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FOR GLOBAL BILEVEL POLYNOMIAL OPTIMIZATION

PROBLEMS∗
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Abstract. In this paper, we consider a bilevel polynomial optimization problem where the
objective and the constraint functions of both the upper-and the lower-level problems are polynomi-
als. We present methods for finding its global minimizers and global minimum using a sequence of
semidefinite programming (SDP) relaxations and provide convergence results for the methods. Our
scheme for problems with a convex lower-level problem involves solving a transformed equivalent
single-level problem by a sequence of SDP relaxations, whereas our approach for general problems
involving a nonconvex polynomial lower-level problem solves a sequence of approximation problems
via another sequence of SDP relaxations.
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1. Introduction. Consider the bilevel polynomial optimization problem

(P ) min
x∈Rn,y∈Rm

f(x, y)

subject to gi(x, y) ≤ 0, i = 1, . . . , s,

y ∈ Y (x) := argminw∈Rm{G(x,w) : hj(w) ≤ 0, j = 1, . . . , r},

where f : Rn × Rm → R, gi : Rn × Rm → R, G : Rn × Rm → R, and hj : Rm → R
are all polynomials with real coefficients, and we make the blanket assumption that
the feasible set of (P) is nonempty, that is, {(x, y) ∈ Rn × Rm : gi(x, y) ≤ 0, i =
1, . . . , s, y ∈ Y (x)} 6= ∅.

Bilevel optimization provides mathematical models for hierarchical decision mak-
ing processes where the follower’s decision depends on the leader’s decision. More
precisely, if x and y are the decision variables of the leader and the follower, respec-
tively, then the problem (P) represents the so-called optimistic approach to the leader
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and follower’s game in which the follower is assumed to be cooperative, and so the
leader can choose the solution with the lowest cost. We note that there is another
approach, called the pessimistic approach, which assumes that the follower may not
be cooperative and hence the leader will need to prepare for the worst cost (see, for
example, [11, 44]).

The bilevel optimization problem (P) also requires that the constraints of the
lower-level problem are independent of the upper-level decision variable x (i.e., the
functions hj do not depend on x). This independence assumption guarantees that
the optimal value function of the lower-level problem is automatically continuous
and so plays an important role later in establishing convergence of our proposed
approximation schemes for finding global optimal solutions of (P). A discussion on
this assumption and its possible relaxation is given in Remark 4.9 of the paper.

As noted in [31], the models of the form (P ) cover the situations in which the
leader can only observe the outcome of the follower’s action but not the action itself,
which, has important applications in economics such as the so-called moral hazard
model of the principal-agent problem. In particular, in the special case where gi
depends only on x, the sets {x ∈ Rn : gi(x) ≤ 0} and {w ∈ Rm : hj(w) ≤ 0} are
both convex sets, problem (P) has been studied in [31], and a smoothing projected
gradient algorithm has been proposed to find a stationary point of problem (P). On
the other hand, the functions f, gi, G, hj of (P) in [31] are allowed to be continuously
differentiable functions which may not be polynomials in general. For applications
and recent developments of solving more general bilevel optimization problems, see
[3, 9, 10, 11, 43].

In this paper, in the interest of simplicity, we focus on the optimistic approach
to the hierarchical decision making process and develop methods for finding a global
minimizer and global minimum of (P ). We make the following key contributions to
bilevel optimization:

• A novel semidefinite (SDP) hierarchy for bilevel polynomial problems. We
propose general purpose schemes for finding global solutions of the bilevel
polynomial optimization problem (P) by solving hierarchies of semidefinite
programs and establish convergence of the schemes. Our approach makes
use of the known techniques of bilevel optimization and the recent develop-
ments of (single-level) polynomial optimization, such as the sums-of-squares
decomposition and SDP hierarchy, and does not use any discretization or
branch-and-bound techniques as in [17, 37, 44].

• Convex lower-level problems: Convergence to global solutions. We first
transform the bilevel polynomial optimization problem (P) with a convex
lower-level problem into an equivalent single-level nonconvex polynomial op-
timization problem. We show that the values of the standard SDP relaxations
of the transformed single-level problem converge to the global optimal value
of the bilevel problem (P) under a technical assumption that is commonly
used in polynomial optimization (see [26] and references therein).

• Nonconvex lower-level problems: A new convergent approximation scheme.
By examining a sequence of ε-approximation (single-level) problems of the
bilevel problem (P) with a not necessarily convex lower-level problem, we
present another convergent sequence of SDP relaxations of (P) under suit-
able conditions. Our approach extends the sequential SDP relaxations, intro-
duced in [27] for parameterized single-level polynomial problems, to bilevel
polynomial optimization problems.
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It is important to note that local bilevel optimization techniques, studied exten-
sively in the literature [3, 10], apply to broad classes of nonlinear bilevel optimization
problems. In the present work, we employ some basic tools and techniques of semi-
algebraic geometry to achieve convergence of our SDP hierarchies of global nonlinear
bilevel optimization problems, and so our approaches are limited to studying the class
of polynomial bilevel optimization problems.

Moreover, due to the limitation of the SDP solvers, our proposed scheme can be
used to solve problems of small or moderate size and it may not be able to com-
pete with the ad hoc (but computationally tractable) techniques, such as branch-
and-bound methods and discretization schemes. For instance, underestimation and
branch-and-bound techniques were used in [1, 17, 37] and a generalized semi-infinite
programming reformulation together with a discretization technique was employed in
[44]. See http://bilevel.org/ for other references of computational methods of bilevel
optimization.

However, it has recently been shown that by exploiting sparsity and symmetry,
large-size problems can be solved efficiently, and various numerical packages have been
built to solve real-life problems such as the sensor network localization problem [24].
We leave the study of solving large-size bilevel problems for future research as it is
beyond the scope of this paper.

The outline of the paper is as follows. Section 2 gives preliminary results on poly-
nomials and continuity properties of the solution map of the lower-level problem of
(P). Section 3 presents convergence of our sequential SDP relaxation scheme for solv-
ing the problem (P) with a convex lower-level problem. Section 4 describes another
sequential SDP relaxation scheme and its convergence for solving the general prob-
lem (P) with a not necessarily convex lower-level problem. Section 5 reports results
of numerical implementations of the proposed methods for solving some bilevel opti-
mization test problems. The appendix provides details of various technical results of
semialgebraic geometry used in the paper and also proofs of certain technical results.

2. Preliminaries. We begin by fixing notation, definitions, and preliminaries.
Throughout this paper Rn denotes the Euclidean space with dimension n. The inner
product in Rn is defined by 〈x, y〉 := xT y for all x, y ∈ Rn. The open (resp., closed)
ball in Rn centered at x with radius ρ is denoted by B(x, ρ) (resp., B(x, ρ)). The
nonnegative orthant of Rn is denoted by Rn+ and is defined by Rn+ := {(x1, . . . , xn) ∈
Rn | xi ≥ 0}. Denote by R[x] the ring of polynomials in x := (x1, x2, . . . , xn) with
real coefficients. For a polynomial f with real coefficients, we use deg f to denote the
degree of f . For a differentiable function f on Rn, ∇f denotes its derivative. For
a differentiable function g : Rn × Rm → R, we use ∇xg (resp., ∇yg) to denote the
derivative of g with respect to the first variable (resp., second variable). We also use N
(resp., N>0) to denote all the nonnegative (resp., positive) integers. Moreover, for any
integer t, let Nnt := {α ∈ Nn :

∑n
i=1 αi ≤ t}. For a set A in Rn, we use cl(A) and int(A)

to denote the closure and interior of A. For a given point x, the distance from the point
x to a set A is denoted by d(x,A) and is defined by d(x,A) = inf{‖x− a‖ : a ∈ A}.

We say that a real polynomial f ∈ R[x] is sum-of-squares if there exist real
polynomials fj , j = 1, . . . , r, such that f =

∑r
j=1 f

2
j . The set of all sum-of-squares

real polynomials in x is denoted by Σ2[x]. Moreover, the set of all sum-of-squares
real polynomials in x with degree at most d is denoted by Σ2

d[x]. We also recall some
notions and results of semialgebraic functions/sets, which can be found in [6, 15].

Definition 2.1 (semialgebraic sets and functions). A subset of Rn is called
semialgebraic if it is a finite union of sets of the form {x ∈ Rn : fi(x) = 0, i =

http://bilevel.org/
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1, . . . , k; fi(x) > 0, i = k+ 1, . . . , p}, where all fi are real polynomials. If A ⊂ Rn and
B ⊂ Rp are semialgebraic sets, then the map f : A→ B is said to be semialgebraic if
its graph {(x, y) ∈ A×B : y = f(x)} is a semialgebraic subset in Rn × Rp.

Semialgebraic sets and functions are important classes of sets and functions and
they have important applications in nonsmooth optimization (for a recent develop-
ment, see [7]). In particular, they enjoy a number of remarkable properties. Some of
these properties, which are used later in the paper, have been summarized in Appendix
A for the convenience of the reader.

We now present a preliminary result on Hölder continuity of the solution mapping
of the lower-level problem. As a consequence, we provide an existence result of the
solution of a bilevel polynomial optimization problem (P).

Let F : Rn ⇒ Rm be a set-valued mapping and let ȳ ∈ F (x̄). Recall that F is
said to be Hölder continuous (calm) at (x̄, ȳ) with exponent τ ∈ (0, 1] if there exist
δ, ε, c > 0 such that

d (y, F (x̄)) ≤ c ‖x− x‖τ for all y ∈ F (x) ∩ BRm(ȳ, ε) and x ∈ BRn(x̄, δ).

In the case when τ = 1, this property is often referred to as calmness and has been
well-studied in nonsmooth analysis (see, for example, [8]). We first see that even in
the case, where G is a continuously differentiable function and the set {y ∈ Rm :
hj(y) ≤ 0} is compact, the solution map Y : Rn ⇒ Rm of the lower-level problem
Y (x) := argminy∈Rm{G(x, y) : hj(y) ≤ 0, j = 1, . . . , r} is not necessarily Hölder
continuous for any exponent τ > 0.

Example 2.2 (failure of Hölder continuity for the solution map of the lower-level
problem: nonpolynomial case). Let f : R→ R be defined by

f(y) =

{
e
− 1
y2 if y 6= 0,

0 if y = 0.

Consider the solution mapping Y (x) = argminy{G(x, y) : y2 ≤ 1} for all x ∈ [−1, 1],
where G(x, y) = (x − f(y))2. Then, it can be verified that G is a continuously
differentiable function (indeed it is a C∞ function) and

Y (x) =

{
{±
√

1
− ln x} if x ∈ (0, 1],

{0} if x ∈ [−1, 0].

We now see that the solution mapping Y is not Hölder continuous at 0 with exponent

τ for any τ ∈ (0, 1]. To see this, let xk = e−k → 0 and yk =
√

1
k ∈ Y (xk). Then, for

any τ ∈ (0, 1],

|xk|τ

d(yk, Y (0))
=
e−τk√

1
k

=

√
k

eτk
→ 0.

So, the solution mapping is not Hölder continuous at 0 for any τ ∈ (0, 1].

The Hölder continuity of the solution set of general parametric optimization
problems has been established under suitable regularity conditions; for example, see
[19, 41]. This property plays an important role in establishing the existence of solu-
tions for bilevel programming problems and equilibrium problems (see, for example,
[33] and Corollary 2.5). Next, we show that the solution map of a lower-level problem
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of a bilevel polynomial optimization problem is always Hölder continuous with an
explicit exponent which depends only on the degree of the polynomial involved and
the dimension of the underlying space. This result is based on our recent established
 Lojasiewicz inequality for nonconvex polynomial systems in [30].

For m, d ∈ N, denote

(2.1) R(m, d) :=

{
1 if d = 1,

d(3d− 3)m−1 if d ≥ 2.

Theorem 2.3 (Hölder continuity of solution maps in the lower-level problem:
polynomial case). Let hj, j = 1, . . . , r, and G be polynomials with real coefficients.
Denote d := max{deghj ,degG(x, ·)}. Suppose that F := {y ∈ Rm : hj(y) ≤ 0} is
compact. Then, the solution map Y : Rn ⇒ Rm in the lower-level problem Y (x) :=
argminy∈Rm{G(x, y) : hj(y) ≤ 0, j = 1, . . . , r} satisfies the following Hölder continuity
property at each point x̄ ∈ Rn: for any δ > 0, there is a constant c > 0 such that

(2.2) Y (x) ⊂ Y (x) + c ‖x− x‖τ BRm(0, 1) whenever ‖x− x‖ ≤ δ

for some τ ∈ [τ0, 1] with τ0 = max{ 1
R(m+r+1,d+1) ,

2
R(m+r,2d)}. In particular, Y is

Hölder continuous at x̄ with exponent τ0 for any x̄ ∈ Rn.

Proof. For any fixed x ∈ Rn, define Φ(x) = miny∈Rm{G(x, y) : hj(y) ≤ 0, j =
1, . . . , r} and let

Φx(y) :=

r∑
i=1

[
hj(y)

]
+

+ |Φ(x)−G(x, y)|.

Then, for all fixed x,

{y ∈ Rn| Φx(y) = 0} = Y (x)

=
{
y ∈ Rm

∣∣ hj(y) ≤ 0 as j=1, . . . , s, and Φ(x)−G(x, y) = 0
}
.

Note that F is compact. Now, the  Lojasiewicz inequality for nonconvex polynomial
systems [30, Corollary 3.8] gives that there is a constant c0 > 0 such that

(2.3) d
(
y, Y (x)

)
≤ c0 Φx(y)τ for all y ∈ F

for some τ ∈ [τ0, 1] with τ0 = max{ 1
R(m+r+1,d+1) ,

2
R(m+r,2d)}. Further, there is a

constant L > 0 such that

(2.4) |G(x, y)−G(x, y)| ≤ L‖x− x‖

for all y ∈ F and for all x with ‖x−x‖ ≤ δ. Denote c := (2β−1L)τ with β := c
− 1
τ

0 > 0.
For any y ∈ Y (x) we select now y ∈ Y (x) satisfying ‖y − y‖ = d(y, Y (x)). To finish
the proof, it suffices to show that

(2.5) ‖y − y‖ ≤ c ‖x− x‖τ .

To see this, note that |Φ(x) −G(x, y)| = Φx(y) ≥ βd
(
y, Y (x)

) 1
τ = β‖y − y‖ 1

τ . Since
y ∈ Y (x), it follows that G(x, y) = Φ(x) ≤ G(x, y), and hence

(2.6) ‖y − y‖ 1
τ ≤ β−1|Φ(x)−G(x, y)| = β−1

(
G(x, y)−G(x, y)

)
.
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Furthermore, as y ∈ Y (x), G(x, y) ≤ G(x, y), and therefore (2.4) gives us that

G(x, y)−G(x, y) =
(
G(x, y)−G(x, y)

)
+
(
G(x, y)−G(x, y)

)
+
(
G(x, y)−G(x, y)

)
≤
(
G(x, y)−G(x, y)

)
+
(
G(x, y)−G(x, y)

)
≤ 2L‖x− x‖ as y, y ∈ F.

This together with (2.6) yields

‖y − y‖ 1
τ ≤ β−1

(
G(x, y)−G(x, y)

)
≤ 2β−1L‖x− x‖.

Thus
d
(
y, Y (x)

)
= ‖y − y‖ ≤ c ‖x− x‖τ ,

which verifies (2.5) and completes the proof of the theorem.
In general, our lower estimate of the exponent τ will not be tight. We present a

simple example to illustrate this.

Example 2.4. Consider the solution mapping Y (x) = argminy∈R{(x− y2)2 : y2 ≤
1} for all x ∈ [−1, 1]. Clearly,

Y (x) =

{
{±
√
x} if x ∈ [0, 1],

{0} if x ∈ [−1, 0).

So, the solution mapping is Hölder continuous at 0 with exponent 1/2. On the other
hand, our lower estimate gives τ0 = 1/84. So, the lower estimate is not tight.

Corollary 2.5 (existence of global minimizer). For the bilevel polynomial
optimization problem (P), let K = {(x, y) ∈ Rn × Rm : gi(x, y) ≤ 0} and F = {w ∈
Rm : hj(w) ≤ 0}. Suppose that K1 = {x ∈ Rn : (x, y) ∈ K for some y ∈ Rm} and F
are compact sets. Then, a global minimizer for (P) exists.

Proof. Denote the optimal value of problem (P) by val(P ). Let (xk, yk) be a
minimizing sequence for the bilevel polynomial optimization problem (P) in the sense
that gi(xk, yk) ≤ 0, i = 1, . . . , s, hj(yk) ≤ 0, j = 1, . . . , r, yk ∈ Y (xk), and f(xk, yk)→
val(P ). Clearly, (xk, yk) ∈ K (and so, xk ∈ K1) and yk ∈ F . By passing to a
subsequence, we may assume that (xk, yk)→ (x̄, ȳ) ∈ K1×F . By continuity, we have
f(x̄, ȳ) = val(P ). To see the conclusion, it suffices to show that ȳ ∈ Y (x̄). Denote
εk = ‖xk − x̄‖ → 0. Then, by Theorem 2.3, there is c > 0 such that

Y (xk) ⊆ Y (x̄) + c ετk BRm(0, 1) for all k ∈ N.

As yk ∈ Y (xk), there exists y′k ∈ Y (x̄) such that

(2.7) ‖yk − y′k‖ ≤ 2cετk → 0.

Note that Y (x̄) ⊆ F , Y (x̄) is a closed set, and F is compact. It follows that Y (x̄) is
also a compact set. Passing to the limit in (2.7), we see that ȳ ∈ Y (x̄). So, a global
minimizer for problem (P) exists.

The following lemma of Putinar [39], which provides a characterization for posi-
tivity of a polynomial over a system of polynomial inequalities, can also be regarded
as a polynomial analogue of Farkas’ lemma [14]. This lemma has been extensively
used in polynomial optimization [26] and plays a key role in the convergence analysis
of our proposed method later on.
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Lemma 2.6 (Putinar’s Positivstellensatz [39]). Let f0 and fi, i = 1, . . . , p,
be real polynomials in w on Rv. Suppose that there exist R > 0 and sums-of-squares
polynomials σ̂1, . . . , σ̂p ∈ Σ2[w] such that R−‖w‖2 = σ̂0(w)+

∑p
i=1 σ̂ifi(w) for all w ∈

Rv. If f0(w) > 0 over the set {w ∈ Rv : fi(w) ≥ 0, i = 1, . . . , p}, then there exist
σi ∈ Σ2[w], i = 0, 1, . . . , p such that f0 = σ0 +

∑p
i=1 σifi.

The following assumption plays a key role throughout the paper.

Assumption 2.1. There exist R1, R2 > 0 such that the quadratic polynomials
(x, y) 7→ R1 − ‖(x, y)‖2 and y 7→ R2 − ‖y‖2 can be written as

R1 − ‖(x, y)‖2 = σ0(x, y)−
s∑
i=1

σi(x, y)gi(x, y) and

R2 − ‖y‖2 = σ̄0(y)−
r∑
j=1

σ̄j(y)hj(y)

for some sums-of-squares polynomials σ0, σ1, . . . , σs ∈ Σ2[x, y] and sums-of-squares
polynomials σ̄0, σ̄1, . . . , σ̄r ∈ Σ2[y].

We note that Assumption 2.1 implies that bothK = {(x, y) ∈ Rn×Rm : gi(x, y) ≤
0, i = 1, . . . , s} and F = {y ∈ Rm : hj(y) ≤ 0, j = 1, . . . , r} are compact sets
[26]. Moreover, Assumption 2.1 can be easily satisfied when K and F are nonempty
compact sets, and one knows the boundsN1 for ‖x‖ onK andN2 for ‖y‖ on F . Indeed,
in this case, it suffices to add redundant constraints gs+1(x, y) = ‖(x, y)‖2−(N2

1 +N2
2 )

and hr+1(y) = ‖y‖2−N2
2 to the definition of K and F , respectively, and Assumption

2.1 is satisfied with R1 = N2
1 + N2

2 , R2 = N2
2 , σi ≡ 0 for all 1 ≤ i ≤ s, σ̄j ≡ 0 for

all 1 ≤ j ≤ r, and σs+1 = σ̄r+1 ≡ 1. We also note that, under Assumption 2.1, a
solution for problem (P) exists by Corollary 2.5.

3. Convex lower-level problems. In this section, we consider the convex poly-
nomial bilevel programming problem (P ) where the lower-level problem is convex in
the sense that for each x ∈ Rn, G(x, ·) is a convex polynomial, hj are polynomials,
j = 1, . . . , r, and the feasible set of lower-level problem F := {w ∈ Rm : hj(w) ≤
0, j = 1, . . . , r} is a convex set. We note that the representing polynomials hj which
describe the convex feasible set F need not be convex, in general.

We say that the lower-level convex problem of (P ) satisfies the nondegeneracy
condition if for each j = 1, . . . , r,

y ∈ F and hj(y) = 0 ⇒ ∇hj(y) 6= 0.

Recall that the lower level convex problem of (P ) is said to satisfy the Slater condition
whenever there exists y0 ∈ Rm such that hj(y0) < 0, j = 1, . . . , r. Note that under
the Slater condition, the lower-level problem automatically satisfies the nondegeneracy
condition if each hj , j = 1, . . . , r, is a convex polynomial.

Let us recall a lemma which provides a link between a KKT point and a minimizer
for a convex optimization problem where the representing function of the convex
feasible set is not necessarily convex.

Lemma 3.1 (see [28, Theorem 2.1]). Let φ be a convex function on Rm and let
F := {w ∈ Rm : hj(w) ≤ 0, j = 1, . . . , r} be a convex set. Suppose that both the
nondegeneracy condition and the Slater condition hold. Then, a point y is a global
minimizer of min{φ(w) : w ∈ F} if and only if y is a KKT point of min{φ(w) : w∈F},
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in the sense that there exist λj ≥ 0, j = 1, . . . , r, such that

∇φ(y) +

r∑
j=1

λj∇hj(y) = 0, λjhj(y) = 0, hj(y) ≤ 0, j = 1, . . . , r.

We see in the following proposition that a polynomial bilevel programming prob-
lem with convex lower-level problem can be equivalently rewritten as a single-level
polynomial optimization problem in a higher dimension under the nondegeneracy
condition and the Slater condition. In the special case where all the representing
polynomials hj are convex, this lemma has been established in [12].

Proposition 3.2 (equivalent single-level problem). Consider problem (P )
where the lower level problem is convex. Suppose that the lower level problem satisfies
both the nondegeneracy condition and the Slater condition. Then, (x, y) ∈ Rn × Rm
is a global solution of the bilevel polynomial optimization problem (P ) if and only
if there exist Lagrange multipliers1 λ = (λ0, . . . , λr) ∈ Rr+1 such that (x, y, λ) ∈
Rn×Rm×Rr+1 is a global solution of the following single-level polynomial optimiza-
tion problem:

(P ) min
x∈Rn,y∈Rm,λ∈Rr+1

f(x, y)

subject to gi(x, y) ≤ 0, i = 1, . . . , s,(3.1)

λ0∇yG(x, y) +

r∑
j=1

λj∇hj(y) = 0,

λ0 ≥ 0,

r∑
j=0

λ2
j = 1, λjhj(y) = 0, λj ≥ 0, hj(y) ≤ 0, j = 1, . . . , r.

Proof. Fix any x ∈ Rn. The conclusion will follow if we show that y ∈ Y (x) is
equivalent to the condition that there exist λj ≥ 0, j = 0, 1, . . . , r, such that

λ0∇yG(x, y) +

r∑
j=1

λj∇hj(y) = 0,

λjhj(y) = 0, λj ≥ 0, hj(y) ≤ 0, j = 1, . . . , r,(3.2)

λ0 ≥ 0,

r∑
j=0

λ2
j = 1.

To see the equivalence, we first assume that y ∈ Y (x). Under both the nondegeneracy
condition and the Slater condition, the preceding lemma guarantees that there exist
µj ≥ 0, j = 1, . . . , r, such that

(3.3) ∇yG(x, y) +

r∑
j=1

µj∇hj(y) = 0, µjhj(y) = 0, µj ≥ 0, hj(y) ≤ 0, j = 1, . . . , r.

So, (3.2) holds with λ0 = 1√
1+

∑r
j=1 µ

2
j

and λj =
µj√

1+
∑r
j=1 µ

2
j

, j = 1, . . . , r.

Conversely, let (x, y, λ) satisfy (3.2). We now show that λ0 6= 0. Indeed, assume
on the contrary that λ0 = 0. Then,

∑r
j=1 λ

2
j = 1,

∑r
j=1 λj∇hj(y) = 0, λjhj(y) = 0,

1Indeed, as shown in the proof, λ0 6= 0 always holds under our assumptions. See Remark 3.3 for
a detailed discussion.



GLOBAL BILEVEL POLYNOMIAL OPTIMIZATION 761

λj ≥ 0, and hj(y) ≤ 0 j = 1, . . . , r. Let J = {j ∈ {1, . . . , r} : λj > 0} 6= ∅. From
the Slater condition, there exists y0 ∈ Rm such that hj(y0) < 0, j = 1, . . . , r. Then,
there exists ρ > 0 such that hj(w) < 0 for all w ∈ Rm with ‖w − y0‖ ≤ ρ. As∑r
j=1 λj∇hj(y) = 0, we obtain

(3.4)
∑
j∈J

λj∇hj(y)T (w − y) = 0 for all w with ‖w − y0‖ ≤ ρ.

We now see that ∇hj(y)T (w − y) ≤ 0 for all w with ‖w − y0‖ ≤ ρ and for all j ∈ J .
(Suppose on the contrary that there exists w0 with ‖w0 − y0‖ ≤ ρ and j0 ∈ J such
that ∇hj0(y)T (w0 − y) > 0. By continuity, for all small t, hj0(y + t(w0 − y)) > 0,
and hence y + t(w0 − y) /∈ F . On the other hand, from our choice of ρ, we see that
hj(w0) < 0 for all j = 1, . . . , r. So, w0 ∈ F . It then follows from the convexity of F
that y + t(w0 − y) ∈ F for all small t. This is impossible.) This together with (3.4)
and λj = 0 for all j /∈ J shows that

∇hj(y)T (w − y) = 0 for all w with ‖w − y0‖ ≤ ρ and j ∈ J,

and so ∇hj(y) = 0 for all j ∈ J . Note that y ∈ F and hj(y) = 0 for all j ∈ J .
This contradicts the nondegeneracy condition, and so λ0 6= 0. Thus, by dividing λ0

on both sides of the first relation of (3.2), we see that (3.3) holds. This shows that
y ∈ Y (x) by the preceding lemma again.

Remark 3.3 (importance of nondegeneracy and Slater’s conditions). In Propo-
sition 3.2, we require that the nondegeneracy condition and the Slater condition hold.
These assumptions provide us a simple uniform bound for the multipliers λ0, . . . , λr
in the lower-level problem which plays an important role in our convergence analy-
sis later in Theorem 3.5. Indeed, these assumptions ensure that λ0 6= 0 and so, in
particular, the equivalence of the following two systems:


λ0∇yG(x, y) +

r∑
j=1

λj∇hj(y) = 0,

λ0 ≥ 0, λjhj(y) = 0, λj ≥ 0, hj(y) ≤ 0, j = 1, . . . , r,
r∑
j=0

λ2
j = 1,


⇔

 ∇yG(x, y) +

r∑
j=1

µj∇hj(y) = 0,

µjhj(y) = 0, µj ≥ 0, hj(y) ≤ 0, j = 1, . . . , r

 .
Note that the nondegeneracy condition is satisfied when the representing func-

tions hj , j = 1, . . . , r, are convex polynomials and the Slater condition holds. Thus,
in this special case, the Slater condition alone is enough for transforming the polyno-
mial bilevel problem with a convex lower-level problem to a single-level polynomial
optimization problem.

The following simple example illustrates that the preceding proposition can be
applied to the case where hj ’s need not be convex polynomials.



762 V. JEYAKUMAR, J. B. LASSERRE, G. LI, AND T. S. PHA. M

Example 3.4. Consider the bilevel problem

(EP1) min
x∈R,y∈R2

−x6 + y2
1 + y2

2

subject to x2 + y2
1 + y2

2 ≤ 2,

y ∈ Y (x) := argminw∈R2{x(w1 + w2) : 1− w1w2

≤ 0, 0 ≤ w1 ≤ 1, 0 ≤ w2 ≤ 1}.

Clearly, the lower-level problem of (EP1) is convex but the polynomial (w1, w2) 7→
1−w1w2 is not convex. It can be verified that the nondegeneracy condition and Slater
condition hold, and so, (EP1) is equivalent to the following single-level polynomial
optimization problem:

min
x∈R,y∈R2,(λ0,...,λ5)∈R6

−x6 + y2
1 + y2

2

subject to x2 + y2
1 + y2

2 ≤ 2,

1− y1y2 ≤ 0, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

λ0x+ λ1(−y2)− λ2 + λ3 = 0,

λ0x+ λ1(−y1)− λ4 + λ5 = 0,

λ1(1− y1y2) = 0, λ2y1 = 0, λ3(1− y1) = 0,

λ4y2 = 0, λ5(1− y2) = 0,

λj ≥ 0, j = 0, 1, . . . , 5,

5∑
j=0

λ2
j = 1.

Proposition 3.2 enables us to construct a sequence of SDP problems for solving
a polynomial bilevel programming problem with a convex lower-level problem. To do
this, we denote

Ĝp(x, y, λ) =

 gp(x, y), p = 1, . . . , s,
hp−s(y), p = s+ 1, . . . , s+ r,
−λp−(s+r+1), p = s+ r + 1, . . . , s+ 2r + 1,

and

Ĥq(x, y, λ) =



λqhq(y), q = 1, . . . , r,λ0∇yG(x, y) +

r∑
j=1

λj∇hj(y)


q−r

, q = r + 1, . . . , r +m,

r∑
j=0

λ2
j − 1, q = r +m+ 1,

where (λ0∇yG(x, y) +
∑r
j=1 λj∇hj(y))i is the ith coordinate of λ0∇yG(x, y) +∑r

j=1 λj∇hj(y), i = 1, . . . ,m. We also denote the degree of Ĝp to be up and the

degree of Ĥq to be vq.
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We now introduce a sequence of sums-of-squares relaxation problems as follows:
for each k ∈ N,

(3.5)

(Qk) max
µ,σp

µ

subject to f − µ = σ0 −
s+2r+1∑
p=1

σpĜp −
r+m+1∑
q=1

φqĤq,

σp ∈ Σ2[x, y, λ], p = 0, 1, . . . , s+ 2r + 1,

degσ0 ≤ 2k, deg(σpĜp) ≤ 2k, p = 1, . . . , s+ 2r + 1,

φq ∈ R[x, y, λ], q = 1, . . . , r +m+ 1, deg(φqĤq) ≤ 2k, q = 1, . . . , r+m+1.

It is known that each (Qk) can be reformulated as a SDP problem [26].

Theorem 3.5 (convex lower-level problem: Convergence theorem). Consider
the problem (P ), where the lower-level problem is convex. Suppose that Assumption 2.1
holds and that the lower-level problem satisfies both the nondegeneracy condition and
the Slater condition. Then, val(Qk) ≤ val(Qk+1) for all k ∈ N and val(Qk)→ val(P )
as k → ∞, where val(Qk) and val(P ) denote the optimal value of the problems (Qk)
and (P ), respectively.

Proof. From Corollary 2.5, a global solution of (P) exists. Let (x, y) be a global
solution of (P ). From Proposition 3.2, there exists λ ∈ Rr+1 such that (x, y, λ) is a
solution of (P ) and val(P ) = val(P ).

From the construction of (Qk), k ∈ N, it can be easily verified that val(Qk) ≤
val(Qk+1) ≤ val(P ) for all k ∈ N. Let ε > 0. Define f̂(x, y, λ) = f(x, y)− (val(P̄ )− ε).
Note that the feasible set U of (P ) can be written as

U = {(x, y, λ) ∈ Rn × Rm × Rr+1 : −Ĝp(x, y, λ) ≥ 0, p = 1, . . . , s+ 2r + 1,

− Ĥq(x, y, λ) ≥ 0, Ĥq(x, y, λ)

≥ 0, q = 1, . . . , r +m+ 1}.

Then, we see that f̂ > 0 over U . We now verify that the conditions in Putinar’s
Positivstellensatz (Lemma 2.6) are satisfied. To see this, from Assumption 2.1, there
exist R1, R2 > 0 such that

R1 − ‖(x, y)‖2 = σ0(x, y)−
s∑
i=1

σi(x, y)gi(x, y) and

R2 − ‖y‖2 = σ̄0(y)−
r∑
j=1

σ̄j(y)hj(y)

for some sums-of-squares polynomials σ0, σ1, . . . , σs ∈ Σ2[x, y] and sums-of-squares
polynomials σ̄0, σ̄1, . . . , σ̄r ∈ Σ2[y]. Letting λ = (λ0, λ1, . . . , λr) ∈ Rr+1, we obtain
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that

(1 +R1 +R2)− ‖(x, y, λ)‖2 = (σ0(x, y) + σ̄0(y))

−
r∑
j=1

σ̄j(y)hj(y)−
s∑
i=1

σi(x, y)gi(x, y) +

1−
r∑
j=0

λ2
j


= (σ0(x, y) + σ̄0(y))−

r∑
j=1

σ̄j(y)Ĝs+j(x, y, λ)

−
s∑
i=1

σi(x, y)Ĝi(x, y)− Ĥr+m+1(x, y, λ).

So, applying Putinar’s Positivstellensatz (Lemma 2.6) with w = (x, y, λ) ∈ Rm×Rn×
Rr+1, there exist sums-of-squares polynomials σp ∈ Σ2[x, y, λ], p = 0, 1, . . . , s+2r+1,
and sums-of-squares polynomials φ1q, φ2q ∈ Σ2[x, y, λ], q = 1, . . . , r + m + 1, such
that

f̂ = σ0 −
s+2r+1∑
p=1

σpĜp −
r+m+1∑
q=1

φ1qĤq +

r+m+1∑
q=1

φ2qĤq.

Let φq ∈ R[x, y, λ] be a real polynomial defined by φq = φ1q−φ2q, q = 1, . . . , r+m+1.
Then, we have

f − (val(P )− ε) = σ0 −
s+2r+1∑
p=1

σpĜp −
r+m+1∑
q=1

φqĤq.

Thus, there exists k ∈ N, val(Qk) ≥ val(P ) − ε = val(P ) − ε. Note that, by the con-
struction, val(Qk) ≤ val(P ) = val(P ) for all k ∈ N. Therefore, val(Qk) → val(P ) =
val(P ).

Remark 3.6 (convergence to a global minimizer). It is worth noting that in ad-
dition to the assumptions of Theorem 3.5, if we further assume that the equivalent
problem (P ) has a unique solution, say, (x̄, ȳ), then we can also find the global mini-
mizer (x̄, ȳ) with the help of the above sequential SDP relaxation problems. In fact,
as each (Qk) is an SDP problem, its corresponding dual problem (see [26]) can be
formulated as

(Q∗k) inf
z∈Nn+m+r

2k

Lz(f)

subject to Mk(z) � 0, z0 = 1,

Mk−up(Ĝp, z) � 0, p = 1, . . . , s+ 2r + 1,

Mk−vq (Ĥq, z) = 0, q = 1, . . . , r +m+ 1,

where up (resp., vq) is the largest integer which is smaller than
up
2 (resp.,

vq
2 ), Lz

is the Riesz functional defined by Lz(f) =
∑
α fαzα with f(x) =

∑
α fαx

α and,
for a polynomial f , Mt(f, z), t ∈ N, is the so-called localization matrix defined by
[Mt(f, z)]α,β =

∑
γ fγzα+β+γ for all α, β ∈ Nn+m+r

t . From the weak duality, one has

val(P ) ≥ val(Q∗k) ≥ val(Qk). Thus, the preceding theorem together with val(P ) =
val(P ) implies that val(Q∗k) → val(P ). Moreover, it was shown in [25, Theorem 4.2]
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that if the feasible set of the polynomial optimization problem (P̄ ) has a nonempty
interior, then there exists a natural number N0 such that val(Q∗k) = val(Qk) for all
k ≥ N0.

Let zk be a solution of (Q∗k). Then, as k →∞, we have (Lzk(X1), . . . , Lzk(Xn))→
x̄, and (Lzk(Xn+1), . . . , Lzk(Xn+m)) → ȳ, where Xi denotes the polynomial which
maps each vector to its ith coordinate, i = 1, . . . , n+m. The conclusion follows from
[40].

Theorem 3.5 shows that one can use a sequence of SDP problems to approximate
the global optimal value of a bilevel polynomial optimization problem with convex
lower-level problem. Moreover, under a sufficient rank condition (see [26, Theorem
5.5]), one can check whether finite convergence has occurred, i.e., by testing whether
val(Qk0) = val(P ) for some k0 ∈ N. This rank condition has been implemented in
the software GloptiPoly 3 [18] along with a linear algebra procedure to extract global
minimizers of a polynomial optimization problem.

We now provide a simple example to illustrate how to use sequential SDP relax-
ations to solve the bilevel polynomial optimization problems with convex lower-level
problem.

Example 3.7 (solution by sequential SDP relaxations). Consider the following
simple bilevel polynomial optimization problem:

min
(x,y)∈R2

xy5 − y6,

x2 + y2 ≤ 2,

y ∈ Y (x) := argminw∈R{xw : −1 ≤ w ≤ 1}.

Direct verification shows that there are two global solutions (−1, 1) and (1,−1) with
global optimal value 2. We note that the lower-level problem is convex and it is
equivalent to the following single-level polynomial optimization problem:

min
(x,y,λ0,λ1,λ2)∈R5

xy5 − y6,

x2 + y2 ≤ 2,

λ0x+ λ1 − λ2 = 0,

λi ≥ 0, λ1(y − 1) = 0, λ2(−1− y) = 0,−1 ≤ y ≤ 1,

λ2
0 + λ2

1 + λ2
2 = 1.

Solving the converted single-level polynomial optimization problem using GloptiPoly
3, the solver extracted two global solutions (x, y, λ0, λ1, λ2) = (−1.000, 1.000, 0.7071,
0.7071, 0) and (x, y, λ0, λ1, λ2) = (1.000,−1.000, 0.7071, 0, 0.7071) with the true global
optimal value −2.

Remark 3.8 (single-level polynomial problem). In the case where (P ) is a single-
level problem, Theorem 3.5 yields the known convergence result of the sequential SDP
relaxation scheme (often referred to as the Lasserre hierarchy) for solving single-level
polynomial optimization problems [26]. Indeed, consider a (single-level) polynomial
optimization problem

(P0) min
x∈Rn
{f(x) : gi(x) ≤ 0, i = 1, . . . , s}.
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Suppose that there exist R > 0 and sums of squares polynomial σi ∈ Σ2[x] such that

R− ‖x‖2 = σ0(x)−
s∑
i=1

σi(x)gi(x).

Let f̂(x, y) = f(x), ĝi(x, y) = gi(x), i = 1, . . . , s, and G(x, y) ≡ 0 for all (x, y) ∈ Rn×
R. We note that val(P0) equals the optimal value of the following bilevel polynomial
optimization problem:

min
x∈Rn,y∈Rm

f̂(x, y)

subject to ĝi(x, y) ≤ 0, i = 1, . . . , s,

y ∈ Y (x) := argminw∈Rm{0 : w2 ≤ 1}.

Then, Theorem 3.5 yields that val(P0) = limk→∞ val(Q0
k), where, for each k, the

problem (Q0
k) is given by

(Q0
k) max

µ,σp
µ

subject to f − µ = σ0 −
s∑
p=1

σpgp,

σp ∈ Σ2[x], p = 0, 1, . . . , s, degσ0 ≤ 2k, deg(σpgp) ≤ 2k, p = 1, . . . , s.

4. Nonconvex lower-level problems. In this section, we examine how to solve
a bilevel polynomial optimization problem with a nonconvex lower-level problem to-
ward a global minimizer using SDP hierarchies.

Consider an ε-approximation of the general bilevel polynomial problem (P ):

(Pε) min
(x,y)∈Rn×Rm

f(x, y)

subject to gi(x, y) ≤ 0, i = 1, . . . , s,

hj(y) ≤ 0, j = 1, . . . , r,

G(x, y)− min
w∈Rm

{G(x,w) : hj(w) ≤ 0, j = 1, . . . , r} ≤ ε.

The above ε-approximation problem plays a key role in the so-called value function ap-
proach for finding a stationary point of a bilevel programming problems and has been
studied and used widely in the literature (for example, see [31, 45]). The main idea of
the value function approach is to further approximate the (possibly nonsmooth and
nonconvex) function x 7→ minw∈Rm{G(x,w) : hj(w) ≤ 0, j = 1, . . . , r} using smooth
functions and asymptotically solve the problem by using smooth local optimization
techniques (such as projected gradient method and sequential quadratic programming
problem techniques). For instance, [31] use this approach together with the smooth-
ing projected gradient method to solve the bilevel optimization problem, in the case
where gi depends on x only, {x ∈ Rn : gi(x) ≤ 0} and {w ∈ Rm : hj(w) ≤ 0} are con-
vex sets. The algorithm only converges to a stationary point of the original problem
(in a suitable sense).

We now introduce a general purpose scheme which enables us to solve (Pε) toward
global solutions using SDP hierarchies. The proof techniques for the convergence of
this scheme (Theorem 4.6) rely on the joint-marginal method introduced in [27] to
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approximate a global solution of a parameterized single-level polynomial optimiza-
tion problem. Here, following the approach in [27], we extend the scheme and its
convergence analysis to the bilevel polynomial optimization setting.r

The following known simple lemma shows that the problem (Pε) indeed approx-
imates the original bilevel polynomial optimization problem as ε → 0+. To do this,
for ε, δ ≥ 0, recall that (x̄, ȳ) is called a δ-global solution of (Pε) if (x̄, ȳ) is feasible for
(Pε) and f(x̄, ȳ) ≤ val(Pε) + δ, where val(Pε) is the optimal value of (Pε).

Lemma 4.1 (approximation lemma [32]). Suppose that K := {(x, y) ∈ Rn×Rm :
gi(x, y) ≤ 0} and F = {w ∈ Rm : hj(w) ≤ 0} are compact. Let εk → 0+ and δk → 0+

as k → ∞. Let (x̄k, ȳk) be an δk-global solution for (Pεk). Then, {(x̄k, ȳk)}k∈N is
a bounded sequence and any of its cluster points (x̄, ȳ) is a solution of the bilevel
polynomial optimization problem (P ).

The following lemma explains the analytic property of the function ε 7→ val(Pε)

and shows that val(Pε) converges to val(P ) in the order of O(ε
1
q ) as ε → 0+ for

some q ∈ N>0 := N\{0}. The proof relies on some important properties and facts on
semialgebraic functions/sets and we delay the proof to Appendix B.

Lemma 4.2 (analytic property and approximation quality). Suppose that
Assumption 2.1 holds. Let I ⊆ R+ := [0,+∞) be a finite interval. For each ε ∈ I,
denote the optimal value of (Pε) by val(Pε):

(i) The one-dimensional function ε 7→ val(Pε) is a nonincreasing, lower semi-
continuous, right-continuous, and semialgebraic function on I. In particular,
the function ε 7→ val(Pε) is continuous over I except at finitely many points.

(ii) There exist q ∈ N>0, ε0 > 0, and M > 0 such that for all ε ∈ [0, ε0)

val(Pε) ≤ val(P ) ≤ val(Pε) +Mε
1
q .

Now, we present a simple example to illustrate the above lemma. It also im-
plies that, in general, the function ε 7→ val(Pε) can be a discontinuous semialgebraic
function.

Example 4.3. Consider the bilevel polynomial optimization problem

(EP ) min
(x,y)∈R2

y

subject to x2 ≤ 1,

y ∈ argminw∈R{x2 + w2 : w2(w2 − 1)2 ≤ 0}.

Note that J(x) = minw∈R{x2 + w2 : w2(w2 − 1)2 ≤ 0} = x2. Its ε-approximation
problem is

(EPε) min
(x,y)∈R2

y

subject to x2 ≤ 1,

y2(y2 − 1)2 ≤ 0, y2 ≤ ε.

It can be verified that

val(EPε) =

{
0 if 0 ≤ ε < 1,

−1 if ε ≥ 1.

Therefore the function ε 7→ val(EPε) is nonincreasing, lower semicontinuous, right-
continuous, and semialgebraic on [0,+∞). Moreover, it is continuous, on [0, ε0] for
any ε0 < 1 and it is discontinuous at 1.
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Solving ε-approximation problems via sequential SDP relaxations. Here,
we describe how to solve an ε-approximation problem via a sequence of SDP relaxation
problems. One of the key steps is to construct a sequence of polynomials to approx-
imate the optimal value function of the lower-level problem x 7→ minw∈Rm{G(x,w) :
hj(w) ≤ 0, j = 1, . . . , r}. In general, the optimal value function of the lower-level
problem is merely a continuous function. We now recall a procedure introduced in
[27] to approximate this optimal value function by a sequence of polynomials.

Recall that K = {x : gi(x, y) ≤ 0, i = 1, . . . , s}. We denote Pr1K = {x ∈ Rn :
(x, y) ∈ K for some y ∈ Rm}. From Assumption 2.1, K is bounded, and so Pr1K
is also bounded. Let Pr1K ⊆ Ω := {x ∈ Rn : ‖x‖∞ ≤ M} for some M > 0. Let
θl(x) = x2

l −M2, l = 1, . . . , n. Then Ω = {x : θl(x) ≤ 0, l = 1, . . . , n}. Let ϕ be a
probability Borel measure supported on Ω with uniform distribution on X. We note
that all the moments of ϕ over Ω denoted by γ = (γβ), β ∈ Nn, defined by

γβ :=

∫
Ω

xβdϕ(x), β ∈ Nn,

can be easily computed (see [27]).

For each k ∈ N with k ≥ k0 := max{ddegf
2 e, d

deghj
2 e}, set Nn2k := {(α1, . . . , αn) ∈

Nn :
∑n
l=1 αl ≤ 2k} and consider the optimization problem

max
λ,σ0,...,σr+n

∑
β∈Nn2k

λβγβ

subject to G(x, y)−
∑
β∈Nn2k

λβx
β = σ0(x, y)−

r∑
j=1

σj(x, y)hj(y)−
n∑
l=1

σr+l(x, y)θl(x),

σj ∈ Σ[x, y], j = 0, 1, . . . , r + n,(4.1)

degσ0 ≤ 2k, deg(σjhj) ≤ 2k, j = 1, . . . , r, deg(σr+lθl) ≤ 2k, l = 1, . . . , n,

which can be reformulated as a problem [27]. Then, for any feasible solution (λ, σ0,
σ1, . . . , σr+n), the polynomial x 7→ Jk(x) :=

∑
β∈Nn2k

λβx
β is of degree 2k and it

satisfies, for all x ∈ Ω = {x : θl(x) ≤ 0, l = 1, . . . , n} and y ∈ F := {w : hj(w) ≤
0, j = 1, . . . , r},

G(x, y)−
∑
β∈Nn2k

λβx
β = σ0(x, y)−

r∑
j=1

σj(x, y)hj(y)−
n∑
l=1

σr+l(x, y)θl(x) ≥ 0.

So, for every k ∈ N, Jk(x) ≤ J(x) := minw∈Rm{G(x,w) : hj(w) ≤ 0} for all x ∈ Ω.
Indeed, the next theorem shows that Jk converges to the optimal value function J on
Ω, in the L1-norm sense.

Lemma 4.4 (see [27]). Suppose that Assumption 2.1 holds. For each k ∈ N, let
ρk be the optimal value of the SDP (4.1). Let εk → 0 and let (λ, σ0, σ1, . . . , σr+n) be
an εk-solution of (4.1) in the sense that

∑
β∈Nn2k

λβγβ ≥ ρk − εk. Define Jk ∈ R2k[x]

by Jk(x) =
∑
β∈Nn2k

λβx
β. Then, we have Jk(x) ≤ J(x) for all x ∈ Ω and∫
Ω

|Jk(x)− J(x)|dϕ(x)→ 0 as k →∞.

We now introduce a scheme to solve the ε-approximation problem for arbitrary
ε > 0, using sequences of SDP relaxations.
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Algorithm 4.5 (general scheme).
Step 0: Fix ε > 0. Set k = 1.
Step 1: Solve the SDP problem (4.1) and obtain the 1

k -solution (λk, σkj ) of (4.1).

Define Jk(x) =
∑
β∈Nn2k

λkβx
β .

Step 2: Consider the following semialgebraic set:

Sk := {(x, y) : gi(x, y) ≤ 0, i = 1, . . . , s, hj(y) ≤ 0, j = 1, . . . , r, G(x, y)− Jk(x) ≤ ε}.

If Sk = ∅, then let k = k + 1 and return to Step 1. Otherwise, go to Step 3.
Step 3: Solve the following polynomial optimization problem:

(P kε ) min
(x,y)∈Rn×Rm

f(x, y)

subject to gi(x, y) ≤ 0, i = 1, . . . , s,

hj(y) ≤ 0, j = 1, . . . , r,

G(x, y)− Jk(x) ≤ ε.

Step 4: Let vkε = min1≤i≤k val(P iε ). Update k = k + 1. Go back to Step 1.

Before we establish the convergence of this procedure, let us comment that the
feasibility problem of the semialgebraic set in Step 2 can be tested by a sequence
of SDP relaxations via the Positivstellensatz. This was explained in [38] and was
implemented in the MATLAB toolbox SOSTOOLS. As explained before, Step 3 can
also be accomplished by solving a sequence of SDP relaxations.

Let us show that there exists a finite number k0 such that Sk0 6= ∅, and so
Algorithm 4.5 is well-defined.

Lemma 4.5. Let ε > 0. Consider the problem (Pε) and Algorithm 4.5. Let K =
{(x, y) : gi(x, y) ≤ 0, i = 1, . . . , s} and F = {w : hj(w) ≤ 0, j = 1, . . . , r}. Suppose
that Assumption 2.1 holds and cl

(
int(K ∩ (Rn × F ))

)
= K ∩ (Rn × F ). Then, there

exists a finite number k0 such that Sk0 6= ∅ in Step 2 of Algorithm 4.5.

Proof. Note from Corollary 2.5 that a global minimizer (x̄, ȳ) of (P ) exists. In
particular, the set D0 := {(x, y) ∈ K ∩ (Rn × F ) : G(x, y)− J(x) < ε} is a nonempty
set as (x̄, ȳ) ∈ D0. Noting from our assumption, we have cl

(
int(K ∩ (Rn × F ))

)
=

K ∩ (Rn × F ). This together with the fact that {(x, y) : G(x, y) − J(x) < ε} is an
open set (as the optimal value function of the lower-level problem J(x) is continuous)
gives us that

D̃ := {(x, y) ∈ int(K ∩ (Rn × F )) : G(x, y)− J(x) < ε}

is a nonempty open set. Define D := Pr1D̃ = {x ∈ Rn : (x, y) ∈ D̃ for some y ∈ Rm}.
Then, D is also a nonempty open set. Note from Lemma 4.4 that Jk converges
to J in the L1(Ω, ϕ)-norm. Hence Jk converges to J almost everywhere on Ω. As
ϕ(Ω) < +∞, the classical Egorov’s theorem2 implies that there exists a subsequence
lk such that Jlk converges to J ϕ-almost uniformly on Ω. So, there exists a Borel set
A with ϕ(A) < η

2 with η := ϕ(D) > 0 such that

Jlk → J uniformly over Ω\A.

2The Egorov’s theorem [13, Theorem 2.2] states that for a measure space (Ω, ϕ), let fk be a
sequence of functions on Ω. Suppose that Ω is of finite ϕ-measure and {fk} converges ϕ-almost
everywhere on Ω to a limit function f . Then, there exists a subsequence lk such that flk converges
to f almost uniformly in the sense that for every ε > 0, there exists a measurable subset A of Ω such
that ϕ(A) < ε, and {flk} converges to f uniformly on the relative complement Ω\A.
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We observe that (Ω\A) ∩ D 6= ∅ (Otherwise, as D ⊆ Pr1K ⊆ Ω, we have D ⊆ A.
This implies that η = ϕ(D) ≤ ϕ(A) = η/2 which is impossible as η > 0). Let
x0 ∈ (Ω\A) ∩D. Then, we have Jlk(x0)→ J(x0) and there exists y0 ∈ Rm such that
y0 ∈ F , G(x0, y0)− J(x0) < ε. In particular, for all k large, (x0, y0) ∈ Slk . Therefore,
Slk 6= ∅ for all large k, and so, the conclusion follows.

Remark 4.6. The fact that L1-convergence implies almost-uniform convergence
can also be seen by using Theorem 2.5.1 (L1-convergence implies convergence in mea-
sure) and Theorem 2.5.3 (convergence in measure implies almost-uniform convergence
for a subsequence) of [2, pp. 92–93] without requiring the measure of Ω to be finite.

We note that the condition “cl
(
int(K ∩ (Rn × F ))

)
= K ∩ (Rn × F )” holds when

C := K∩(Rn×F ) is a finite union of closed convex sets Ci with intCi 6= ∅. Moreover,
if the set C is of the form {(x, y) ∈ Rn × Rm : Gi(x, y) ≤ 0, i = 1, . . . , l} for some
polynomials Gi, i = 1, . . . , l and l ∈ N, then the above condition also holds if the
commonly used Mangasarian–Fromovitz constraint qualification [34] is satisfied for
any (x, y) ∈ C.

We are now ready to state the convergence theorem of the proposed Algorithm
4.5. The proof of it is quite technical and so it is given later in Appendix C.

Theorem 4.7 (general bilevel problem (P ): Convergence theorem). Let ε > 0
and consider problem (Pε). Let vkε be generated by Algorithm 4.5. Let K = {(x, y) :
gi(x, y) ≤ 0, i = 1, . . . , s} and F = {w : hj(w) ≤ 0, j = 1, . . . , r}. Suppose that
Assumption 2.1 holds and cl

(
int(K ∩ (Rn × F ))

)
= K ∩ (Rn × F ):

(i) vkε → vε as k → ∞ where val(Pε) ≤ vε ≤ limδ→ε− val(Pδ). In particular, for
almost every ε, vkε → val(Pε) in the sense that for all finite intervals I ⊆ R+,
vε = val(Pε) for all ε ∈ I except at finitely many points.

(ii) There exists ε0 > 0 such that for all ε ∈ (0, ε0), vkε → val(Pε) as k → ∞.
Moreover, let δk ↓ 0. Let vkε = min1≤i≤k val(P iε ) = val(P ikε ) and let (xk, yk)
be a δk-solution of (P ikε ). Then, {(xk, yk)} is a bounded sequence and any
cluster point (x̂, ŷ) of (xk, yk) is a global minimizer of (Pε) for all ε ∈ (0, ε0).

We now illustrate how our general scheme can lead to solving a bilevel program-
ming problem with a nonconvex lower-level problem toward a global solution. This
is done by applying our scheme to a known test problem of the bilevel programming
literature.

Example 4.8 (illustration of our approximation scheme). Consider the following
bilevel optimization test problem (for example, see [31, 37]):

min
(x,y)∈R2

x+ y

subject to x ∈ [−1, 1], y ∈ argminw∈[−1,1]

{
xw2

2
− w3

3

}
.

Let Y (x) := argminw∈[−1,1]{xw
2

2 −
w3

3 }. Clearly, the lower-level problem is nonconvex
and all the conditions in Theorem 4.7 are satisfied. The optimal value function of the
lower-level problem is given by

J(x) = min
w∈[−1,1]

{
xw2

2
− w3

3

}
=

{
0 if x ∈ [ 2

3 , 1],
x
2 −

1
3 if x ∈ [−1, 2

3 ),
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Fig. 1. J(x) and its degree-6 underestimation in Example 4.8.

and the solution set of the lower-level problem Y (x) can be formulated as

Y (x) =

 {0} if x ∈ ( 2
3 , 1],

{0, 1} if x = 2
3 ,

{1} if x ∈ [−1, 2
3 ).

It is easy to check that the true (unique) global minimizer is (x̄, ȳ) = (−1, 1)T and
the true global optimal value is 0.

Now, for k = 3, using GloptiPoly 3, we obtain a degree 2k(= 6) polynomial
approximation of J(x) which is

J3(x) = −0.3338 + 0.5011 ∗ x+ 0.0098 ∗ x2 − 0.0032 ∗ x3

− 0.0696 ∗ x4 − 0.1012 ∗ x5 − 0.0432 ∗ x6.

Figure 1 depicts the graph of the functions J3 and J , where the red curve is the graph
of the function J and the blue curve is the graph of the degree 6 polynomial J3. From
the graph, we can see that J3 ≤ J over the interval [−1, 1] and provides a reasonably
good approximation of the piecewise differentiable (and so nonpolynomial) function
J(x).

Setting ε = 0.001 and solving the polynomial optimization problem

min
(x,y)∈R2

x+ y

subject to x ∈ [−1, 1],

y ∈ [−1, 1],

xy2

2
− y3

3
− J3(x) ≤ 0.001,

with GloptiPoly 3, the solver returns the point (x, y) = (−1.0000, 0.9996) with its
associated function value −4.1680e − 04, which is a reasonably good approximation



772 V. JEYAKUMAR, J. B. LASSERRE, G. LI, AND T. S. PHA. M

of the true global minimizer and global optimal value of the bilevel programming
problem.

Remark 4.9 (further extensions of the approach). Although we presented our ap-
proach for a class of bilevel problems where the constraints of the lower-level problem
are independent of the upper-level decision variable x, our approach may be extended
to solve the following more general bilevel polynomial optimization problem:

(GP ) min
x∈Rn,y∈Rm

f(x, y)

subject to gi(x, y) ≤ 0, i = 1, . . . , s,

y ∈ Y (x) := argminw∈Rm{G(x,w) : hj(x,w) ≤ 0, j = 1, . . . , r},

where the constraints of the lower-level problem are allowed to depend on x. In this
case, we can construct a sequence of SDP relaxation for finding a global minimizer
and a global minimum of its ε-approximation problem and similar convergence results
of the scheme can be achieved under an additional technical assumption that the opti-
mal value function of the lower-level problem J(x) := minw∈Rm{G(x,w) : hj(x,w) ≤
0, j = 1, . . . , r} is continuous. However, we wish to note that for the problem (P )
discussed in this paper (that is, hj are independent of x), this condition is automati-
cally satisfied. On the other hand, in general, this condition may fail for the general
problem (GP ) even when n = m = 1. We provide a simple example to illustrate this.
Consider the following bilevel programming problem:

min
x∈R,y∈R

x2 + y2

subject to 0 ≤ x ≤ 1,

y ∈ Y (x) := argminw∈R{(x− w)2 : x2 − w2 ≤ 0,

w(w − 1) ≤ 0,−w(w − 1) ≤ 0}.

It can be directly verified that the optimal value function of the lower-level problem
is given by

J(x) := min
w∈R
{(x− w)2 : x2 − w2 ≤ 0, w(w − 1) = 0} =

{
0 if x = 0,

(x− 1)2 if x ∈ (0, 1]

and is discontinuous at x = 0.

5. Numerical examples. In this section, we apply our schemes to solve some
bilevel optimization test problems available in the literature and present their results.
We conducted the numerical tests on a computer with a 2.8-GHz Intel Core i7 and
8 GB RAM, equipped with MATLAB 7.14 (R2012a). We solved bilevel polynomial
problems with convex as well as nonconvex lower-level problems, where the lower-level
problems are independent of the upper-level decision variables.

We first present results for the following bilevel problems with a convex lower-
level problem. We note that all the assumptions of Theorem 3.5 are satisfied by these
bilevel problems with a convex lower-level problem.
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Table 1
Convex lower-level problems.

Test problems Known optimal solutions Computed solutions
Example 5.1 (x∗, y∗) = (3, 5) (x, y) = (3.0000, 5.0000)

f∗ = 9 f = 9.0000
CPU time = 0.2511

Example 5.2 (x∗, y∗) = (0.25, 0) (x, y) = (0.2500, 0.0000)
f∗ = 1.5 f = 1.5000

CPU time = 0.1957

Example 5.1. Consider the following bilevel polynomial problem [16]:

minx,y∈R (x− 3)2 + (y − 2)2

subject to −2x+ y − 1 ≤ 0,
x− 2y + 2 ≤ 0,
x+ 2y − 14 ≤ 0,
0 ≤ x ≤ 8,
0 ≤ y ≤ 10,
y ∈ argminw∈R{(w − 5)2 : w ∈ [0, 10]}.

This problem has a unique global minimizer (x∗, y∗) = (3, 5) and the optimal value
f∗ = 9.

Example 5.2. Consider the following bilevel polynomial problem [16]:
minx,y∈R −(4x− 3)y + (2x+ 1)
subject to 0 ≤ x ≤ 1,

0 ≤ y ≤ 1,
y ∈ argminw∈R{−(1− 4x)w − (2x+ 2) : w ∈ [0, 1]}.

This problem has a unique global minimizer (x∗, y∗) = (0.25, 0) and the optimal value
f∗ = 1.5.

We first transformed the problems in Examples 5.1 and 5.2 into equivalent single-
level nonconvex polynomial optimization problems as proposed in section 3. Then,
we used GloptiPoly 3 [18] and the SDP solver Sedumi [42] to solve the transformed
polynomial optimization problems. For these two problems, the second relaxation
problem (that is, problem (Q2)) of the SDP approximation scheme (3.12) returns a
solution which agrees with the true solution.

Table 1 summarizes the results of bilevel problems with a convex lower-level prob-
lem where (x∗, y∗) and f∗ denote the true global minimizer and the true optimal value,
respectively, (x, y) and f denote the computed minimizer and the computed optimal
value, respectively, and CPU time represents the CPU time (in seconds) used to solve
the problems.

We now solve the following bilevel problems with a nonconvex lower-level problem.
Again, all the assumptions in Theorem 4.7 are satisfied by these bilevel problems with
a nonconvex lower-level problem.

Example 5.3. Consider the following bilevel polynomial problem [36]:
minx,y∈R x
subject to −x+ y ≤ 0,

−10 ≤ x ≤ 10,
−1 ≤ y ≤ 1,
y ∈ argminw∈R{w3 : w ∈ [−1, 1]}.
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This problem has a unique global minimizer (x∗, y∗) = (−1,−1) with the optimal
value f∗ = −1.

Example 5.4. Consider the following bilevel polynomial problem [36]:
minx,y∈R 2x+ y
subject to −1 ≤ x ≤ 1,

−1 ≤ y ≤ 1,

y ∈ argminw∈R

{
−1

2
xw2 − 1

4
w4 : w ∈ [−1, 1]

}
.

This problem has two global minimizers (x∗1, y
∗
1) = (−1, 0) and (x∗2, y

∗
2) = (−1/2,−1)

with the optimal value f∗ = −2.

Example 5.5. Consider the following bilevel polynomial problem [36]:
minx,y∈R y
subject to 0.1 ≤ x ≤ 1,

−1 ≤ y ≤ 1,

y ∈ argminw∈R

{
x

(
16w4 + 2w3 + 8w2 +

3

2
w +

1

2

)
: w ∈ [−1, 1]

}
.

This problem has infinitely many global minimizers (x∗, y∗) = (a, 0.5) for any a ∈
[0.1, 1] with the optimal value f∗ = 0.5.

Example 5.6. Consider the following bilevel polynomial problem [36]:
minx,y∈R −x+ xy + 10y2

subject to −1 ≤ x ≤ 1,
−1 ≤ y ≤ 1,
y ∈ argminw∈R{−xw2 + w4/2 : w ∈ [−1, 1]}.

This problem has a unique global minimizer (x∗, y∗) = (0, 0) with the optimal value
f∗ = 0.

We solved these four problems by using the approximation scheme proposed in
section 4 implemented via the software GloptiPoly 3 and the SDP solver Sedumi.
For a detailed illustration of how the scheme is implemented, see Example 4.8. The
numerical results are summarized in Table 2. Note that deg denotes the maximum
degree of the polynomial underestimation used in a subproblem of our scheme.

6. Conclusion and further research. We established that a global minimizer
and the global minimum of a bilevel polynomial optimization problem can be found by
way of solving a sequence of SDP relaxations. We first considered a bilevel polynomial
optimization problem where the lower-level problem is a convex problem. In this case,
we proved that the values of the sequence of relaxation problems converge to the
global optimal value of the bilevel problem under a mild assumption. This shows that
a global solution can simply be found by first transforming the bilevel problem into
an equivalent single-level polynomial problem and then solving the resulting single-
level problem by the standard sequential SDP relaxations used in the polynomial
optimization [26].

We then examined a general bilevel polynomial optimization problem with a not
necessarily convex lower-level problem. We established that the global optimal value
in this case can be found by way of solving a new sequential SDP relaxation prob-
lem based on the joint-marginal approach proposed in [27]. This was done by using
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Table 2
Nonconvex lower-level problems.

Test problems Known optimal solutions Computed solutions
Example 5.3 (x∗, y∗) = (−1,−1) (x, y) = (−1.0000,−1.0000)

f∗ = −1 f = −1.0000
CPU time = 1.0746

deg = 12
Example 5.4 (x∗, y∗) = (−1, 0) or (−1/2,−1) (x, y) = (−0.9991,−0.0020)

f∗ = −2 f = −2.0002
CPU time = 5.1432

deg = 14
Example 5.5 (x∗, y∗) = (a, 0.5) for all a ∈ [0.1, 1] (x, y) = (0.2299, 0.4990)

f∗ = 0.5 f = 0.4990
CPU time = 6.8819

deg = 12
Example 5.6 (x∗, y∗) = (0, 0) (x, y) = (0.0034,−0.0002)

f∗ = 0 f = −0.0034
CPU time = 0.8844

deg = 10

a sequence of SDP relaxations of its ε-approximation problem under the standard
Assumption 2.1 of polynomial optimization, where ε > 0 is smaller than a positive
threshold.

The convergence of the proposed SDP approximation
scheme relies on Assumption 2.1, which requires that the feasible set of the bilevel
problem is bounded. The proposed scheme can also be extended to cover possi-
ble unbounded feasible sets by exploiting coercivity of the objective function of the
upper-/lower-level problem as in our recent papers [21, 22, 23], where the conver-
gence of the sequence of SDP relaxations was established for polynomial optimization
problems with unbounded feasible sets.

Our bilevel problem, in the present paper, represents the so-called optimistic
approach to the leader and follower’s game in which the follower is assumed to be
cooperative and so the leader can choose the solution with the lowest cost. The
pessimistic approach assumes that the follower may not be cooperative and hence the
leader will need to prepare for the worst cost. Mathematically, the following bilevel
problem represents the pessimistic approach:

min
x∈Rn

max
y∈Y (x)

f(x, y)

subject to gi(x) ≤ 0, i = 1, . . . , s,

where Y (x) := argminw∈Rm{G(x,w) : hj(w) ≤ 0, j = 1, . . . , r}. A possible method
for solving this bilevel problem is to construct a polynomial approximation for the
optimal value of the problem x 7→ maxy∈Y (x) f(x, y) using the joint-marginal approach
of [27] and then design an SDP approximation method that is similar to the scheme
studied in the present paper. This would be an interesting topic for future research.

Appendix A: Semialgebraic functions and sets. In this appendix, we sum-
marize some of the important properties of semialgebraic functions which are used in
this paper (see [5]).

(i) Finite union (resp., intersection) of semialgebraic sets is semialgebraic. The
Cartesian product (resp., complement, closure) of semialgebraic sets is semi-
algebraic.



776 V. JEYAKUMAR, J. B. LASSERRE, G. LI, AND T. S. PHA. M

(ii) If f, g are semialgebraic functions on Rn and λ ∈ R, then f + g, fg, and λf
are all semialgebraic functions.

(iii) If f is a semialgebraic function on Rn and λ ∈ R, then {x : f(x) ≤ λ} (resp.,
{x : f(x) ≤ λ}, {x : f(x) < λ}, and {x : f(x) = λ}) are all semialgebraic
sets.

(iv) A composition of semialgebraic maps is a semialgebraic map.
(v) The image and inverse image of a semialgebraic set under a semialgebraic

map are semialgebraic sets. In particular, the projection of a semialgebraic
set is still a semialgebraic set.

(vi) If S is a compact semialgebraic set in Rm and f : Rn × Rm → R is a real
polynomial, then the function x 7→ miny∈Rm{f(x, y) : y ∈ S} is also semial-
gebraic.

Remark 6.1. If A ∈ Rn, B ∈ Rm and S ∈ Rn × Rm are semialgebraic sets, then
we see that U := {x ∈ A : (x, y) ∈ S forall y ∈ B} is also a semialgebraic set.
To see this, from property (v), we see that {x ∈ A : ∃y ∈ B, (x, y) ∈ S} is
semialgebraic. As the complement of U is the union of the complement of A and
the set {x ∈ A : ∃y ∈ B, (x, y) 6∈ S}, it follows that the complement of U is semi-
algebraic by property (i). Thus, U is also semialgebraic by property (i). In general,
if we have a finite collection of semialgebraic sets, then any set obtained from them
by a finite chain of quantifiers is also semialgebraic.

For a one-dimensional semialgebraic function, we have further the following prop-
erties.

Lemma 6.2 (monotonicity theorem [15]). Let f be a semialgebraic function f
on R. Let a, b ∈ R with a < b. Then, there exists a finite subdivision a = t0 < t1 <
· · · < tk = b such that, on each interval (ti, ti+1), f is continuous and f either takes
a constant value or is strictly monotone.

Lemma 6.3 (growth dichotomy lemma [35]). Let ε0 > 0 and let f be a continuous
semialgebraic function f on [0, ε0] with f(0) = 0. Then either f takes a constant value

0 over [0, ε0] or there exist constants c 6= 0 and p, q ∈ N>0 such that f(t) = c t
p
q +o(t

p
q )

as t→ 0+.

Appendix B: Proof of Lemma 4.2.

Proof of (i). From the definition of (Pε), it is clear that if 0 ≤ ε1 ≤ ε2, then
val(Pε1) ≥ val(Pε2). Using a similar method of proof as in Lemma 4.1, one can show
that ε 7→ val(Pε) is a lower semicontinuous function. Now, let εk → ε+. Then, from
the lower semicontinuity,

lim inf
k→∞

val(Pεk) ≥ val(Pε).

This together with the fact that ε 7→ val(Pε) is nonincreasing shows that
limk→∞ val(Pεk) = (Pε). So, this function is right continuous.

Let J(x) := minw{G(x,w) : hj(w) ≤ 0, j = 1, . . . , r}. By property (vi), J is a
semialgebraic function. Let

X := {(ε, x, y) ∈ [0,+∞)× Rn × Rm : gi(x, y) ≤ 0, i = 1, . . . , s,

hj(y) ≤ 0, j = 1, . . . , r, G(x, y)− J(x) ≤ ε}
and

Y := {(ε, x, y) ∈ X : f(x, y) ≤ f(a, b) for all(ε, a, b) ∈ X}.



GLOBAL BILEVEL POLYNOMIAL OPTIMIZATION 777

We can verify that X and Y are semialgebraic sets by properties (ii) and (iii) and
Remark 6.1. Further, by definition, the graph of the function ε 7→ val(Pε) is given
by {(ε, f(x, y)) : (ε, x, y) ∈ Y }. Clearly, this set is the image of the set Y under
the semialgebraic map (ε, x, y) 7→ (ε, f(x, y)), and hence it is a semialgebraic set by
property (v). Thus, ε 7→ val(Pε) is a semi-algebraic function on [0,+∞).

Fix a finite interval I ⊆ [0,+∞). As ε 7→ val(Pε) is a semialgebraic function, it
follows from Lemma 6.2 that the function ε 7→ val(Pε) is continuous over I except at
finitely many points.

Proof of (ii). Fix a finite interval I ⊆ [0,+∞). Denote the discontinuity points of
ε 7→ val(Pε) on I by {ε1, . . . , εl} for some l ∈ N. Clearly, inf1≤i≤l εi > 0 as ε 7→ val(Pε)
is right continuous. Let ε̄ = min1≤i≤l{εi}/2 > 0. Then, ε 7→ val(Pε) is continuous
over [0, ε̄]. Applying Lemma 6.3 with f replaced by ε 7→ val(Pε)− val(P ) on [0, ε̄], we
see that there exist constants c > 0, p, q ∈ N>0, and ε0 ∈ (0, 1) with ε0 < ε̄ such that

(B. 1) val(Pε) ≤ val(P ) + c ε
p
q ≤ val(P ) + c ε

1
q , for all ε ∈ [0, ε0],

where the last inequality holds as 0 < ε ≤ ε0 < 1. This, together with the nonincreas-
ing property of ε 7→ val(Pε), yields the last assertion.

Appendix C: Proof of Theorem 4.7 (convergence of Algorithm 4.5).

Proof of (i). Recall from Lemma 4.4 that Jk(x) ≤ J(x) for all k ∈ N and for all
x ∈ Ω. So, val(P kε ) ≥ val(Pε) for all k ∈ N. This implies that vkε ≥ val(Pε) for all
k ∈ N. As vkε is a nonincreasing sequence which is bounded below, limk→∞ vkε exists.
Let vε = limk→∞ vkε . Then,

(C. 1) vε ≥ val(Pε).

Let δ ∈ (0, ε) and consider problem (Pε−δ). By Assumption 2.1, K and F are compact
sets. From the nonsmooth Danskin theorem (see [8, p. 86]), we see that the optimal
value function of the lower-level problem J(x) := minw∈Rm{G(x,w) : hj(w) ≤ 0, j =
1, . . . , r} is locally Lipschitz (and so is continuous). Thus, a global minimizer of (Pε−δ)
exists. Let (x̄, ȳ) be a global minimizer of (Pε−δ). The set D0 := {(x, y) ∈ K ∩ (Rn ×
F ) : G(x, y) − J(x) < ε, f(x, y) < f(x̄, ȳ) + δ} is a nonempty set as (x̄, ȳ) ∈ D0.
Moreover, from our assumption we have cl

(
int(K ∩ (Rn×F ))

)
= K ∩ (Rn×F ). This

together with the fact that {(x, y) : G(x, y) − J(x) < ε, f(x, y) < f(x̄, ȳ) + δ} is an
open set gives us that

D̃ := {(x, y) ∈ int(K ∩ (Rn × F )) : G(x, y)− J(x) < ε and f(x, y) < f(x̄, ȳ) + δ}

is a nonempty open set. So, D := Pr1D̃ = {x ∈ Rn : (x, y) ∈ D̃ for some y ∈ Rm} is
also a nonempty open set. Since Jk converges to J in the L1(Ω, ϕ)-norm, Jk converges
to J on Ω almost everywhere. Moreover, as ϕ(Ω) < +∞, the classical Egorov’s
theorem guarantees that there exists a subsequence lk such that Jlk converges to
J ϕ-almost uniformly on Ω. So, there exists a Borel set A with ϕ(A) < η

2 with
η := ϕ(D) > 0 such that Jlk → J uniformly over Ω\A. As in the proof of Lemma 4.5,
we can show that (Ω\A)∩D 6= ∅. Let x0 ∈ (Ω\A)∩D. Then, we have Jlk(x0)→ J(x0)
and there exists y0 ∈ F such that G(x0, y0) − J(x0) < ε and f(x0, y0) < f(x̄, ȳ) + δ.
So, for all large k, G(x0, y0)− Jlk(x0) < ε. Thus, for all large k, (x0, y0) is feasible for
(P lkε ) and

vlkε ≤ val(P lkε ) ≤ f(x0, y0) < f(x̄, ȳ) + δ = val(Pε−δ) + δ.
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Letting k →∞, we obtain that vε = limk→∞ vlkε ≤ val(Pε−δ) + δ. Letting δ → 0+, we
see that

(C. 2) vε ≤ lim
δ→ε−

val(Pδ).

Therefore, the inequality val(Pε) ≤ vε ≤ limδ→ε− val(Pδ) follows by combining (C. 1)
and (C. 2). To see the second assertion in (i), we only need to notice from Lemma
4.2(i) that ε 7→ val(Pε) is continuous except finitely many points over a finite interval I.

Proof of (ii). From Lemma 4.2(ii), we see that there exists ε0 > 0 such that
ε 7→ val(Pε) is continuous over (0, ε0). Thus, from (i), we have vkε → val(Pε) for all
ε ∈ (0, ε0). Now, fix any ε ∈ (0, ε0), Let δk ↓ 0 as k →∞. Let vkε = min1≤i≤k val(P iε ) =
val(P ikε ) and let (xk, yk) be a δk-solution of (P ikε ). Then, {(xk, yk)} ⊆ K ∩ (Rn × F ).
As K and F are compact, we see that {(xk, yk)} is a bounded sequence. Let (x̂, ŷ) be
a cluster point of {(xk, yk)}. Clearly, (x̂, ŷ) ∈ K ∩ (Rn × F ). As Jk ≤ J on Ω for all
k ∈ N, xk ∈ Pr1K ⊆ Ω and (xk, yk) is feasible for (P ikε ). Hence, for each k ∈ N

G(xk, yk)− J(xk) ≤ G(xk, yk)− Jik(xk) ≤ ε.

Passing to the limit and noting that J is continuous, we get that G(x̂, ŷ)− J(x̂) ≤ ε.
So, (x̂, ŷ) is feasible for (Pε). Finally, since vkε → val(Pε), it follows that

f(x̂, ŷ) = lim
k→∞

f(xk, yk) ≤ lim
k→∞

(vkε + δk) = val(Pε)

and (x̂, ŷ) is a global minimizer of (Pε).
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