the usual properties of symmetry and ellipticity:

• D(x)A•B • A •D(x) 1B liB c:onst. > 0 a.t. D(x)A•A il: BA•A
Vx e Q, VA,B e Sym, Sym: apace of symmetric 2nd order tensors.

Comparina (P1) with the classical elastostatic proble. of equilibrium (without unilateral restrictions) one can observe. the difficulty which rises froa the fact that aoc is in itself-unknown. In other words the solution of (P1) should also give us the contact reaion.

VARIATIONAL FORMULATIOJI OF THE EQUILIBRIUM PltOBLEM

Instead of considering the problem (P1) it will be shown its equivalence to the variational formulation which is the principle of virtual work.

Therefore, one will consider the set:

lK -{v; v sufficiently regular in Q, V•O on anu. v -v•nSO on 3Q } n c
where one vaguely assumes that regularity is sufficient to render meaningful, at .least _in some generalized sense, the operations introduced below.

From the det'inition of E it follows that:

vEOeE if v e lK + Av e E ¥~0
hence E is a convex c~ne and the solution u of the problea (P1) also belongs to the 

VvelK

From the divergence theorem and from the fact that u is solution of (P1), the last expression gives: The difficulty remains since anc is not known a~d therefore one can not evaluate the integral on an of the expression (7). Observing that: c ~ ~ 0 and v $ 0 n n one will have:

the (6) J Df(u)•f(v)dQ • J b•v dO+ J a•v dag + J ~•v dan Vv e IC
~•v • ~ v ~ 0 nn 1/x e an c
and (7) can be substituted by the variational inequality:

1/v e I{
In particular if v•u the (8) ia transformed in equality due to the exiating complementarity condition (S) between ~ and u:

I DE(u)•E(u)dO • f b•u dO+ I a•u daG n n anf
and froa thia expression and ( 8) one arrives at:

P2) J DE(u)•E(v-u)dO ~I b•(v-u)dO +I a•(v-u)dan Q Q ~f 'llv el{ (8) (9) 
The above result shows that the solution u of (P1) satisfies (P2). One now will show that if u aatisfies (P2), therefore u is t&e solution for (Pt). In order to prove this one can apply the divergence theorem to (P2):

-

I [4iv.ODE(u))+b]•(v-u)d0 + J • ODE(u)n-a)•(v-u)dan + n anf
Taking: -

+ J DE(u)n• (v-u)daG ~ 0 anc 1/v e I{
f [divODE(u))+b]•w~O 'llw e C (n) n . 0 (10) 
As Co(n) is a vector space, the previous inequality will occur for both v and -w, tbctc!otc; hence:

divODE(u)) + b • 0 in D (11) 
An analogous reasoning to the previout one made but now adoptiaa fields we C 1 (0).{w; w euff.reg., -o on 3Qu and age} will lead to:

DE(u)n • a on agf ( 12) 
From the previoue result• [START_REF] Kikuchi | Contact problems in elastostatics[END_REF] and [START_REF] Panagiotopoulos | Inequality problems in Mechanics and Applications[END_REF], the expreesion (10) it reduced to:

I DE(u)n• (v-u)daD ~ 0 an c ¥v e It (13) 
Let (•)t and (•)n be the reepective tangential and normal components of any vector field on aDc, takiaa:

we C 1 (0). {w; w suff.reg., v 0 .0 on aDc} the previous expression leads. to: 

I QDE(u)n)tvtdan
I ~ (v -u )daD ~ 0 an n n n c ( 14 
)
Vv e It [START_REF] Fichera | Boundary value problems of elasticity with unilateral constraints[END_REF] Remembering that v e It impliee expreseion leads to:

that vn~O and AV elt v~o. the above Because~ ~0 (eq. 17) and u ~0 on 3nc (u e~), the previous expression leads to:n n

I ~ (Av -u )dan ~ o
~ u • 0 on an n n c (18) 
The results [START_REF] Kikuchi | Contact problems in elastostatics[END_REF], ( 12), ( 14), ( 17) and [START_REF] Cottle | Some recent developments in linear complementarity theory[END_REF] show that the solution u of the problem (P2) is also the solution of the problem (P1).

Therefore one•arrivea at the variational characterization of the contact problem without friction: P2) u is the solution for the elastostatic equilibrium problem with frictionless unilateral contact kinematical restrictions if and only if u is the solution of the following variational inequality problem: find u ei such that:

J Df(u)•f(v-u)dO ~ J b•(v-u)dO + J a•(v-u)dan n n ~f ¥veE
The reader can observe that (P2) is nothing else but the Principle of Virtual Work extended to the case of unilateral contact kinematical restrictions. It is also important to observe that (P2) is a non-linear problem due to the characterizatio~ of lK and therefore (P2) is out of the classical elasticity domain.

•

For the elastic material we adopted one can define• the potential energy function t:

t(u) • ! f~E(u)•f(u)dn which is convex: t(v) -t(u) ~ Jnmf(u)•f(v-u)dn
and where the equality holds if and only if v-ue N(f) 0 i.e. iff v-u is a rigid body motion. Substituting in (P2) one arrives at the equivalent constrained minimization problem: 

(PJ) F(u) • min{F(v); v elK} F(v) • t(v) -J b•v dO -J a•v dan
Vu,v e V Vu e V V • {v; v e (H 1 (0))', v•O on 30 }
u Also, t is a continuous linear functional on V:

t<v> ::o II tl!y.ll vI~
Taking into account all these properties, one verifies that F is strictly convex, differentiable and coercive. Moreover, since: is a nonempty closed convex subset of V one follows that there exists a unique solution u of the problem (PJ).

EXAMPLES OF FRICTIONLESS UNILATERAL CONTACT PROBLEMS

The Beam Problem Consider the plane bending of a beam with discrete frictionless unilateral supports. An elastic material is assumed as well as infinitesimal strains (and displacements) and the hypothesis that plane sections remain plane and normal to the axis of the beam after deformation.

Reference will be made to the beam schematically shown in Figure 2, which is subjected to the loading system t comprised of a distributed loading q, concentrated forces Fi and concentrated moments mi. At point A a frictionless unilateral support initially not in contact with the beam is assumed. ... ., e Y, . .. [START_REF] Barbosa | Numerical algorithms for contact problems in linear elastostatics[END_REF] wbere m ia the total number of cli1crete aupporta.

The Pu11cb Problea Since one ia dealiDI with infiaitaaimal the liaaarl:ed tiumatical reltrietioa eea be vrittea aa:

[ -e;<x 1 >J {u(x 1 ,+(x 1 ))-a+x,e }•n S (t(x 1 )-t(x 1 ))a, V(x 1 •• (x 1 )) e ace [START_REF] Barbosa | Um algoritmo para o problema de identacao rigida em elastostatica[END_REF] where; describe• the shape of the punch, n(n 1 ,mt~ ia the unit outward normal vector to the candidate contact bouadary auc. described by •• of the deformable body. In thi• case. the set ll is given by: IC • {(a, 9,u) e It x]Rxv; such that {23) must be satisfied and also the kinematical reatrictioo OD 3DU} [START_REF] Barbosa | Numerical algorithms for frictionless contact problems in linear elastostatics[END_REF] and again, the equ~librium problea of the frictionlea• puach problem can be stated as followa:

Piad(a,9.u) a JC such that F{a,e.u) • lllin F(a*,8*,v*) (a*,9*,v*) e It (2S)
where:

F(a*,&*,v*) • J lDE(v*)•E(v*)dD -•Pa*-MB* n 2 •• deformable bod r •• Figure 3
Contact Without Friction between Elastic Bodies [START_REF] Timoshenko | Teoda de la elasticidad[END_REF] ••

If the contact ia between two bodies 1 1 and Jl then it will be assumed that a common unit normal n~1 can be defined along the candidate contact boundaries an~ and anrc and ln such case one has=

i i i lK • {(v 1 ,vt) a vxv; v •0 on 3Qu• (v 1 -vJ)•n 11 -aSO on 3nc• i•1,2} ( 27 
)
where s is the initial gap (on the direction n 11 ) between the two bodies.

APPROXIMATE SOLUTIONS

To obtain approximate solutions for the minimization problem P3), finite dimensional approximation Ph and ~ are constructed and the finite element method is chosen for the spacial discretization due to its generality and widespread use in computer programs. One is then led to the following quadratic programing problem defined in lRn: [START_REF] Romano | Principi e metodi variazionali nella meccanica delle struture e dei solili , Parte I: Principi[END_REF] where n is the number of degrees of freedom, 'his the standard•atiffness matrix, fh is the vector of equivalent nodal loads, Ub is the unknown . nodal displacement vector and h is the parameter associated to the mesh that will be dropped from now on for ease of notation.

One way to construct an approximation for lK, is to approximate the field v by the interpolation functions of the finite element method and then to enforce the non-interpenetration condition at the nodal points belonging to 3Gc. This was the technique adopted for the numerical examples presented here. As a result, for most problems, the constraint set lK will be described by a set of m linear inequalities:

Au :l c (29)
where A is a ~n matrix. However, the important particular case of discrete unilateral supports [START_REF] Barbosa | Numerical algorithms for contact problems in linear elastostatics[END_REF] -which are often used in piping systems -may lead to constraints that can be written as: a:lu:lb [START_REF] Duvaut | Equilibre d'un solide elastique avec contact unilateral et frottement de Coulomb[END_REF] In the following, various alternatives for the solution of the minimization problem are discussed beginning with the case of the constraint set [START_REF] Duvaut | Equilibre d'un solide elastique avec contact unilateral et frottement de Coulomb[END_REF].

a) The constraint set a:lu:lb This kind of constraint allows for the direct application of a very simple iterative algorithm: Gauss-SeidQl with relaxation and projection (GSRP), see Glowinski et al [START_REF] Glowinski | Analyse nllllll!rique des inequations variationelles[END_REF] for details, which can be describes as follows:

-Choose u 0 admissible, i.e. •a:lu 0 :lb where the Lagrange multiplier). eJB. 111 has been introduced in order to release the constraint A~c. As the minimization over u is unconstrained, it is attained by:

-Pick IC1 e (0,2) ii) ItVULtiDil For k•0,1,2, ••• execute: For i•1,2, ••• ,n execute: i-1 k 1 n k {f .-~ It .• u.+-~ It }/• L L iJ' ul. "ii 1 j•1 lJ J j•i+1
u • K-1 (f-AT).)
when It is positive-definite (no rigid raotions allowed). Substituting in [START_REF] Oden | Non local and non linear friction laws and variational principles for contact problems in elasticity[END_REF] one is led to the dual problem: [START_REF] Oden | Nonlocal friction in contact problems in plane elasticity[END_REF] where P is a raxra symmetric matrix and d is a ra-vector given by: [START_REF] Cocu | Existence of solutions of Signorini problems with friction[END_REF] The resulting quadratic programming problem bas a simpler constraint set and is usually much smaller than [START_REF] Oden | Numerical analysis of certain contact problems with non-classical friction laws[END_REF] as ra is usually much smaller than n. If A* is the solution of (33) the solution u* of ( 31) is given by: [START_REF] Panagitopoulos | A nonlinear progra11111ing approach to the unilateral contact and friction boundary value problem in the theory of elasticity[END_REF] For the solution of a quadratic programming problem [START_REF] Oden | Nonlocal friction in contact problems in plane elasticity[END_REF] two possibilities are considered here.• The first is the use of the Gauss-Seidel algorithm with relaxation and projection, and the second is the use of Lemke's algorithm to solve the linear complementary problem associated to (33) (See Bazaraa and Shetty [START_REF] Bazaraa | Nonlinear programming: theory and algorithms[END_REF], Glowinski et al [START_REF] Glowinski | Analyse nllllll!rique des inequations variationelles[END_REF] and Cottle [START_REF] Cottle | Some recent developments in linear complementarity theory[END_REF] for details about the algorithm and pivoting methods on which the Lemke's algorithm ia based).

In fact, if one takes the standard quadratic programming problem:

min l u•Qu -u•b 2 Au ::ii c , u i1; 0 ( 36 
)
where Q is a symmetric positive-semidefinite nxn matrix, A is an mXn matrix of rank m, c emm, u and b emn, and denoting the Lagrangian multiplier vectors of the constraints Au::iic and ui1;0 by A emm and p emn, respectively, ~d denoting the vector of slack variables by y emm then, the Kuhn-Tucker conditions for (36) could be written as:

w -Mz • q w•z • 0 (37) 
w i1; 0 z i1; 0 where: which is a linear complementarity problem ~olva.ble ..in a. 6-UU..te I1WrlbeJ'L o6 ~tep6 by Lemke's algorithm.

In particular, as the constraint aet Au::iic is absent in [START_REF] Oden | Nonlocal friction in contact problems in plane elasticity[END_REF] the matrix M for Lemke's algorithm would be P itself and q•-b, w.P and z•u in this case.

Instead of solving the dual problem [START_REF] Oden | Nonlocal friction in contact problems in plane elasticity[END_REF] one could think of solving the saddle-point problem given by [START_REF] Oden | Non local and non linear friction laws and variational principles for contact problems in elasticity[END_REF] where the solution (ti*,A*) must satisfy:

Ku* -f + ATA* • 0 (Au*-c)•A* • 0 A* i1; 0
Au* -e S 0 Uzawa's algorithm, which is quite general, can be applied here and in thia case can be described as follows (see Kikuchi and Oden [9)): The parameter y must be positive and sufficiently small and was set, for the numerical examples presented here; to 0.005 times the minimum coefficient of the diagonal of K.

In order to reduce the size of the problem a sub-structuring technique could be used. For this, constrained degrees of freedom denoted by ue and unconstrained ones ui are segregated and the functional P is rewritten as:

u ] 11 T [ K •• e K! 1e
As the minimization over ui is unconstrained it is attained by: 

(39) [START_REF] Cohn | Engineering Plasticity by Mathematical Progra111111ing[END_REF] and lee is the mxm identity matrix. One could now choose one of the alternative schemes already described in order to solve the reduced primal problem.

At this point it is interesting to note that for the rigid punch problem considered here one could write:

[ K .• K.

11.

1e

K • K~ K 1e ee 0 0
As the global stiffness matrix K is not positive-definite the dual problem cannot be written as in [START_REF] Oden | Nonlocal friction in contact problems in plane elasticity[END_REF]. It is more convenient then to construct a reduced primal problem by condensation of all degrees of. freedom not related"to the contact surface and solve the reduced problem by Lemke's algorithm. The condensation process is always po•ssible provided that the deformable body is properly restrained.

From the point of view of computer implementation, the solution of the unilateral contact problem by the Gauss-Seidel algorithm with relaxation and projec~ion (restricted to constraint sets of the type a~uSb) seems to be the simplest one. However, substantial computer savings may be achieved if a condensation process is performed before the iterative phase begins. More efficient are the pivoting methods, which were developed first in the theory of Linear and Quadratic Programming and then extended to the linear complementarity problem (Lemke's algorithm). One of the most interesting properties of the Lemke's algorithm is that if gives the exact solution of the discrete problem in a 6.i.n.Ue. number of steps.

•

The fact that the class of unilateral contact problems reported here can be associated with constrained minimization problems provides the posaibility of employing"the classical descent algorithm& used in the minimization of funetionals: steepest descent, gradient, conjugate gradient, etc. (See e.g. [8,16,17D.Another class of solution algorithms is that of penalty algorithm (see {8,9,16)).

NUMERICAL EXAMPLES

In this section some numerical examples (reported by the authors at [2o-25)) are analysed in order to show tbe feasibility of the preceding variational formulations and algorithms.

The first example consists of an elastic beaa, schematically shown in Figure 4, which has been modelled by 8 beam element. The beaa is built-in at node 1 and has unilateral supports at nodes 3,5,7 and 9. Four load cases have been considered, all of them consisting of the same vertical concentrated load P applied at nodes 2,4,6 and 8, respectively.

For each load case the deformed configuration is shown in Figure S and the corresponding support reactions are listed in Table 1 

• I • s • 7 • • ~$i 4 J • 1 • l 2 • • f L f L ... L 'c L ; .. 4 •••• •••• t .• w I.
All these results agree with the exact solution and correspond to the solution of the primal problem by the GSRP algorithm and the termination criterion adopted was: max i

The relationship between the number of iterations and the overrelaxation parameter w is also shown in Figure 5.

The second example is that of the tridimensional p1p1ng shown in Figure 6 which was subjected to a temperature increase of 800°F. The structure is built-in at nodes I and 8 and has unilateral supports (with gaps) at nodes 4 and 6. The support reactions are listed in Table 2 The third example is that of a long" circular cylinder resting on a rigid and frictionless horizontal support and subjected to a vertical compressive distributed load as indicated in Figure 7(a). The cylinder is analysed under uniform pressure q on the top and a state of planestrain is assumed. The cylinder is also assumed to be homogeneous, isotropic, linearly elastic with Young's modulus E•IOOO and Poisson's ratio V•0.3 and has a radius R•8. The discrete model adopted is that shown in Figure 7{a) where 136 four node isoparametric finite elements are used resulting in 304 degrees of freedom. Four .load cases were considered corresponding to the distributed loadings of q•3.75, q•6.25, q•12.5 and q•30.

In Figure 7 Uzawa's algorithm was also applied to this example and seting £•0.0001 converged with 129, 119, 109 and 109 iterations for load cases 1 to 4. The time required was about 5 times the CPU time used by Lemke's algorithm.

The fourth example is that of a circular plate of radius Ra60 and constant thickness h•4 resting on a frictionless rigid horizontal foundation. The plate is subjected to its own weight and to an upward vertical load P•100 uniformly distributed on a disk of radius r•8 concentric with the plate.

The discrete model adopted corresponds to a uniform mesh of 120 The last example consists in the indentation of a rectangular block by a rigid solid with a cylindrical contact surface of radius R•S as shown schematically in Figure 9(a). The material properties are: Young's modulus E•1000, Poisson's ratio V•O.J. A state of plane-strain is assumed and five "load" cases were considered, corresponding to prescribed values for the depth of indentation a-0.1,0.2,0.3,0.4 and a-0.5 while e was prescribed as zero.

Due to the symmetry of the problem only one-half of the block was discretized by means of 202 four-node isoparametric finite elements resulting in 440 degrees of freedom. Figure 9(b) displays the adopte.d mesh before and after deformation (for a-0.8) and Figure 9(c} shows the relationship between a and the total applied force P.

Finally Figure 9(d) shows the normalized contact pressure obtained from l.agrange multipliers compared to the Hertz solution in solid lines. These results correspond to the condensation of all degrees of freedom not related to contact. and solution of the reduced primal problem by Lemke's algorithm.

PART II. UNILATERAL CONTACT PROBLEM WITH FRICTION THE VARIATIONAL FORMULATION

Consider again the same body taken at Part 1, but now one supposes there is an initial gaps between the body and the rigid foundation s on anc. Also, on anc friction boundary conditions are assumed to hold and in the notation of Part 1 they read: an c on an c

The classical formulation of the Signorini problem with friction is: find the displacement field u which satisfies the equilibrium equations and boundary conditions: K is a nonempty closed convex subset of V•(H 1 (n))'.

div{I)E (u}) + b • 0 in n (42) Df(u)n • a on anf (43) u • 0 on an (44) u u•n -s ~ 0 u•n -s < 0 ... Df(u)n• 0 u•n -s • 0 + o (u) •Df(u)n•n ~ 0 and on an (45) n c lot(u)l < nla <u>l + ut • 0 n lat(u)l • nlo (u)l + :V.'=O s.t. ut • -}.
From eqs. (42)-(44) one obtains by means of the divergence theorem the relation:

4(u,v-u) • i(v-u) + J a (u)(v -u )dan+ 30 t t t c + J a (u)(v -u )dan an n n n c
for every v such that v•O on 30u.

From (45)-,s the following inequality results: on an c which combined to (46) implies the variational inequality:

4(u,v-u) ~ i(v-u)-J 30 nlon<u>l<lvtl-lutl>dan. c +I a (u)(v -u )d3n 30 n n n c
for any v such that v•O on anu.

From (45) 1 1 , and v eK one has the following variational inequality problem:

a(u,v-u) + j(u,v) -j(u,u) ~ t(v-u)
'llv eK where:

j(u,v) • fnnlon(u)llvtldO (46) (47) (48) (49) (50) 
It can be shown [7) that the classical problem (42)-( 45) is formally equivalent to the problem (49). Since the normal component of the stress density vector on 30c is defined only as linear form, lon(u)l has no mathematical meaning.

The issue of existence and uniqueness of solutions for ( 49) is still open. For a particular situation Necas et al [START_REF] Necas | On the solution of the variational inequality to the Signorini problem with small friction[END_REF] showed the existence of solutions to (49) provided that n is sufficiently small. Duvaut [START_REF] Duvaut | Equilibre d'un solide elastique avec contact unilateral et frottement de Coulomb[END_REF] introduced the idea of non-local friction law and stablished an existence result for any friction and also uniqueness for the case of small friction. Oden and Pires {ll,l2,ll) proposed a class of. nonlocal laws as well as numerical algorithms for obtaining approximate solutions for contact problem. See also [START_REF] Panagiotopoulos | Inequality problems in Mechanics and Applications[END_REF] and the results reported by M. Cocu [START_REF] Cocu | Existence of solutions of Signorini problems with friction[END_REF].

However, for the special case where the normal stress on is prescribed along 30c, (0 0 •Fn) • Duvaut and Lions [7] established the existence and uniqueness of the solution. In this case the contact Surface 30c is known in advance and Un is nOt prescribed On 30c. The boundary conditions on 30c reduce to: loti < g + ut • 0 loti • g + ut • -Aot for some A~O where g•nlrnl is given and represents the maximum tangential stress that can be developed due to friction along anc. ii With the normal stress in 30c found in (i) solve the special friction problem with prescribed normal stress, inequality (52).

iii) Tangential stress found in (ii) are then used as additional loads in Signorini 1 s problem without friction (i) and the steps (i), (ii) and (iii) are repeated until convergence is (hopefully) achieved.

Introducing the functional:

f (v) • J F •v d30 t 30 t t c
where Ft is a given distribution of tangential forces along anc, the procedure described above can be written as: The procedure just described, whose convergence has not been formally proved yet, involves two minimization problems. In the frist one the main difficulty is due to the constraint set~ while in the second one the difficulty arises due to the non-differentiability of jg(v).

Panagiotopoulos [START_REF] Panagitopoulos | A nonlinear progra11111ing approach to the unilateral contact and friction boundary value problem in the theory of elasticity[END_REF] follows the scheme described above solving both minimization problems by non-linear programming techniques; Campos, Oden and Kikuchi [START_REF] Campos | A numerical analysis of a class of contact problems with friction in elastostatics[END_REF] adopt a penalization technique in the first problem and a regularization technique in the second one. Some other possibilities are presented by Raous [START_REF] Raous | Contacts unilateraux avec frottement en viscoelasticite[END_REF] and Haslinger and Panagiotopoulos (3]. The basic idea used here is duality [7]. The first minimization problem is substituted by the equivalent saddle-point problem: inf veV (54) where the constraint set I is absent. The Lagrangean L 1 (v,An) is given by:

In the second minimization problem the non-differentiable functional j (v) is replaced by: 

L 2 (v,At) • F(v)-f (v) + f A •v dClQ n an t t c (55) 
The Lagrange multipliers An and At can be interpreted, by duality, respectively as the normal stress on anc and the tangential stress, due to friction, on 311c.

APPROXIMATE SOLUTIONS

To obtain approximate solutions for the probems formulated in the preceding section the finite element method is used to construct finitedimensional approximation spaces. For plane problems the following interpolation scheme can be adopted: v • tq where t is the matrix of interpolation functions for the displacements field v in terms of the nodal unknowns q and ~ is a row-vector with interpolation functions for the Lagrange multipliets An and At in terms of the parameters p and t. The global interpolant& are constructed from local bilinear interpolatns associated to a four-node quadrilateral isoparametric finite element. The interpolation of At and An is done by means of piecewise constant functions along the sides of the elements on 311c. In this way problems (54) and (55) are approximated by: and min q max l~tj:>g

(56) (57)
where K ia the standard stiffness matrix, F, Ft and Fn are vectors of nodal loads which are equivalent, respectively, to the applied load system R., tangential loads due to friction and normal reactions in the contact surface. The matrices H and A and the vector S are given by: (58) A second load case, corresponding to F•10 and f~1S, was analysed considering n•0.2 and the results are summarized in Table 6 where it can be seen that nodes 1 to 14 are in adhesion and nodes 15 to 33 are in a sliding condition.

Other load cases were also analysed and the results obtained agree with those found by Raous using a different algorithm [START_REF] Raous | Contacts unilateraux avec frottement en viscoelasticite[END_REF].

FINAL REMARKS

Concluding this introduction and following Prof. G. Del Piero's remarks it is important to emphasize that besides the unilateral problem which was seen before, there are other type of problems which are also associated to unilateral restrictions. Among these problems which approximate solutions will be given by mathematical programming techniques one may enumerate fracture problems, problems which arise on non resisting tension materials (concrete, rocks, ceramics, soils, bricks, etc.), limited strength in tension, etc.

Problems associated to plasticity should also be mentioned. Elasticplastic behavior is another important example of unilateral internal restrictions. Here the reader will find a wide variety of applications of mathematical programming problems {40].

Finally, the problems associated to structural optimization should be emphasized. Here the reader can observe that the numerical algorithms applied to optimization will from now on be applied to structural analysis ( 41 I. ( 2] STADTER, J.T.; WEISS, R.D.; "Analysis of contact through finite element gaps", Compu..te/1.4 and Stlwc.tul!.u, vol. 10, 867-873, 1979.

( 3] HASLINGER, J.; PANAGIOTOPOULOS, P.D.; "The reciprocal variational approach to the Signorini problem with friction. Approximation results", Pll.ocudhtgl. o6 the 'Roya.l Soc.i..e.ty o6 EdinbWtgh, 98A, 365-383, 1984.

( 4) HASLINGER, J.; HLAVACEK, J.; "Approximation of the Signorini problem with friction by a mixed finite element method", J.MILtlt.

Anal.Appl., 86, 99-122, 1982.

[ 5) de SAXCE, G.; NGUYEN DANG HUNG; "Dual analysis of frictionless problems by displacement and equilibrium finite elements", Eng. 
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  w e C ({}) • {h; h suff •. reg., h•O on an} 0 then vel{ and (10) is reduced to:

J 0 (

 0 div0DE(u))+b]•wd0 • 0 1/w e C 0 (Q)

  Wt are elemen'tl of the epace C 1 (D), one obtaint ODE(u)n)t • 0 on an c which tells us that the reaction ~ aseociated to the unilateral kinematical restrictions on aDc must be normal to the boundary, i.e.: ~ • ~ n • DE (u)n n and (13) is reduced to:

  large, the expreseion AV -u has values arbitrarily neaatives, therefore (16) leads to: n n ~ ~ 0 D Finally, considering at (15) v•O and v•2u one will have:

  n ~f Functional F expresses the potential energy of the body and is the eum of the elastic energy and the energy of the external loads. Proposition (P3) may be regarded as a generalization-of the Minimum Potential Energy Principle of classical elasticity. la ebb aecciem ._. raaul u wbieb ue well D<Ml Ul.d establiab tbe exiatuea Ul.d of be preauced. Y a real Bllbert: apace r: V+B a fU1leticul defiaed em Y E a acm a.ptr cloaad aubaet of Y Then, tbere exlata a uaiqu aalutiem u e J[ of t:be ru,,. .. ,., .... r(u) • four coa.dit:iou bold: convex: i.e. for I ~ 1) &1.\d tp!y + 3. J b differntiabla em E; i.e. for ••ch u elt t:bere eabta a operator Dr(uh Y'f'V• aucb that wber:e ie cha 01.\•v•xv•(<Dr(u),v> v"), i.e. for v a J[ r ( v ) .ad cba aolutiem u ca alao ••riatiooal ,~.~, .. ~~"~''•"-) • J b•v dQ + J a•v d30 n anf Then, as a consequence of the Korn's inequality ['2] and from the properties of the elasticity tensor the bilinear s~etric form a(•, •): VXV+1R is continuous and v-elliptic, i.e. there exists positive constants M and m such that: a(u,v) ::0 Mil ul~ll vi~ a(u,u) ~ mil ul~ where:

  Figure2

  until where P.[•) is the projection operator for the interval [a suitable tolerance. b) The constraint set Au~cIn this ease the primal problem:min {.!. u•ltu-u•d 2 Au~ cis equivalent to the saddle-point problem:

i

  l n.i.tc:.aliza:Uon -Choose >. 0 il:O -Find u 0 : Ku 0 • f -ATAo ii) I.teM.ti.on a. Set An+t .• max{O,An+Y(Aun-c)} b. Find un+t: K-1 un+l • f-ATAn+t c. Repeat a) and b) until II An+t_>.nlltll >.nil :S £ where £ is a suitable tolerance

  (fi-Kieue) Substituting into F(u.,u) one obtains the ~ced ~ ~blem: 1 e min {l u •K* u -u •f*} 2 e ee e e e Subjected to the m constraints associated to ue and where:

  (b) normalized contact stresses are shown together with the results given by the classical Hertz solution [26). Contact stresses were calculated by averaging element nodal stresses obtained by solving the dual problem by Lemke's algorithm. Similar results were obtained solving the dual problem by the GSRP algorithm with &.0.001. The number of iterations required is shown in Table J. Solution of the. primal problem by the GSRP algorithm with w-1.8 and &•0.0001 required 275,266,307 and 321 iterations respectively for load cases 1 to 4. Seting &•0.001 the number of iterations required for the solution of the reduced primal problem is shown in Table 4. ........... ..........

  the ~:n:Lc:•~ne;ua of freed0111. The aaterial of the elastic eoeataata £•2. If <me radius of the a-44 and the deflectioa at 8 4 P•0.8085 aad the value of the takaa the value solid discrete model here the valuea firat 21 DOdes froa the eeater are and 1 &iVea by the IOlutioa of the dual Lemke'S the sa.e results are obtained after 795 iteration• witb • uaias the GSRP al&orithm. the solutioo of the £.0.0001 end a,-.1.95 I poor reaulta for ~ reactions. Difficulties arifted with the use of U&awa' To with the automatic choice for well in the third example did not work at trials were aade before the termination teat with satisfied. the values of y.-8000 (1147 However the thoae in seconds for all the alternatives were and 313 and to results

  Figure 9

  a given positive function on anc and Fn is a given normal stress distribution on anc and defining the subspace v v • {v e V: vir •O} u the PVW for the special problem of friction with prescribed normal stress can be stated as: Find u e V such that -JDE(u)•E(v-u)dQ-j (v) + j (u) + i(v-u) shown [7] that to solve this inequality is equivalent to solving the following minimization problem in£ [F(v)+j (v)-f (s problem with friction, inequality (49), the following iterative procedure can be envisaged: i Solve Signorini's problem without friction, problem (P2) or (PJ).

1)

  Given ~-1 find uk solution of the minimization problem inf [F(v)-ft(v)] vtiK 3) Find u* solution of the minimization problem inf [F(v)+j (v)-f (v)] veV g n -:it 4) Calculate Ft•Ot(u*) and repeat all steps for k•2,3, ••• until convergence is achieved.

  g sup J A •v d3Q AteA anc t t where: 3 J\-0.-(Al,AJ'Al); L i•1 A~ (x) :> g 2 (x) , 1 X e (lQ } c and one is led to the equivalent saddle-point problem: with:
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Table 1 .

 1 . Support reactiona for exaaple 1

	R.eact1ons Load Case 1	"1 Rl a, 0.966 0.7SS 0.228	Rs 0.018	ll7 0.0	ll, -0.001
	J,.oad Case 2	0.141	0.012	0.453	0.565	o,o	-0.029
	Load Case 3	-0.138	-0.052	o.o	0.591	0.490	-0.030
	Load Case 4	-0.115	-0.029	o.o	0.0	0.587	0.442

I I

Table 2 .

 2 Support reactions for example 2

	and