
HAL Id: hal-01295229
https://hal.science/hal-01295229

Submitted on 30 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RDBG: a Reactive Programs Extensible Debugger
Erwan Jahier

To cite this version:
Erwan Jahier. RDBG: a Reactive Programs Extensible Debugger. 19th International Workshop on
Software and Compilers for Embedded Systems (SCOPES’16), May 2016, Sankt Goar, Germany.
�hal-01295229�

https://hal.science/hal-01295229
https://hal.archives-ouvertes.fr

RDBG: a Reactive Programs Extensible Debugger

Erwan Jahier
Univ. Grenoble Alpes/CNRS, VERIMAG

F-38000 Grenoble, France

ABSTRACT
Debugging reactive programs requires to provide a lot of inputs –
at each reaction step. Moreover, because a reactive system reacts
to an environment it tries to control, providing realistic inputs can
be hard. The same considerations apply for automatic testing. This
work take advantage on previous work on automated testing of re-
active programs that close this feedback loop.

This article demonstrates how to implement opportunistically
such a debugging commands interpreter by taking advantage of
an existing (ocaml) toplevel Read-Eval-Print Loop (REPL). Then
it shows how a small kernel is enough to build a full-featured de-
bugger with little effort. The given examples provide a tutorial for
end-users that wish to write their own debugging primitives, fitting
to their needs, or to tune existing ones.

An orthogonal contribution of this article is to present an efficient
way to implement the debugger coroutining using continuations.

The Reactive programs DeBuGger (RDBG) prototype aims at be-
ing versatile and general enough to be able to deal with any reactive
languages. We have experimented it on 2 synchronous program-
ming: Lustre and Lutin.

Keywords
Programmable Debuggers; Dynamic Analysis; Monitor; Reactive
systems; Synchronous languages; Interpreter; Compiler; Code In-
strumentation; Continuations.

1. INTRODUCTION
Reactive systems and synchronous languages. A reactive system
is an assembly of hardware and software that continuously interacts
with its environment, typically via sensors and actuators. Because
reactive systems are often critical, dedicated languages that offer
strong guaranties on the software behavior were designed. Syn-
chronous languages [1, 2, 11], for instance, ensure that the gener-
ated code uses a bounded amount of memory and execution time. A
lot of efforts has also been put on formal verification and automated
testing, but almost no work on debugging. Of course, for programs
which by construction, contain no loop, no memory leak, and no

To appear in 19th International Workshop on Software and Compilers for
Embedded Systems (SCOPES’16), May 23th to 25th, 2016, Sankt Goar,
Germany

segmentation fault, a debugger seems less necessary. Nonetheless,
the remaining errors, revealed by testing or formal verification, can
still be difficult to spot.

Debugging reactive programs : closing the feedback loop. One
difficulty when debugging reactive programs is that they often re-
quire a lot of inputs – at each activation step. Moreover, those
inputs are not always easy to provide, as they can depend on past
values of the program inputs and outputs. Actually, we face exactly
the same problem when performing automated testing: to provide
realistic input sequences, we need to take into account the follow-
ing feedback loop: the program influences its environment, which
it turn influences (reacts to) the program. The testing tool of reac-
tive programs LURETTE tackles this problem by providing a lan-
guage dedicated to the modeling/simulation of program environ-
ments [12]. This language, named Lutin [24], is an extension of
Lustre [11] designed to model non-deterministic reactive systems.
To test automatically a program, this idea is therefore to write in
Lutin the program environment model, and then to execute the pro-
gram under test inside this simulated environment.

Since we have the same problem for debugging than for testing,
the idea is to re-use the LURETTE infrastructure to close feedback
loop. This is all the more natural to use the same framework that
it is precisely the objective of a testing tool to detect bugs that a
debugger would then help to track. In order words, to debug a reac-
tive program, one can reuse the simulated environment used for the
tests, which revealed the error that require the use of a debugger.
Note that in this framework, the environment model is also a reac-
tive program (written in Lutin), which therefore can also contain
bugs, and also necessitates a debugger. Our debugger is actually
able to debug Lutin programs too.

RDBG, an extensible debugger for reactive programs. In this
article, we present RDBG, a debugger for reactive programs that
re-use the LURETTE plumbing and its ability to plug various kinds
of reactive programs together in closed loop. RDBG has a plugin
mechanism to connect to reactive program runtime systems. Two
language plugins are currently implemented: one for Lustre V6,
and one for Lutin. RDBG is extensible in a second manner: it pro-
vides a language which allows programmers to write their own de-
bugging and monitoring commands. This language is based on a
kernel made of 2 primitives that allow one to inspect the debuggee
entrails, and to navigate through its runtime events list (observation
points). The sequence of events comes from a pre-defined instru-
mentation of the target language runtime system that is provided
via the language plugin.

The RDBG command interpreter. A debugger is a program that
runs in coroutine with a program to be debugged, and that observes
and controls its execution. It interacts with the debuggee by inter-
preting in loop commands, possibly coming from a Graphical User

Interface. For a debugger to be extensible, we need this commands
interpreter to be able to interpret programs. An opportunistic way
of obtaining such a commands and programs interpreter is to rely
on an existing host language equipped with a good set of libraries,
and an interactive Read-Eval-Print Loop (REPL); in this work, we
use OCAML as the host language, which has both a REPL and a
rich set of libraries. One drawback to rely on OCAML is of course
that it requires to know OCAML to program debugging extensions.
However, if one just wants to use RDBG, or maybe just wants to
tune existing commands, knowing OCAML is not necessary. Like-
wise, the examples in this article are given in OCAML, but no deep
knowledge of ml should be needed to understand them.
A continuation-based kernel. Finally, we propose an original and
efficient way of implementing coroutine using continuations. In-
deed, continuations allow to execute arbitrarily complex user code
in debuggee process, which avoid costly context switches and com-
munications between the 2 processes.
Debuggers and academic languages. Debuggers are fastidious to
implement. From an academic perspective, working on debuggers
is time-consuming and difficult to bring out. Nevertheless, debug-
gers are useful. This is the reason why:

• we have chosen to rely on existing REPL and libraries;

• we have paid a particular attention to re-usability by defining
a language agnostic interface and by providing to compiler
developers a simple plugin API;

• we have focused on separation of concerns by providing de-
bugger users an API that allows them to implement their own
debugging and monitoring programs with no need to look un-
der the hood of the runtime system.

Another claim we try to argue in this article is that, once you
have a carefully crafted programmable kernel, extending it with
new debugging commands is easy and entertaining.
Plan. While RDBG aims at being versatile enough to debug any
kind of reactive programs, it currently works with 2 synchronous
languages. We therefore first briefly review them in Section 2 –
albeit a deep understanding of synchronous languages is not nec-
essary to grasp the debugging commands we show. Section 3
presents the RDBG user interface, and demonstrate how to build a
full-featured debugger on top of a small kernel. Section 4 presents
the RDBG plugin mechanism, that is the API for language develop-
ers that would wish to use it. Section 5 describes the design choices
and the prototype implementation. Section 6 briefly discusses the
2 current language plugins. Section 7 presents related work.

2. SYNCHRONOUS LANGUAGES
RDBG is (currently) plugged onto 2 synchronous languages, Lus-

tre and Lutin [16]. The examples we give in the forthcoming sec-
tions refer to Lutin, and even though a deep understanding of it
is not necessary, we recap its main characteristics now. We first
recap the Lustre main characteristics, as Lutin is based on Lustre
concepts.
Lustre. A reactive system interacts continuously with its environ-
ment, at a speed imposed by the environment. Typically, it first
acquires inputs via sensors, performs a computation step, and then
sets its outputs through actuators. This cyclic behavior can be peri-
odic (time-triggered) or sporadic (event-triggered).

Because reactive systems are often critical, dedicated languages
that offer strong guaranties on the software behavior were designed.
Synchronous languages [1, 2, 11] such as Lustre were successful in

this respect as they make reasoning about time easier, thanks to
the notions of logical time and deterministic concurrency. Syn-
chronous languages generate code with known bounds on their
memory usage and execution time.

The Lustre compiler (as well as Scade, its industrial version)
generates a C step function, that is meant to be embedded in sys-
tems with no operating system. In Lustre, one defines reactive pro-
grams via sets of data-flow equations that are executed in paral-
lel. Equations are structured into nodes. Nodes transform input
sequences (or streams) into output sequences.

Lutin. In order to be able to test Lustre programs (or programs
written in other reactive languages) automatically, we need to sim-
ulate the System Under Test (SUT) environment. To generate re-
alistic input sequences, such simulated environment needs to take
into account the SUT outputs. This simulated environment is there-
fore itself a reactive program which environment is the SUT. The
Lutin language [24] was designed to program stochastic reactive
programs, that can model reactive system environments [12, 14].

Lutin is a probabilistic extension of Lustre with an explicit con-
trol structure based on regular operators: sequence (fby, for “fol-
lowed by”), Kleene star (loop), and choice (|). At each step,
the Lutin interpreter (1) computes the set of reachable constraints,
which depends on the current control state; (2) removes from it
unsatisfiable constraints, which depends on the current data-state
(input and memories); (3) draws a constraint among the satisfiable
ones (control-level non-determinism); (4) draws a point in the solu-
tion set of the constraint (data-level non-determinism). This chosen
point defines the output for the current reaction. The solver of the
current Lutin interpreter uses Binary Decision Diagrams (BDD)
and convex polyhedron libraries. It is thus able to deal with any
combination of logical operators and linear constraints. Unlike
Lustre, Lutin programs are not meant to be embedded, and only
an interpreter is available.

2.1 A debugger-based Lutin tutorial
One benefit of a debugger is to allow programming language

learners to discover its operational semantics. Maybe because lan-
guage programming environments don’t always come with a de-
bugger, language introductory tutorials are seldom based on them.
Here, we propose to describe the semantics of Lutin on a trace pro-
duced the Lutin debugger we present later. The objective is actually
less to present the semantics of Lutin (which is not the topic of the
article) than to motivate the use of debuggers and to introduce some
of our debugger concepts step by step.

let between(x, min , max : int) : bool =
((min < x) and (x < max))

node sut(T:int) returns (b:bool) = loop true

node env(b:bool) returns (T:int) =
T = 4 fby
loop {
| { b and T = pre T } fby { T = 1 + pre T }
| not b and between(T,5,10) }

Figure 1: A Lutin program made of one macro, and two nodes

Figure 1 contains a Lutin program made of two nodes, sut and
env. The sut node produces a Boolean output b out of a integer
input T, while env produces T out of b. As the names of those 2
nodes suggest, sut plays the of the system under test (or program
under debug), and env plays the role of its environment. Therefore

RDBG (as LURETTE would do) executes them by plugging the out-
put of sut onto the input of env, and the output of env onto the
input of sut; Figure 2 contains a trace of such an execution.

We propose now to base the explanation of the operational be-
havior of those two nodes by describing this trace representing 5
RDBG steps, i.e., 5 reaction steps of the program plus 5 reaction
steps of the environment. This trace is made of 6 columns. The
first two columns contain the event and the step numbers. The third
column contains the event kind: call events are generated when a
node is called, and exit events when a node is exited; a try event
is generated when the Lutin solver tries to solve a constraint. If
the constraint is satisfiable (resp. unsatisfiable), a sat event (resp.
usat) is emitted. top events are generated at the end of a global
step. The fourth column contains the node name. The fifth column
contains the node variables instantiation. The last column contains
the source code corresponding to the event.

1 1 call env []
2 1 try env [] "T = 4"
3 1 sat env [] "T = 4"
4 1 exit env [T=4] "T = 4"
5 1 call sut [T=4]
6 1 try sut [T=4] "true"
7 1 sat sut [T=4] "true"
8 1 exit sut [T=4,b=f]"true"
9 1 top - [T=4,b=f]

10 2 call env [b=f]
11 2 try env [b=f] "b and T = pre T"
12 2 usat env [b=f] "b and T = pre T"
13 2 try env [b=f] "not b and between(T,5,10)"
14 2 sat env [b=f] "not b and between(T,5,10)"
15 2 exit env [b=f,T=6]"not b and between(T,5,10)"
16 2 call sut [T=6]
17 2 try sut [T=6] "true"
18 2 sat sut [T=6] "true"
19 2 exit sut [T=6,b=t]"true"
20 2 top - [T=6,b=t]
21 3 call env [b=t]
22 3 try env [b=t] "b and T = pre T"
23 3 sat env [b=t] "b and T = pre T"
24 3 exit env [b=t,T=6]"b and T = pre T"
25 3 call sut [T=6]
26 3 try sut [T=6] "true"
26 3 sat sut [T=6] "true"
28 3 exit sut [T=6,b=t]"true"
29 3 top - [T=6,b=t]
30 4 call env [b=t]
31 4 try env [b=t] "T = 1 + pre T"
32 4 sat env [b=t] "T = 1 + pre T"
33 4 exit env [b=t,T=7]"T = 1 + pre T"
34 4 call sut [T=7]
35 4 try sut [T=7] "true"
36 4 sat sut [T=7] "true"
37 4 exit sut [T=7,b=f]"true"
38 4 top - [T=7,b=f]
39 5 call env [b=f]
40 5 try env [b=f] "not b and between(T,5,10)"
41 5 sat env [b=f] "not b and between(T,5,10)"
42 5 exit env [b=f,T=9]"not b and between(T,5,10)"
43 5 call sut [T=9]
44 5 try sut [T=9] "true"
45 5 sat sut [T=9] "true"
46 5 exit sut [T=9,b=t]"true"
47 5 top - [T=9,b=t]

Figure 2: An execution trace of the Lutin program of Figure 1

Each row in this trace corresponds to a particular observation
point in the execution. The first event indicates that the env node is
called first (which was specified to RDBG at some point). Events 2
to 4 inform that the constraint "T=4", is tried; obviously, this con-
straint is satisfiable and bounds the variable T to 4. Then comes

the turn of sut; events 4 to 8 inform that the elected constraint it
"true", which is actually is the only one in this node. The Lutin
semantics says that when there is no constraint, the output are gen-
erated at (pseudo-)random. Here the value f (false) is chosen.

At event 10 starts the second step. This time the elected con-
straint in env is "b and T=pre T" (the pre operator gives access
to the value of a variable at the previous step). The Lutin seman-
tics states that when a constraint is elected, inputs and memories
are replaced by their values (constant propagation). Hence, this ex-
pression is evaluated to "false and T=4", which is equivalent to
"false", which is unsatisfiable. This appears in the usat event 12.
Since this branch of the alternative failed to produce a solution, the
other branch is tried (event 13); "not b and between(T,5,10)"

evaluates to "true and between(T,5,10)", and then after ex-
pansion of the between macro to "5<T and T<10". This con-
straint has 4 solutions, and event 15 shows that the random genera-
tor has chosen the value 6. For the sut node, it has chosen t (true)
at event 19.

For the third step, the only satisfiable alternative for env is the
first one ("b and T=pre T"). By chance it is the one that is tried
first (at event 22); after input and memory values propagation, it
evaluates to "T=6", which has a unique solution. At step 4, there
is no alternative, and the elected constraint is "T = 1 + pre T",
which also has a unique solution (T=7) (cf event 33). The trace
events for step 5 are similar to the ones of step 2, except that the
only satisfiable constraint is chosen in the first place this time.

4

6

7

9

step false
step

b

T

1 2 3 4 1 2 3 45 5

true

Figure 3: The chronograms of the trace of Figure 2

This execution is represented graphically in Figure 3 by chrono-
grams representing the values taken by T and b at each step during
the execution.

3. A REACTIVE PROGRAMS DEBUGGER
RDBG targets reactive languages. New languages can be added

via a plugin mechanism described in Section 4. RDBG REPL relies
on the OCAML one. RDBG is based on a small kernel, that can
be extended by standard OCAML programs. In this section, we
present this kernel (3.1), and how it can be adapted to various target
languages (3.2). Then we demonstrate how it can be extended (3.3).

In order to ease the work of eventual plugins contributors, and
to encourage programmers to contribute to the RDBG libraries of
debugging commands, the code has been licensed under GPL.
Everything related to this free software project can be found at
http://rdbg.forge.imag.fr/.

3.1 The RDBG User Interface
The RDBG User Interface is made of one data type (Event.t)

and one function run, that starts the debugging session and returns
the first event:

val run : params -> Event.t

http://rdbg.forge.imag.fr/

where params holds the set of the debug session parameters (file
names, number of steps to perform, interpreter options, etc.), and
where Event.t is a structure defined as follows (in ml syntax):

type t = {
name : string;
lang : string;
depth : int;
nb : int;
step : int;
inputs : var list;
outputs: var list;
data : (string * Data.v) list;
next : unit -> t;
terminate: unit -> unit;
sinfo : (unit -> src_info) option;
kind : kind;

}

The field name holds the name of the node instance associated to
the current event; lang holds its programming language name, and
depth its depth in the call tree; nb and step respectively hold a
counter that is incremented at each event, and at each step; inputs
and outputs hold the node interface variable names and types;
data holds the node variable values (interface and local variables).
Data.v is a data type provided by RDBG that holds debuggee vari-
able values (Boolean, integer, real, structure, array, enum); next
holds a frozen function that, when called with the unit value, re-
turns the next event; terminate holds a function that allows to ter-
minate the execution cleanly; kind and sinfo hold the src_info
and the kind data types, that are defined below.

type src_info = {
expr : Expr.t ; (* current ctrl point *)
atoms: src_info_atom list;(* atoms expr is made of *)

}

The src_info data type holds source-level information. Its
expr field holds an expression that represents the current control
point; it explains how the outputs are computed from the inputs
at the current step. The Expr.t data type is standard expression
type that is supposed to be versatile enough to be able to repre-
sent all supported languages constructions. The atoms field holds

a finer-grained representation of this expression; this information
is split into a list of atoms, because the parallelism is a constitu-
tive characteristic of synchronous languages, and thus the current
control-point is often distributed in all over the source code.

type src_info_atom = {
file : string ;
line : int * int ; (* line nb begin/end in file *)
char : int * int ; (* char nb begin/end in file *)
stack: src_info_atom list; (* call stack *)

}

The src_info_atom is a structure made of a file name (file),
the beginning/ending character and line numbers of the atom in the
source code (char and line fields). The stack field holds the call
stack.

type kind = Top | Call | Exit | MicroStep of string

The kind data type is used to classify the various kinds of events.
Top events are generated at the top-level of the cyclic process, and
before a new round of reactive program steps is started (it is there-
fore where the step counter is incremented). Call events are gen-
erated when a node is called, and Exit events when it is exited.
MicroStep events are generated during the execution of the node.

The various kinds of MicroStep depend on the node language. We
give examples of possible MicroStep kind sets for the Lutin lan-
guage below (3.2).

This interface aims at being general and versatile enough to rep-
resent runtime information of any reactive languages. At least it is
able to represent the information of Lustre and Lutin. Now we
present a few Lutin specificities.

3.2 The Lutin Micro-steps
The MicroStep variant of the event kind data type of Section 3.1

is meant to hold language specific event kinds. Choosing a good set
of event kinds is a delicate task: it defines the granularity of the in-
strumentation, and is the result of a trade-off between precision and
efficiency. Too many events would slow-down the execution, but
missing events could prevent to understand what’s going on with a
buggy program. Discussing the current instrumentation granularity
we made for Lutin is out of the scope of this article, which aims
at presenting the debugger language. However, we have chosen to
briefly present it because we use them in some examples we give
in Section 3.3. Moreover, it illustrates the RDBG API versatility.

In order to report faithfully what happens during a Lutin program
execution, stopping at call or exit time is not enough. We need a
finer-grained observation of the execution, that indicates which ex-
pressions contribute to the computation of the outputs of the current
step. Lutin expressions are made of constraints that may or may not
be satisfiable, depending on the inputs, and on the past (memory
values). Hence we have defined, specifically for the Lutin plugin,
3 new kinds of events: try events, when a constraint is elected;
sat events, when the selected constraint is satisfiable and (hence)
is used to compute the outputs; usat events, when the selected
constraint is not satisfiable.

type lut_evt =
| Top | Call | Exit
| Try (* Try a constraint to compute the step *)
| Sat (* The tried constraint is satisfiable *)
| Usat (* The tried constraint is Not satisfiable *)

val to_lut_evt: Event.kind -> lut_evt
val from_lut_evt: lut_evt -> Event.kind

3.3 What can be done with this small kernel
We now demonstrate by examples how such a minimalist ker-

nel can be used to implement classic and advanced debugging fea-
tures. Some of them might not be the more efficient solution, but
the longest is about 20 lines long. Indeed, the emphasis here is
put on readability and conciseness, rather that on efficiency. For
example, each time we use linear-time lists, logarithmic-time asso-
ciation tables (a.k.a. maps) would have been more efficient but less
readable.

All programs described below are part of the standard RDBG li-
brary module RdbgStdLib, available in the RDBG git repository.

3.3.1 Forward Moves
Moving to the next event (next) just requires to unfreeze the

next field function of the current event. Moving several events for-
ward (nexti) can be done using a counter (i) that is decremented
until it becomes equal to 0:

type e = Event.t (* a type alias for brevity *)
let rec (next: e -> e) = fun e -> e.next()
let rec (nexti : e -> int -> e) =
fun e i -> if i > 0 then nexti (next e) (i-1) else e

Similarly, we can implement commands that go to a specific
event number (goto_i), or step number (goto_si):

let rec (goto_i : e -> int -> e) =
fun e i -> if e.nb < i then goto_i (next e) i else e

let rec (goto_si : e -> int -> e) =
fun e i -> if e.step <i then goto_si (next e) i else e

Note that here and in the following, we present purely functional
commands. Equivalent commands using side-effects are easy to
define (and sometimes easier to use) like this:

(rdbg) let e = ref (run params);;
(rdbg) let ni i = (e := nexti !e i);;
(rdbg) ni 42;; (* moves 42 events forward *)

e is now a reference to an event. ni only takes as argument the
number of forward steps to perform, and modifies the event refer-
ence through a side-effect.

3.3.2 Conditional Breakpoints
The next_cond command below takes as argument a predicate

(cond) over events which states when to stop moving forward.

let rec (next_cond:e -> (e -> bool) -> e) =
fun e cond ->
let ne = next e in
if cond ne then ne else next_cond ne cond

The criterion to decide when to stop going forward can of course
be arbitrarily complex. The only limitation on what can be done
comes from the information contained in the event itself. For ex-
ample, suppose you notice that your program violates some invari-
ant (or test oracle); one can then move forward up to the first event
where the invariant is violated to inspect the state of your program.
More specifically, suppose that this invariant consists of an alarm

that should be set to true when a numeric variable “T” overcomes
a threshold. One could write the following interactive query at the
RDBG prompt:

(rdbg) let stop_here e =
let val_T = vi "T" e and val_alarm = vb "alarm" e in

not ((val_T > 42.0) => val_alarm);;
(rdbg) let e = next_cond stop_here e;;

The invariant, encoded into the stop_here predicate, is then
provided to the next_cond command. vi and vb (which code is
straightforward and part of RdbgStdLib) respectively extract from
the data field of an event the value of an integer and a Boolean
variable .

3.3.3 Forward Moves (cont)
As we have mentioned before, several events can have the same

step number. When navigating into the trace history of cyclic
nodes, it is sometimes interesting to go to the next step of the cur-
rent node. To implement such a command, we can again take ad-
vantage of the next_cond command:

let rec (step : e -> e) =
fun e -> next_cond e
(fun ne -> e.name = ne.name && e.depth = ne.depth &&

e.kind = ne.kind && e.step = ne.step -1)

We can define a stepi command using step in exactly the
same manner we have defined nexti using next. By using this
step command instead of next in the definition of goto_si (Sec-
tion 3.3.1), we obtain a new behavior that some users might prefer

over the initial one. It is the whole purpose of a programmable de-
bugger to provide a tool that makes it is easy to fit one’s specific
needs or preferences.

3.3.4 Hooks
Hooks are another very useful mechanism to let users tune their

environment. They can be implemented, for example using hash
tables, as follows:

let (hooks: (string , (Event.t -> unit)) Hashtbl.t) =
let ht = Hashtbl.create 1 in
Hashtbl.add ht "print_event" print_event; ht

let add_hook = Hashtbl.replace hooks
let del_hook = Hashtbl.remove hooks

Hook functions are stored into a table that maps a string identi-
fier to functions over events. This string can be used to remove or
update the associated function. Here, we initialize the hooks asso-
ciation table with a single hook that contains an event printer. The
idea then is to modify the next function of Section 3.3.1 and apply
hook functions at each event.

let rec (next : e -> e) =
fun e ->
let ne = e.next () in

Hashtbl.iter (fun _ f -> f ne) hooks; ne

The trace of Figure 2 in Section 2.1 has been produced calling in
loop this next function.

3.3.5 Custom Traces
Depending of the debugging context, customizing the trace that

is printed by the debugger is useful. For instance, not all events
are of interest, and for events that are printed, different informa-
tion might give more insights. Suppose for example that one wants
to modify the trace of Figure 2 in two manners. Firstly, by focus-
ing on events that occur in the env node (indeed the sut ones are
boring). Secondly, by printing constraints expressions where input
and memory values are propagated. To do that, one can get the ex-
pression (Expr.t) contained in the expr field of the sinfo field,
as well as the variable values in the data field, and program an
expression pretty-printer that instantiates bound variables.

(rdbg) let (my_pp_event:e -> unit) = fun e ->
if e.name = "sut" then () elsesinfo2str
let cstr = match LutinRdbg.to_lut_evt e.kind with
| Top | Call | Exit -> ""
| Try -> (" \""^(sinfo2str e)^"\"")
| Sat | Usat ->

(match e.sinfo with None ->"" | Some si ->
" \""^(Expr.pp si.expr e.data)^"\"")

in
Printf.printf "%2i %2i %s %s [%s] %s\n" e.nb e.step
(kind2str e.kind) e.name (data2str e.data) cstr;

flush stdout ;;

In addition to the expression printer, this event printer uses
4 straightforward functions that we don’t show the code of ei-
ther: to_lut_evt, that translates MicroStep event kinds into
Lutin event (lut_evt) for type safety; sinfo2str, kind2str, and
data2str, are used by the default event printer, translate sinfo,
kind, and Data.v to strings. Once the new printer is defined, one
just needs to update the print_event hook, as illustrated in the
RDBG interactive session below:

(rdbg) del_hook "print_event";;
(rdbg) add_hook "print_event" my_pp_event ;;
(rdbg) let e = stepi (run()) 4;;

The last line which calls the stepi command of Section 3.3.3
produces the following trace:

1 1 call env []
2 1 try env [] "T = 4"
3 1 sat env [] "T = 4"
4 1 exit env [T=4]
9 1 top - [T=4,b=f]

10 2 call env [b=f]
11 2 try env [b=f] "b and T = pre T"
12 2 usat env [b=f] "false and T=4"
13 2 try env [b=f] "not b and between(T,5,10)"
14 2 sat env [b=f] "true and between(T,5,10)"
15 2 exit env [b=f,T=6]
20 2 top - [T=6,b=t]
21 3 call env [b=t]
22 3 try env [b=t] "b and T = pre T"
23 3 sat env [b=t] "true and T = 6"
24 3 exit env [b=t,T=6]
29 3 top - [T=6,b=t]
30 4 call env [b=t]
31 4 try env [b=t] "T = 1 + pre T"
32 4 sat env [b=t] "T = 1 + 6"
33 4 exit env [b=t,T=7]
38 4 top - [T=7,b=f]
39 5 call env [b=f]
40 5 try env [b=f] "not b and between(T,5,10)"
41 5 sat env [b=f] "true and between(T,5,10)"
42 5 exit env [b=f,T=9]
47 5 top - [T=9,b=t]

This is trace of exactly the same execution as the one that gener-
ated the trace of Figure 2. To obtain the same execution, one needs
to provide the same seed the Lutin pseudo-random generator. Such
expression printers or evaluators are good examples of code that
can be written once for all, leveraging the work of plugins writers.

3.3.6 gdb-like Breakpoints
Another classic feature of debuggers consists in moving forward

in the event history by setting breakpoints. We show a possible
implementation of breakpoints that uses a syntax reminiscent to
the gdb one. Basically, one can set a breakpoint on a node (break
"a_node_id") or on a particular line of a particular file (break
"[[file::line][file::line]]"). We store each breakpoint in
a table indexed by a global counter bc. This index can then be used
to remove a specific breakpoint:

let bc = ref 0
let (brkpts: (int * string) list ref) = ref []
let (break : string -> unit)=

fun str -> brkpts := (!bc,str)::! brkpts; incr bc
let (del: int -> unit) =

fun i -> brkpts := List.remove_assoc i
let (del_all:unit ->unit) = fun () -> brkpts :=[]; bc:=0

Now, the only non-trivial part consists in digging into the event
data structure for the file name and line number. This work is done
by the brk_matches event predicate below, that returns true if and
only if the event argument matches the breakpoint string. This time
the code is a bit laborious. Nevertheless, we report it here to justify
the fact it fits into a few lines of code.

let (brk_matches : e -> string -> bool) =
fun e b ->
match e.sinfo , Str.split (Str.regexp "::") b with
| _, [] -> false (* no more breakpoint *)
| None , _ -> false (* no src info at current evt *)
| Some _ , [node] -> e.name = node
| Some src , [file;line] ->

let i,atoms = int_of_string line ,(src ()). atoms in
List.exists (fun { line=(debut ,fin) ; file=f } ->

f=file && debut <= i && i <= fin) atoms
| _, _::_::_ -> failwith "syntax error in brkpts"

Readers that want to check that code, and that are non-familiar
with the Str module of the OCAML standard library, just need
to know that a call to “Str.split (Str.regexp "::")” on the
string “"fn::42"” returns the list of strings “["fn";"42"]”. No-
tice here the advantage of having a rich existing library to ease
the engineering a set of debugging commands on top of this small
kernel. Now, implementing the (classic) continue command that
moves forward until a breakpoint is reached is a simple as:

let (continue : e -> e) = fun e ->
let stop e = List.exists (brk_matches e) !brkpts in
next_cond e stop

We could refine this command and take into account the char-
acter numbers. We could also have a better handling of errors in
breakpoint syntax.

3.3.7 Profilers
Now we illustrate how to implement a simple counting profiler.

For purely data-flow languages like Lustre, such a profiler is com-
pletely useless, as every equation is used at each step. Therefore
we present now a command that work for Lutin. It is specific to
Lutin as it uses the micro-events presented in Section 3.2. The idea
is simply to stop at try events and to associate in a table constraints
and counters. Each counter is initialized to 1 when a constraint is
elected for the first time, and incremented the following times.

let prof_tbl = Hashtbl.create 50
let (incr_prof:Event.src_info_atom -> unit)=fun si ->
try let cpt = Hashtbl.find prof_tbl si in

Hashtbl.replace prof_tbl si (cpt+1)
with Not_found -> Hashtbl.add prof_tbl si 1

let (prof_add: e -> unit) = fun e ->
match to_lut_evt e.kind , e.sinfo with
|Try ,Some si->List.iter incr_prof(si()). atoms
| _ -> ()

This profiler could be enhanced (using sat and usat events) by
computing 2 counters per constraint, to count the number of times
an elected constraint is satisfiable.

Then we can rely again on the hook mechanism of Section 3.3.4
to implement a command that sets on and off the profiler mode:

let (profiler : bool -> unit) = fun on ->
if on then add_hook "profile" prof_add

else del_hook "profile"

At this stage, the only remaining work is to write a prof_tbl

pretty-printer. One could also implement a coarse-grained time-
profiler using the Unix.time() function at call and exit events
for instance.

3.3.8 Backward Moves (Time-travel)
Efficient reversible debuggers [9, 28] store periodically (at

ckpt_rate rate) events in a table. Then, in order to move back-
ward, it suffices to move to the lastly stored event, and then to move
forward until an event that satisfies the event predicate is found, as
illustrated by the arrows labeled by 1 in the drawing below.

2

3

4

1

5

When no satisfying event is found, we start again with the previ-
ously stored event (cf the arrows 2, 3, and 4). When a satisfying
event is found, we still need to go forward up to the last backward
jump source, to make sure that no more recent event satisfies the
event predicate (cf the 2 bullets representing satisfiable events, and
the arrow 5). Of course this only works with programs with no
side-effect.

val rev_cond : e -> (e -> bool) -> e
let rec rev_aux e i =

(* Search for ce in]e.nb;i[s.t. p ce holds *)
let e = if p e then e

else next_cond e (fun e -> p e||e.nb=i)
in

if p e then
rev_aux_last e e i (* search for a more recent *)

else (* e.nb = i *)
let x = (e.nb / !ckpt_rate - 1) in

if x < 0 then
(print_string "No suitable event found.";
Event.set_nb 1;
Hashtbl.find ckpt_tbl 0)

else
let e = Hashtbl.find ckpt_tbl x in
Event.set_nb e.nb;
rev_aux e ((x+1) * !ckpt_rate -1)

and rev_aux_last e e_good i =
(* Search for e in]e_good.n;i[s.t. p e holds *)

if e.nb = i then e_good else
let e = next_cond e (fun e -> p e || e.nb = i) in
let e_good = if p e then e else e_good in

rev_aux_last e e_good i
in
if e.nb = 1 then
failwith "Cannot move backward from event 1."

else
let x = ((e.nb - 1)/ !ckpt_rate) in
let last_e = Hashtbl.find ckpt_tbl x in
Event.set_nb last_e.nb;
rev_aux last_e (e.nb -1)

3.3.9 Dynamic code modifications
A simple thing we could do to allow dynamic code modification

from RDBG would be to change slightly the type of the next field of
Event.t, and replace the unit type by an event. Although it might
looks a bit dangerous, such kinds of features can, in some circum-
stances, be useful, for instance to test quickly (without modifying
the source code) an hypothesis over the debuggee behavior.

4. THE PLUGIN API
We now present the plugin Application Programming Interface,

that is the API for developers that would wish to plug their runtime
system (compiler or interpreter) to RDBG. In order to do so, one
needs to provide an OCAML library that implements the following
interface:

type sl = (string * Data.v) list (* substitutions *)
type e = Event.t (* a useful alias *)
type plugin = {

inputs: (string * string) list; (* name and type *)
outputs: (string * string) list; (* name and type *)
init_inputs : sl;
init_outputs : sl;
step : sl -> sl;
step_dbg: sl -> e -> (sl -> e -> e) -> e;

}
val make: string array -> plugin

The sl alias type (substitution list) is used to hold variables in-
stantiation. The plugin data type holds the list of interface variable
names and types in its inputs and outputs fields. It also contains

two fields, init_inputs, and init_outputs, to provide initial
values to interface variables (i.e., the value of their memories be-
fore the first step). Then there are 2 step functions. One simple
step function computes an output substitution out of an input one;
this function is used to run program as LURETTE would. RDBG
can then be used as testing tool1. The step_dbg function is more
complex, and holds the instrumented version of the runtime system;
step_dbg exposes its depths to RDBG via events. Its first param-
eter is an input variable substitution (the same one as step). The
second parameter is the event of the current step (the initial event is
built by RDBG). The third parameter is the continuation function.
It holds the code that has to be executed after; it is used to fill the
next field of Event.t. Notice that the output substitution is not
returned by step_dbg, but it should be used in the continuation
function instead.

In order to be used with the RDBG interactive command inter-
preter, plugin modules implementing this interface must be pro-
vided under the form of a byte-code library (.cma). RDBG com-
mands can also be executed in batch using ocaml native compiler.
In that case one also has to provide a dynamic native code library
(.cmxs) version of the plugin.

We have currently implemented 4 such plugins. We have al-
ready mentioned the 2 language plugins for Lutin (LutinRun)
and for Lustre (Lus2licRun). We also have an OCAML plugin
(OCamlRun) that allows to plug programs that are executed via
a compiler that uses ocaml as a back-end (cf the examples/o-

caml/ directory of the RDBG git repository). We also have a plugin
based on standard input and standard output reading and writing
(StdioRun). This one is useful to enter inputs manually, via the
keyboard or a GUI. It can also be used to plug any kind of systems
via TCP/IP sockets. Of course this plugin provides no step_dbg

function.
A few additional details about the Lustre and the Lutin plugins

are given in Section 6.

5. COROUTINE VIA CONTINUATIONS
The debugger works in coroutine with the debuggee, and nav-

igates through the event sequence generated by the program ex-
ecution. Alternative manners of implementing coroutine are dis-
cussed in Section 5.4. In RDBG, as the plugin interface suggests, the
coroutine relies on continuations. The idea is the following. Trans-
forming a function into Continuation Passing Style (CPS) leads to
a function that never returns. It never returns because each function
is supposed to call, at its last breath, another function (its contin-
uation), that itself never returns. Once all functions are in CPS,
instead of calling the continuation, we can return a data structure
(Event.t) that contains a frozen function, which allows to return
the control back to the calling function (next field). This calling
function (the debugger) hence runs in coroutine with the contin-
uation function (the debuggee). Using this technique, it is easy
to execute user code in the debuggee process, which avoids costly
context switches and inter-process communications.

In the following, we illustrate this idea by describing how we
have transformed the LURETTE top-level command interpreter to
implement RDBG.

5.1 From LURETTE to RDBG via CPS
We illustrate the old idea of transforming a function into CPS on

a vanilla LURETTE top-level function. Once all the administrative
work has been done (parsing the various test parameters such as
the test length, the name of the SUT, the name of its environment,

1The LURETTE tool is now an alias for rdbg -lurette

the name of the file where to save generated data, etc.), LURETTE
basically performs: (1) a step of the environment; (2) a step of the
SUT to which LURETTE provides the environment outputs of the
previous step; (3) a step of the environment to which LURETTE
provides the SUT outputs of the previous step; (4) a step of the test
oracle, that checks if some property is violated; (5) a test to check
if the required number of steps is reached, and if it is not the case,
loop back to item 2.

Here is a Vanilla implementation of the LURETTE process, with
a SUT that increments its input by one, and an environment that
increments its input by 2, and this during 42 steps (we skip the
oracle step).

-- The lurette toplevel -- A CPS version of it
let p a b = a + b let p a b ct = ct(a + b)
let step_env a = p a 1 let step_env a ct = ct(p a 1)
let step_sut a = p a 2 let step_sut a ct = ct(p a 2)
let rec loop i a = let rec loop i a =
if i > 42 then if i > 42 then
raise (End a) else raise (End a) else
let b = step_env a in step_env a (loop2 i)
let c = step_sut b in and loop2 i b = step_sut b
loop (i+1) c (loop (i+1))

The initial version is at the left, and the CPS version at the right.

5.2 Instrument the runtime system with events
For the sake of simplicity, we consider here a simplified event

type. Doing the same on the event type defined in Section 3.1 is
not more difficult.

type event = { msg : string ; next : unit -> event }

Once the LURETTE interpreter is in CPS, instrumenting it with
event is straightforward. Here is our CPS Vanilla LURETTE top-
level instrumented with events:

let plus a b cont = {
msg = Printf.sprintf "%i+%i" a b;next=fun() -> cont (a+b) }

let step_env a cont = {
msg = "step_env" ; next = fun () -> plus a 1 cont }

let step_sut a cont = {
msg = "step_sut" ; next = fun () -> plus a 2 cont }

let rec loop2 i b = step_sut b (loop (i+1))
and loop i a =

if a > 42 then failwith "the end"
else { msg = "top"; next = fun () -> step_env a (loop2 i)}

Readers of the pdf version of this article are encouraged to try
to copy/paste this code out into an OCAML top-level. Then, for
example, to launch a 42-steps test session, one just need to do this:

let e = ref(loop 42 0) in while(true)
do print_string (!e.msg^"\n");e:=!e.next() done ;;

5.3 Handling lists of steps
Most of the modifications in the LURETTE code to transform

it into CPS were as straightforward as what is described in Sec-
tion 5.1. The only convoluted one is the following.

The real implementation of LURETTE is able to run concurrently
several programs under test, using several environments (and sev-
eral oracles to assess the test result). LURETTE therefore iterates
over a list of step functions, to compute a list of outputs from a list
of inputs. More precisely, we need a function that take as input 2
parameters : a list of variable substitution (holding the global step
input values), a list of step functions, that generate some output val-
ues. And this function computes from this the substitution holding

the global step output values. Here is a possible ml implementation
of such a function.

let (step_sl: ’s list -> (’s list -> ’s list) list ->
’s list) =

fun sl sut_step_sl_l ->
List.flatten (List.map (fun f -> f sl) sut_step_sl_l)

Now we need a CPS version of it. Here is a possible solution
that works (and that is used by RDBG):

let (step_dbg_sl :
(’s list -> ’e -> (’s list -> ’e -> ’e) -> ’e) list ->
’s list -> ’e -> (’e -> ’s list -> ’e) -> ’e) =

fun step_dbg_sl_l sl e cont =
let rec iter_step stepl (ctx ,res_stepl) sl =
match stepl with
| [] -> cont ctx (List.flatten (res_stepl))
| step::stepl ->

step sl ctx (fun res_sl ctx ->
iter_step stepl (ctx ,(res_sl :: res_stepl)) sl)

in
iter_step step_dbg_sl_l (ctx ,[]) sl

5.4 Other debugger technologies
One contribution of this article is to base the coroutine between

the debugger and the debuggee on the use of continuations. Hence
we review here what other debuggers do in this respect.

Code Instrumentation. In order to implement debuggers, some
code instrumentation is required for the coroutine with the de-
buggee. Typically, a test is added before each event site to decide
whether the control should remain in the debuggee, or should go
the debugger. This test can be added via a source to source trans-
formation [8, 28], or at compile time via a compiler option that
will add those tests in the generated code. The granularity of this
instrumentation influences the performance.

Another option is to modify the executable program at run time
(e.g., using ptrace) and to add instructions to jump into the debug-
ger [27]. The advantage is of course at the performance side, as one
doesn’t need to perform additional tests at all. But of course such
debuggers depend on the target platform. This (mainstream) family
of debuggers even often exploits dedicated processor instructions
to deal with memory modifications, which is particularly important
for low-level languages with no automatic memory management.

Some debuggers (e.g., Caml and java) adopt a intermediate so-
lution, which consists in modifying the byte-code on the fly. The
resulting debuggers remain platform independent, and save tests.
But going though a byte-code interpreter has a performance impact.
Another (minor) disadvantage is that the native and the byte-code
backends might sometimes behaves differently.

Another very popular way of designing debuggers is to instru-
ment a source code interpreter (as we do here). In that case the
tests are embedded in the interpretation algorithm. Is is certainly
the easiest method to implement debuggers when an interpreter ex-
ists. But developing interpreters on purpose duplicates the develop-
ment and the maintenance effort when a compiler exists. Moreover,
such interpreters generally run slower than the compiler equivalent,
and may behave differently.

In the Lustre RDBG plugin (Lutin has no compiler), we mini-
mize that problem as the instrumented interpreter operates over a
data structure obtained at the very last pass of the compiler: the
one that is pretty-printed to perform the code generation. Errors in
this pretty-printing would lead to bugs that would be hided in the
debugger indeed. An alternative would have been to instrument an
OCAML Lustre code generator.

Coroutine. Most debuggers live in a separate process, and com-
municate with debuggees through sockets, pipes, or signals. The
advantages of having two distinct processes are: (1) to be more ro-
bust to memory leaks, and program crashes; (2) to have a better
separation of concerns; (3) to allow remote debugging; (4) to allow
to debug several programs at the same time.

On the other hand, having the 2 routines in the same process (1)
permits a direct access to the runtime system depths; (2) avoids
costly context switches (which are less costly than using threads);
(3) avoids costly messages writing/parsing (for sockets and pipes).

6. ABOUT THE CURRENT PLUGINS
Describing in detail how we have implemented the Lustre and

the Lutin RDBG Plugins is out of the scope of this article. A few
remarks still.
Plugins Design. The step_sut and the step_env functions of
Section 5.2 typically (but not necessarily) comes from a Lustre
and a Lutin program respectively. In the corresponding plugins,
step functions have been transformed into CPS and instrumented
in a similar manner. The fact that OCAML is the language used to
program LURETTE/RDBG as well as the Lutin and the Lustre inter-
preters makes the work easier, when it comes to provide an OCAML
library that implement the RDBG plugin interface.

The important and difficult work is actually to define a good set
of event kinds, so that the operational semantics of the underlying
language is usefully depicted by the generated events. Some in-
formation can be reconstructed inside the RDBG process, but not
all. Nevertheless, it is always possible to control the granularity of
the instrumentation when compiling the plugin, and use different
granularity for different runtime analysis.

For Lutin, the choices we made with respect to event granularity
are described in Section 3.2. For Lustre, our current RDBG-plugin
prototype has no micro-step event; each equation generates at most
2 events. It generates a call and an exit event if the equation is
a node call, and it generates no event if for variable assignments
(wires). This choice only makes sense because the Lustre V6 com-
piler [15] does not inline all the nodes (unlike the previous versions
of Lustre compilers).
Plugins Performance. We have performed a few timing measure-
ments on a simple Lutin program that performs 4 node calls made
of trivial constraints (equalities). Then we have compared the exe-
cution time of that node executed with the step function, and with
the step_dbg function executed via the RDBG command below:

let rec loop e = loop (e.next ()) in loop(run ());;

and have observed a penalty smaller than 1%. When executed with
the profiler of Section 3.3.7, the slowdown is of 30%. A Lutin node
with more complex constraints would exhibit a negligible slow-
down, as the constraint resolution would dominate the whole exe-
cution time. To give an order of idea, the number of events that are
generated per second is around 4000 (on a PC running at 3.6GHz,
with 8Mo of RAM) and of 8000 on a Lustre equivalent one. Even
though the Lustre plugin has no internal events, it generates more
events per second, because equations are easier to compute than
constraints. More systematic benchmarks should definitely be done
on the language plugins.

Note that actually, one source of inefficiency is due to the use of
the ocaml top-level, which implies the use of the byte-code com-
piler. Indeed, the Lutin interpreter is compiled with the ocaml na-
tive code compiler (ocamlopt). The performance ratio between the
byte-code and the native code compilers is reputed to be of 5 in av-
erage (it was 2 on our small program). Nevertheless, this drawback

only concerns interactive sessions. It is still possible to run RDBG
scripts in batch mode, and to benefit from the native code compiler
performances. For efficient interactive sessions, a solution would
be to use a native code top-level [10].

7. RELATED WORK
Debugging reactive programs. Ludic is a debugger of Lustre pro-
grams [19]. It features standard step-by-step backward and forward
execution and conditional breakpoints using a dedicated Lustre in-
terpreter. It also provides an algorithmic debugging engine. Al-
gorithmic debugging consists in exploring a tree (here, a dataflow
network) by asking yes/no questions to the user until the bug is
found [26]. Implementing on top of RDBG the Ludic exploration
algorithm, that fits into one page, should be straightforward. The
advantage would be to take advantage of the modular compilation
capabilities of the Lustre V6 compiler. Indeed, the embedded Lu-
dic Lustre interpreter inlines the whole Lustre program, and only
the toplevel node is observable. The Lustre V6 compiler generates
“synchronous objects” that are either interpreted (by the RDBG plu-
gin or the Lustre V6 interpreter) or pretty-printed into a C function.
The questions asked by the exploration engine might thus be much
more precise and easier to answer than it is on inlined code.

Sabry and Sparud performs dataflow reactive programming on
top of Haskell using streams and lazy computations. They designed
a debugger [25] that gives insights on the behavior of such pro-
grams at the level of recursive equations and abstract away from
the underlying Haskell semantics, in order to provide better error
messages in case of instantaneous dependency – which are stati-
cally detected by all synchronous language compilers.

Elm is a functional language that targets non-critical reactive sys-
tems such as web services and GUIs [5]. The Elm’s debugger [21]
thus focuses on interactions with the GUIs. Such a neat GUI inte-
gration is complementary to the program-based stochastic stimuli
generation we propose.

Programmable debuggers. Several debuggers offer the possibil-
ity of defining debugging commands, taking advantage of existing
programming environments and relying on an execution trace view
as a sequence of runtime events.

The Prolog’s debugger Opium [7] and its derivatives (Coca [6]
for C, Morphine [13] for Mercury) are based on a Prolog REPL.
The debugger and the debuggee communicates via sockets, but
some primitives perform as much event filtering as possible in the
debuggee process to avoid context switches and inter-process com-
munications. In Morphine, non-interactive commands (monitors)
can be compiled and executed entirely in the debuggee process us-
ing dynamic linking.
MzTake[20] is programmable debugger for Java based on the Fr-

Time [4], a functional reactive programming language based on
Scheme. It communicates with the JVM via sockets (Java Debug
Wire Protocol) and pays the price of 2 context switches per event.

Expositor [22] is a programmable debugger for C, based on GDB
and UndoDB, a commercial replay debugger. The tool provides a
Python API to program debugging commands. Typical Expositor
program performs an initial query that computes a sub-trace of a
complete execution trace. Then other queries can perform further
filtering, merge several traces, or fold them. For efficiency, they use
a mixture of lazy computations and replay debugging.

The moldable debugger [3] is a framework for smalltalk, that
eases the development of domain-specific debuggers, and orches-
trate their use. Such domain-specific debuggers are not really
meant to be developed by end-users though.

8. CONCLUSION
We have presented RDBG, the first debugger for reactive pro-

grams that takes into account the feedback loop. We have demon-
strated how to implement a full-featured debugger on top of a small
kernel plugged onto 2 existing execution systems. This debugger
is based on 4 simple and orthogonal ideas: (1) take advantage of
existing languages (for the read-eval-print loop and the libraries);
(2) provide users a pre-defined instrumentation and a simple API
that allow them to implement their own debugging or monitoring
commands; (3) provide compiler designers a plugin API; (4) use
continuations to implement coroutine efficiently.

The advantages are multiple: a lightweight implementation (al-
though, there remains technical work in the plugin implementa-
tion), which allow to program (or tune) efficient commands (no
context switches nor inter process communications). This architec-
ture offers a good separation of concerns, as debugging commands
are implemented separately, and can serve for several language plu-
gins. Besides, having the same infrastructure for testing and debug-
ging is very handy; when the test exhibits a bug, everything is ready
to launch a debug session.

RDBG has been designed for debugging reactive programs, that
interact continuously with their environments. But RDBG can be
used with non-reactive programs, which can be seen as degener-
ated kind of reactive programs that perform only step and that don’t
interact with their environment (no input/output). More generally,
part of the proposed infrastructure does not depend on the target
language characteristics (Lustre or Lutin). It depends on the other
hand on the host interpreter language (ocaml). However, any lan-
guage equipped with a REPL and good libraries could be used as
host language. In our implementation however, the fact that the
host language, is also the language used to compile and interpret
the targeted languages (Lustre and Lutin) facilitates the task.

The use of continuations to implement coroutine is not specific to
any host or target language either. It might be easier with language
where functions are first class citizens though.

RDBG can be used by any execution system that can be inter-
faced with ocaml. RDBG could therefore be a good starting point
to provide to synchronous programs that do not have a debugger
yet, in particular for languages which runtime system is already
based on OCAML such as Lucid synchrone [23], ReactiveML [18],
or Stimulus [17] – Stimulus is an industrial version of Lutin that is
developed by the Argosim company.

9. REFERENCES
[1] P. Amagbégnon, L. Besnard, and P. Le Guernic.

Implementation of the data-flow synchronous language
Signal. ACM SIGPLAN Notices, 30(6):163–173, 1995.

[2] G. Berry and G. Gonthier. The Esterel synchronous
programming language: Design, semantics, implementation.
Science of computer programming, 19(2):87–152, 1992.

[3] A. Chiş, T. Gîrba, and O. Nierstrasz. The moldable debugger:
A framework for developing domain-specific debuggers. In
Software Language Engineering. Springer, 2014.

[4] G. H. Cooper and S. Krishnamurthi. Embedding dynamic
dataflow in a call-by-value language. In Programming
Languages and Systems, pages 294–308. Springer, 2006.

[5] E. Czaplicki and S. Chong. Asynchronous functional reactive
programming for GUIs. In ACM SIGPLAN Notices,
volume 48, pages 411–422. ACM, 2013.

[6] M. Ducassé. Coca: An automated debugger for c. In
Proceedings of the 21st international conference on Software
engineering, pages 504–513. ACM, 1999.

[7] M. Ducassé. Opium: An extendable trace analyzer for
Prolog. The Journal of Logic programming, 39(1), 1999.

[8] M. Ducassé and J. Noyé. Tracing Prolog programs by source
instrumentation is efficient enough. The Journal of Logic
Programming, 43(2):157 – 172, 2000.

[9] J. Engblom. A review of reverse debugging. In System,
Software, SoC and Silicon Debug Conference (S4D), 2012,
pages 1–6. IEEE, 2012.

[10] M. Fischbach and B. Meurer. Towards a native toplevel for
the Ocaml language. arXiv preprint arXiv:1110.1029, 2011.

[11] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous dataflow programming language Lustre.
Proceedings of the IEEE, 79(9):1305–1320, Sept. 1991.

[12] E. Jahier, S. Djoko-Djoko, C. Maiza, and E. Lafont.
Environment-model based testing of control systems: Case
studies. In Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems, Grenoble, April 2014.

[13] E. Jahier and M. Ducassé. Generic program monitoring by
trace analysis. TPLP, 2(4):611–643, 2002.

[14] E. Jahier, N. Halbwachs, and P. Raymond. Engineering
functional requirements of reactive systems using
synchronous languages. In Int. Symp. on Industrial
Embedded Systems, Porto, Portugal, 2013.

[15] E. Jahier and P. Raymond. The Lustre V6 Reference Manual.
[16] E. Jahier and P. Raymond. The Lutin Reference Manual.
[17] B. Jeannet and F. Gaucher. Debugging embedded systems

requirements with stimulus: an automotive case-study. In 8th
European Congress on Embedded Real Time Software and
Systems (ERTS 2016), 2016.

[18] L. Mandel and M. Pouzet. ReactiveML: A Reactive
Extension to ML. In Proceedings of the 7th ACM SIGPLAN
International Conference on Principles and Practice of
Declarative Programming, PPDP ’05. ACM, 2005.

[19] F. Maraninchi and F. Gaucher. Step-wise+ algorithmic
debugging for reactive programs: Ludic, a debugger for
Lustre. In AADEBUG, 2000.

[20] G. Marceau, G. H. Cooper, J. P. Spiro, S. Krishnamurthi, and
S. P. Reiss. The design and implementation of a dataflow
language for scriptable debugging. Automated Software
Engineering, 14(1):59–86, 2007.

[21] L. Pandy. Elm’s Time Traveling Debugger.
https://github.com/elm-lang/debug.elm-lang.org.

[22] K. Y. Phang, J. S. Foster, and M. Hicks. Expositor: scriptable
time-travel debugging with first-class traces. In Int. Conf. on
Software Engineering. IEEE, 2013.

[23] M. Pouzet. Lucid synchrone, version 3. Tutorial and
reference manual. Université Paris-Sud, LRI, 2006.

[24] P. Raymond, Y. Roux, and E. Jahier. Lutin: a language for
specifying and executing reactive scenarios. EURASIP
Journal on Embedded Systems, 2008.

[25] A. Sabry and J. Sparud. Debugging reactive systems in
Haskell. In Haskell Workshop, Amsterdam, volume 4, 1997.

[26] E. Y. Shapiro. Algorithmic program debugging. MIT press,
1983.

[27] R. Stallman, R. Pesch, S. Shebs, et al. Debugging with GDB.
Free Software Foundation, 51:02110–1301, 2002.

[28] A. Tolmach and A. W. Appel. A Debugger for Standard ML,
1993.

https://github.com/elm-lang/debug.elm-lang.org

	Introduction
	Synchronous languages
	A debugger-based Lutin tutorial

	A Reactive programs DeBuGger
	The rdbg User Interface
	The Lutin Micro-steps
	What can be done with this small kernel
	Forward Moves
	Conditional Breakpoints
	Forward Moves (cont)
	Hooks
	Custom Traces
	gdb-like Breakpoints
	Profilers
	Backward Moves (Time-travel)
	Dynamic code modifications

	The Plugin API
	Coroutine via Continuations
	From Lurette to rdbg via CPS
	Instrument the runtime system with events
	Handling lists of steps
	Other debugger technologies

	About the current Plugins
	Related work
	Conclusion
	References

