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Abstract—We develop and investigate a distributed algorithm
for signal subspace tracking with a wireless sensor network
without the need for a fusion center, in order to improve the
robustness and scalability. We assume that all sensor nodes may
broadcast messages to sensors in their neighborhood defined by
a finite (small) communication radius.

To this aim, we start from Projection Approximation Subspace
Tracking (PAST) which is a well-investigated algorithm suitable
for implementation in a fusion center. We arrive at a distributed
approximation of the PAST algorithm by letting each sensor
broadcast its local observation variable xn(t) and a filtered
observation vector y

n

(t) to its neighborhood. Vice versa, the
received messages at sensor node n from its neighborhood are
fused by employing consensus propagation.

Finally, we investigate the proposed distributed algorithm in
simulation runs.

I. INTRODUCTION

Wireless sensor networks consist of a number of nodes

which sense environmental changes and report to other nodes

inside the network. There are many applications ranging from

industrial, building, home system automation to monitoring of

chemicals in hydrology, agriculture, and pollution control, as

well as the prediction of avalanches and land slides.

In many applications, aggregate functions of the sensor data

are more important than individual node data. When the scale

of the wireless sensor network is large, the average value

collected from the whole network is more important than the

value collected by one single node, as stated in [1], [2]. The

relevant subspace in which the sensor data are confined is

an important aggregate statistic which is a pre-requisite for

many types of data compression techniques, signal detection,

classification, and localization.

Sensor nodes are adequate for deployment in harsh en-

vironments or over large geographical areas, however most

of the state-of-the-art sensor network architectures are rather

centralized. The resulting drawbacks motivate us to the current

research:

• Since the sensor nodes might be located in remote areas,

the use of batteries for powering is necessary. However,

when the lifetime of these batteries is used up, then it

is very difficult to replace them. Due to this fact, it is

a major concern to decrease the power consumption as

much as possible.

• The communication channel constrains the data rate for

message transmission.

We concentrate our efforts on distributing the Projection

Approximation Subspace Tracking (PAST) algorithm [3] with

a low amount of message passing among sensor nodes. The

latter is motivated by the high power consumption for trans-

mitting messages.

Notation: We denote a column vectors in underlined bold-

face and matrices in uppercase and boldface. The superscript
H represents complex conjugation, ! transposition, tr(. ) the
trace operator, E[. ] the expectation and ‖. ‖ the Euclidean
vector norm.

Organization of the paper: Section II introduces the PAST

algorithm, the analytical model and corresponding constraints.

The section III presents a survey on distributed averaging

as an alternative for decentralization. The fusion of both

PAST and consensus propagation methods in order to obtain

a distributed version of the original algorithm is presented in

Section IV. Finally, Section V shows and discusses specific

simulation results which highlight the tracking capabilities of

our distributed approach.

II. PROJECTION APPROXIMATION SUBSPACE TRACKING

In the recent years, subspace methods have become a very

researched and remarked method in the realm of modern signal

processing. Some of its applications encompasses blind com-

munication channel identification [4], estimation of direction

of arrivals from signals impinging on an antenna array and

image compression, to mention some. Methods based on the

singular value decomposition of the sample covariance matrix

for every time step lead to a high computational burden, cf. [5],

[6]. The PAST algorithm does not require a sample covariance

estimate. It estimates the signal subspace at time t recursively,
depending on the previous subspace estimate at time t−1 and
the new observation x(t). Yang [3] introduces a new signal

subspace model interpretation, considering an unconstrained

minimization function. The subspace tracking is implemented

by employing the recursive least squares algorithm, based on

an appropriate projection approximation.

A. Mathematical model

Let x(t) ∈ CN be the data vector observed at time t,
composed of r narrow-band signal waves impinging on a
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planar array of sensors hidden in additive noise (zero-mean

with variance σ2). The data vector is modelled as

x(t) = A(ω)s(t) + v(t) , (1)

A(ω) =
(

a(ω1) a(ω2) . . . a(ωr)
)

, (2)

s(t) =









s1(t)

...

sr(t)









, v(t) =









v1(t)

...

vN (t)









. (3)

A(ω) is a deterministic N × r matrix depending on ω =
(ω1, . . . , ωr) whose columns are plane wave steering vectors
a(ωi). The n-th element of a(ω) is

[a(ωi)]n = exp

(

j
2π

λ
(ξn cos θi + ηn sin θi)

)

/
√

N

where frequency ωi = cos θi. The Cartesian coordinates of the

n-th sensor node are (ξn, ηn) and λ is the wavelength.N is the

number of sensors and r the number of impinging waves. s(t)
is the signal vector and v(t) is uncorrelated additive noise.
We allow ω to be slowly time-varying, i.e. ω = ω(t) and

seek an estimate for matrix W (t) whose columns span the
same subspace as A(ω(t)). A tracking algorithm estimates

W (t) by a function of W (t − 1) and x(t) alone.

B. Brief review of PAST

Yang [3] approximates the cost function to minimize

J(W (t)) =
t

∑

i=1

βt−i
∥

∥x(i) − W (t)W H(t)x(i)
∥

∥

2

(4)

by

J ′(W (t)) =

t
∑

i=1

βt−i
∥

∥x(i) − W (t)y(i)
∥

∥

2
(5)

with

y(i) = W H(i − 1)x(i) . (6)

Here, the matrix W ∈ CN×r is constrained to rank r < N .
The minimization of cost function (5) results in a low-

complexity update of the signal subspace. The computational

complexity is of order 3Nr +O(r2) operations per time step,
where N is the number of sensors and r the number of tracked
signals.

In Algorithm 1, y(t) stores the modified data vector result-
ing from the multiplication between the old signal subspace

W H(t − 1) and the new data vector x(t) observed at the
sensor array. The following computational steps in Algorithm

1 are derived from the Recursive Least Square algorithm [7]

to track the signal subspace matrix W (t).

III. DISTRIBUTED AVERAGING ALGORITHMS

The PAST algorithm is structured in a centralized way,

and we aim to distribute it for sensor network applications.

Namely, we wish to achieve two important goals for large

scale distributed systems: (i) Fault tolerance: consider large

scale systems that are prone to communication disruptions

due to link/node failures (Robustness). (ii) Simplicity and

Algorithm 1: PAST algorithm by Yang [3]

Input: β, P (0), W (0)

for t := 1, 2, ... do
Input: x(t)
y(t) = W H(t − 1)x(t)
h(t) = P (t − 1)y(t)
g(t) = h(t)/[β + yH(t)h(t)]

P (t) = 1

β
[P (t − 1) − g(t)hH(t)]

e(t) = x(t) − W (t − 1)y(t)
W (t) = W (t − 1) + e(t)gH(t)
Output: W (t)

endfor

scalability: pursuit of a simple topology network able to adapt

itself according to the volatility of the system. The use of a

centralized network limits the scalability of the system.

In recent work, distributed adaptive algorithms have been

proposed to address the issue of estimation over distributed

networks. These new algorithms outperform the classical cen-

tralized solution, but are based on specific network topologies

which lead to scalability constrains. For example, [8] considers

the design of distributed architectures based on randomized

graph models.

Different strategies are used for distributed fusion and

average of the information. Some algorithms are based on

interaction between a node and all its adjacent nodes in the

network, so as to reach a consensus, namely the Consensus

Propagation algorithms, introduced by Olfati-Saber and Mur-

ray in [9], [10].

Another strategy is based on pairwise communications:

the gossip-based algorithms such as the push-sum protocol

introduced by Kempe in [1] are good alternatives when low

communication overhead is desired.

In this paper, we are using a vector version of the Consensus

Propagation, with constant weights (see [11] for the general

case, with non-constant weights), as presented in Algorithm

2.

For every node n = 1, . . . , N in the network, Nn denotes

the set of the adjacent nodes, including itself. We assume

that every node in the neighborhood Nn can correctly receive

broadcasted messages from node n with probability 1, cf.

Figure 1.

At the end of step t− 1, every node n sends to its adjacent
nodes Nn its own estimation of the average y

n
(t − 1) and

a weight wn. Then, at the beginning of step t, every node n
receives the pairs {y

i
(t− 1), wi}i∈Nn

from its neighbors and

compute a new average, to be sent at the end of step t.
The constant weights are chosen as

wn = 1/
√

|Nn| . (7)

Algorithm 2 can be rewritten as follows. Let Y (t) ∈ CN×r

be a matrix aggregating all y
n
(t)

Y (t) !
(

y
1
(t)! . . . y

N
(t)!

)!
. (9)
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Algorithm 2: Consensus Propagation Algorithm

for n := 1, 2, . . . , N do
Input: {y

j
(t − 1), wj}j∈Nn

are the pairs sent to

node n in step t − 1

y
n
(t) =

(

∑

j∈Nn

y
j
(t − 1)wj

)

/

(

∑

j∈Nn

wj

)

(8)

Broadcast the pair {y
n
(t), wn} to all nodes in Nn

Output: y
n
(t) is the estimation of the average in

step t at node n
endfor
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Fig. 1. Sensor network with neighborhood N17 for radius 9.

Matrix Y (t) is evolving according to Y (t + 1) = ΩY (t)
where

Ω =
(

diag
(

Aw!
))−1 A diag(w), (10)

w =
(

w1, . . . , wN

)

and A is the adjacency matrix of the

undirected graph (Ai,j = 1 if nodes i and j can communicate).
The speed of the convergence is given by the second largest

eigenvalue of Ω [2].

IV. PAST-CONSENSUS PROPAGATION ALGORITHM

Recall the centralized Algorithm 1, that is employed within

each node of the system for distributing the computations, with

minor differences that are explained below. First, consider a

wireless sensor network with a planar square array structure

and a number of nodes N . Every node n observes (environ-

mental) data xn(t), assumed to be scalar, that are shared with
all nodes j ∈ Nn inside a specific broadcasting neighborhood.

This means that each node n receives the observations from

its adjacent nodes xj(t− 1), that are used for aggregating the
local observation vector xn(t). We define the local observation
vector xn(t) as the aggregation of {xj(t − 1)}j∈Nn

, i.e.

xn(t) = Snx(t − 1) (11)

where the |Nn| × N selection matrix Sn is defined by

(Sn)ij =

{

1 if j = i-th node ∈ Nn

0
, (12)

and x(t) is the data vector observed in the whole network.
This information exchange permits that all nodes involved in

the communication process have knowledge of the neighboring

observations. We propose to locally average the vector y
n
(t)

in node n by fusing information aggregated in its associated

neighborhood Nn. The local averaging is described by Eq.(8)

within Algorithm 2. Here, we calculate the internal y
n
(t) tak-

ing into account the weighted y
j
(t− 1). This is subsequently

divided by the sum of the accumulated weight of wn and the

neighboring weights wj . Thus, a distributed average version

of y
n
(t) is assured by means of the Consensus Propagation

algorithm.

After defining in which part of the algorithm the distribution

actually takes place, we introduce the Algorithm 3. The

local vector y
n
(t) is calculated at every node of the system

using the Algorithm 2 and the following calculations follow

the original Algorithm 1 except for the diagonal weighting

matrix Dn = Sndiag(w)S!
n . The reason why we decided

to distribute this particular variable is because according to

(6), this vector contains information from the updated signal

subspace at t− 1 as well as new arriving observation data xn

and xj . As a result, every sensor in the system has indirect

knowledge of these parameters.

Algorithm 3: PAST-Consensus

Input: β, P1(0), . . . ,PN (0), W1(0), . . . ,WN (0)
for t := 1, 2, . . . do
for n := 1, 2, . . . , N do
Input: x(n)
aggregate xn(t)=Snx(t− 1) from all nodes∈Nn

y
n
(t) = W H

n (t − 1)xn(t)
apply Algorithm 2 for locally averaging y

n
(t)

hn(t) = Pn(t − 1)y
n
(t)

g
n
(t) = hn(t)/[β + yH

n
(t)hn(t)]

Pn(t) = 1

β
[Pn(t − 1) − g

n
(t)hH

n (t)]
en(t) = Dn(x(t) − Wn(t − 1)y

n
(t))

Wn(t) = Wn(t − 1) + en(t)gH

n
(t)

broadcast {xn(t), y
n
(t), wn} to all nodes∈Nn

endfor

endfor

V. SIMULATIONS

We simulate a planar sensor network with N = 36 nodes,
cf. Figure 1. The locations of the nodes are chosen as an

imperfect Cartesian grid. The average distance between nodes

is λ/2 and the transmission range is 1.44λ/2.
The sensor network observes 1000 snapshots in time. The

sensor network tracks the instantaneous frequencies of r = 2
impinging waves which are linearly time-varying. The true

instantaneous frequencies are shown in the figures below. The

forgetting factor β = 0.97 is chosen. We initialize W (0) and
P (0) to identity. We assume that messages sent by node n
are received correctly by all nodes in neighborhood Nn. For

displaying the subspace tracking behavior vs. time, we apply
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Fig. 2. PAST result for whole sensor array (N = 36, r = 2)
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Fig. 3. PAST result neighborhood N17 (N = 6, r = 2)

the spectral MUSIC algorithm [6] for extracting r frequency
components from the signal subspace matricesW (t) over time
t. All simulation runs are carried out with one and the same
noise realisation.

In Figure 2, we observe the tracking of the original PAST

Algorithm 1. The true instantaneous signal frequencies are

represented by blue lines. The green dots correspond to

the tracked frequencies. Likewise, in Figure 3, we plot the

tracking behavior of the original PAST algorithm for the

subarray defined by the neighborhood N17 which contains

6 sensors. Finally, in Figure 4, we illustrate the tracking

behavior of Algorithm 3. These preliminary results indicate

that its behavior is closer to Figure 2 than Figure 3.

VI. SUMMARY AND CONCLUSION

PAST-Consensus (Algorithm 3) implements a distributed

variant of the PAST algorithm. Every sensor node n employs
the PAST algorithm (Algorithm 1) to locally track the signal

subspace and uses Algorithm 2 to couple its own observation

and internal state vector with its neighborhood Nn of sensor

nodes. To this aim, every sensor node n broadcasts its local

observation xn(t), its locally filtered r-dimensional vector
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Fig. 4. Algorithm 3 result for sensor No. 17 (r = 2)

y
n
(t), and a weight wn to its neighborhood Nn of sensor

nodes. Thus, every node broadcasts 2(r + 1) + 1 real-valued
variables per time step. From these preliminary results, we

believe that a well performing low-cost implementation of a

distributed PAST algorithm with low communication overhead

is a feasible goal.
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