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Abstract

Sliced Inverse Regression (SIR) has been extensively used to reduce the dimension

of the predictor space before performing regression. SIR is originally a model free

method but it has been shown to actually correspond to the maximum likelihood of an

inverse regression model with Gaussian errors. This intrinsic Gaussianity of standard

SIR may explain its high sensitivity to outliers as observed in a number of studies.

In this paper, we build on the inverse regression formulation of SIR by extending this

framework to non-Gaussian errors with heavy-tailed distributions that are more robust

to outliers. We propose to consider generalized Student distributed errors for which we

show that the inverse regression remains tractable via an Expectation-Maximization

(EM) algorithm. The algorithm is outlined and tested in the presence of outliers both

on simulated and real data, showing improved results in comparison to a number of

other existing approaches.

Keywords: Dimension reduction, Inverse regression, Outliers, Robust estimation,

Generalized Student distribution.

1 Introduction

We consider a regression setting where the goal is to catch the relationship between a uni-

variate response variable Y and a predictor X. When the dimension p of the predictor space

is 1 or 2, a simple 2D or 3D plot can visually reveal the relationship and can be useful to
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determine the regression strategy to be used. If p becomes large such an approach is not

feasible. A possibility to overcome problems arising in the context of (nonparametric) re-

gression is to make the assumption that the response variable does not depend on the whole

predictor space but just on a projection of X onto a subspace of smaller dimension. Such a

dimensionality reduction leads to the concept of sufficient dimension reduction and to that

of central subspace [8]. The central subspace is the intersection of all dimension-reduction

subspaces (d.r.s.). A subspace S is a d.r.s. if Y is independent of X given PSX, where

PS is the orthogonal projection onto S. In other words all the information carried by the

predictors X on Y can be compressed in PSX. It has been shown under weak assumptions

that the intersection of all d.r.s., and therefore the central subspace, is itself a d.r.s. [29].

It is of particular interest to develop methods to estimate the central subspace as once it

is identified, the regression problem can be solved equivalently using the lower-dimensional

representation PSX of X in the subspace.

Among methods that lead to an estimation of the central subspace, Sliced Inverse Re-

gression (SIR) [23] is one of the most popular. SIR is a semiparametric method assuming

that the link function depends on d linear combinations of the predictors and a random error

independent of X: Y = f(βT1X, . . . , βTdX, ε). When this model holds, the projection of X

onto the space spanned by the vectors {βi, i = 1, . . . , d} captures all the information about

Y . In addition, [23] shows that a basis of this space can be recovered by using an inverse

regression strategy provided that the so called linearity condition holds. It has been shown

in [19] that for many high-dimensional datasets the linearity condition, which is satisfied

as soon as X is elliptically distributed, is expected to approximately hold. However, solu-

tions have been proposed to deal with non elliptical distributed predictors and overcome the

linearity condition limitation [15,16,22].

The inverse regression approach to dimensionality reduction gained then rapidly atten-

tion [11] and was generalized in [9] which shows the link between the axes spanning the

central subspace and an inverse regression problem with Gaussian distributed errors. More

specifically, in [4, 9], it appears that, for a Gaussian error term and under appropriate con-

ditions, the SIR estimator can be recovered as the maximum likelihood estimator of the

parameters of an inverse regression model. In other words, although SIR is originally a

model free method, the standard SIR estimates are shown to correspond to maximum like-

lihood estimators for a Gaussian inverse regression model. It is then not surprising that

SIR has been observed, e.g. [5], to be at best under normality and that its performance may

degrade otherwise. Indeed, the Gaussian distribution is known to have tails too light to prop-

erly accommodate extreme values. In particular, [27] observes that SIR was highly sensitive
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to outliers, with additional studies, evidence and analysis given in [18]. To downweight this

sensitivity, robust versions of SIR have been proposed, mainly starting from the standard

model free estimators and trying to make them more resistant to outliers. Typically, in [17]

classical estimators are replaced by high breakdown robust estimators and, recently in [13]

two approaches are built: a weighted version of SIR and a solution based on the intra slice

multivariate median estimator.

As an alternative, in this paper, we propose to rather exploit the inverse regression for-

mulation of SIR [4, 9]. We introduce a new error term modeled by a multivariate Student

distribution [21]. Among the elliptically contoured distributions, the multivariate Student is

a natural generalization of the multivariate Gaussian but its heavy tails can better accommo-

date outliers. We extend the result in Proposition 6 of [9] from Gaussian to Student errors

showing that the inverse regression approach of SIR is still valid outside the Gaussian case,

meaning that the central subspace can still be estimated by maximum likelihood estimation

of the inverse regression parameters. We then show that the computation of the maximum

likelihood estimators remains tractable in the Student case via an Expectation-Maximization

(EM) algorithm which has a simple implementation and desirable properties.

The paper is organized as follows. In Section 2 general properties of the multivariate

Student distribution and some of its variants are first recalled. The inverse regression model

is introduced in Section 3 followed by the EM strategy to find the maximum likelihood

estimator, the link with SIR and the resulting Student SIR algorithm. A simulation study is

carried out in Section 4 and a real data application, showing the interest of this technique,

is detailed in Section 5. The final section contains concluding remarks and perspectives.

Proofs are postponed to the Appendix.

2 Multivariate generalized Student distributions

Multivariate Student also called t-distributions are useful when dealing with real-data be-

cause of their heavy tails. They are a robust alternative to the Gaussian distribution which

is known to be very sensitive to outliers. In contrast to the Gaussian case though, no

closed-form solution exists for the maximum likelihood estimation of the parameters of the

t-distribution. Tractability is, however, maintained both in the univariate and multivariate

case, via the EM algorithm [26] and thanks to a useful representation of the t-distribution

as a so-called infinite mixture of scaled Gaussians or Gaussian scale mixture [1]. A Gaussian

scale mixture distribution has a probability density function of the form
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P (x;µ,Σ,ψ) =

∫ ∞
0

Np(x;µ,Σ/u) fU(u;ψ) du (1)

whereNp( . ;µ,Σ/u) denotes the density function of the p-dimensional Gaussian distribution

with mean µ and covariance Σ/u and fU is the probability distribution of a univariate

positive variable U referred to hereafter as the weight variable. When fU is a Gamma

distribution G(ν/2, ν/2)1 where ν denotes the degrees of freedom, expression (1) leads to the

standard p-dimensional t-distribution denoted by tp(x;µ,Σ, ν) with parameters µ (location

vector), Σ (p×p positive definite scale matrix) and ν (positive degrees of freedom parameter).

Its density is given by

tp(x;µ,Σ, ν) =

∫ ∞
0

Np(x;µ,Σ/u) G(u; ν/2, ν/2) du

=
Γ((ν + p)/2)

|Σ|1/2 Γ(ν/2) (πν)p/2
[1 + δ(x,µ,Σ)/ν]−(ν+p)/2 (2)

where δ(x,µ,Σ) = (x − µ)TΣ−1(x − µ) is the Mahalanobis distance between x and µ. If

fU(u;ψ) is set equal to a Gamma distribution G(α, γ) without imposing α = γ, (1) results

in a multivariate Pearson type VII distribution (see e.g. [20] vol.2 chap. 28 for a definition

of the Pearson type VII distribution). Strictly speaking, to recover the Pearson type VII

distribution of [20] which depends on two parameters m and c, we have to set m = α−1/2 and

c =
√

2γ. This type of distribution is also referred to as the Arellano-Valle and Bolfarine’s

Generalized t distribution in [21]. This generalized version is the multivariate version of the

t-distribution considered in this work, its density is given by:

Sp(x;µ,Σ, α, γ) =

∫ ∞
0

Np(x;µ,Σ/u) G(u;α, γ) du (3)

=
Γ(α + p/2)

|Σ|1/2 Γ(α) (2πγ)p/2
[1 + δ(x,µ,Σ)/(2γ)]−(α+p/2) . (4)

For a random variable X following distribution (4), an equivalent representation useful for

simulation is X = µ + U−1/2X̃ where U follows a G(α, γ) distribution and X̃ follows a

N (0,Σ) distribution.

Remark 1 (Identifiability) The expression (4) depends on γ and Σ only through the prod-

uct γΣ which means that to make the parameterization unique, an additional constraint is

required. One possibility is to impose that Σ is of determinant 1. It is easy to see that this

is equivalent to have an unconstrained Σ with γ = 1.

1The Gamma distribution has probability density function G(u;α, γ) = uα−1Γ(α)−1 exp(−γu)γα where

Γ denotes the Gamma function.
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Unconstrained parameters are easier to deal with in inference algorithms. Therefore, we

will rather assume without loss of generality that γ = 1 with the notation Sp(0,V , α, 1) ≡
Sp(0,V , α) adopted in the next Section.

3 Student Sliced Inverse Regression

Let X ∈ Rp be a random vector, Y ∈ R the real response variable and SY |X the central

subspace spanned by the columns of the matrix β ∈ Rp×d. In the following we assume

dim(SY |X) = d where d is known and d ≤ p. To address the estimation of the central

subspace, we consider the inverse regression formulation of [9], which models the link from

Y to X. In addition to be a simpler regression problem, the inverse regression approach is

of great interest because Proposition 6 in [9] states that in the Gaussian case, an estimation

of the central subspace is provided by the estimation of the inverse regression parameters.

In Subsection 3.1, we extend the inverse regression model of [9] by considering Student

distributed errors. We show then in Subsection 3.2 that the estimation of the extended model

is tractable via an Expectation-Maximization algorithm (EM). A link with SIR is presented

in Subsection 3.3 and the resulting Student SIR algorithm is described in Subsection 3.4.

3.1 Student multi-index inverse regression model

In the spirit of [4, 9] the following regression model is considered

X = µ+ V Bc(Y ) + ε, (5)

where µ ∈ Rp is a non random vector, B is a non random p × d matrix with BTB = Id,

ε ∈ Rp is a centered generalized Student random vector following the distribution given in

(4), ε is assumed independent of Y , with scale matrix V , c : R → Rd is a non random

function. It follows directly from (5) that

E(X|Y = y) = µ+ V Bc(y) (6)

and thus, after translation by µ, the conditional expectation ofX given Y is a random vector

located in the space spanned by the columns of V B. When ε is assumed to be Gaussian

distributed, Proposition 6 in [9] states that B corresponds to the directions of the central

subspace β. In [4, 9], it appears then that, under appropriate conditions, the maximum

likelihood estimator of B is (up to a full rank linear transformation) the SIR estimator of
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β, i.e. Span{B} = Span{β}. In this paper, we show that Proposition 6 in [9] can be

generalized to our Student setting, so that B still corresponds to the central subspace. The

generalization of Proposition 6 of [9] is given below.

Proposition 1 Let Xy be a random variable distributed as X|Y = y, let us assume that

Xy = µ+ V Bc(y) + ε (7)

with ε following a generalized Student distribution Sp(0,V , α), c(y) ∈ Rd is function of y

and V B is a p× d matrix of rank d. Under model (7), the distribution of Y |X = x is the

same as the distribution of Y |BTX = BTx for all values x.

The proof is given in Appendix 7.1. According to this proposition, X can be replaced by

BTX without loss of information on the regression of Y on X. We then propose in the next

Section a procedure to estimate B.

3.2 Maximum likelihood estimation via EM algorithm

Let (Xi, Yi), i = 1, . . . , n be a set of independent random variables distributed according

to the distribution of (X, Y ) as defined in (5). The unknown quantities to be estimated

in model (5) are {µ,V ,B, α} and the function c(.). Regarding c, we focus on projection

estimators for each coordinate of c(.) = (c1(.), . . . , cd(.)). For k = 1, . . . , d, function ck(.) is

expanded as a linear combination of h basis functions sj(.), j = 1, . . . , h as

ck(.) =
h∑
j=1

cjksj(.), (8)

where the coefficients cjk, j = 1, . . . , h and k = 1, . . . , d are unknown and to be estimated

while h is supposed to be known. Let C be a h × d matrix with the kth column given by

(c1k, . . . , chk)
T and s(.) = (s1(.), . . . , sh(.))

T . Then, model (5) can be rewritten as

X = µ+ V BCTs(Y ) + ε, with ε ∼ Sp(0,V , α), (9)

where Sp(0,V , α) is the multivariate centered generalized Student distribution with scale

matrix V . For each i, it follows that conditionally to Yi, Xi ∼ Sp(µ + V BCTsi,V , α)

where si=s(Yi). The density of the generalized Student distribution is available in closed

form and given in (4). However to perform the estimation, a more useful representation
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of this distribution is given by its Gaussian scale mixture representation (3). Introducing

an additional set of latent variables U = {U1, . . . , Un} with Ui independent of Yi, we can

equivalently write:

Xi|Ui = ui, Yi = yi ∼ Np(µ+ V BCTsi,V /ui) (10)

Ui|Yi = yi ∼ G(α, 1). (11)

Let us denote by θ = {µ,V ,B,C, α} the parameters to estimate from realizations

{xi, yi, i = 1, . . . , n}. In contrast to the Gaussian case, the maximum likelihood estimates

are not available in closed-form for the t-distributions. However, they are reachable using

an Expectation-Maximization (EM) algorithm. More specifically, at iteration (t) of the

algorithm, θ is updated from a current value θ(t−1) to a new value θ(t) defined as θ(t) =

arg maxθQ(θ,θ(t−1)). Considering the scale mixture representation above, a natural choice

for Q is the following expected value of the complete log-likelihood :

Q(θ,θ(t−1)) = EU [
n∑
i=1

logP (xi, Ui|Yi = yi;θ)|Xi = xi, Yi = yi;θ
(t−1)] (12)

=
n∑
i=1

EUi
[logP (xi|Ui, yi;µ,V ,B,C)|xi, yi;θ(t−1)] + EUi

[logP (Ui;α)|xi, yi;θ(t−1)]

= −1

2
n log detV +

1

2
p

n∑
i=1

EUi
[log(Ui)|xi, yi;θ(t−1)]

−1

2

n∑
i=1

EUi
[Ui|xi, yi;θ(t−1)] (µ+ V BCTsi − xi)TV −1(µ+ V BCTsi − xi)

+
n∑
i=1

EUi
[logP (Ui;α)|xi, yi;θ(t−1)] .

Note that all computations are conditionally to the Yi’s and no assumption is made on the

distribution of the Yi’s. The E-step therefore consists of computing the quantities

ūi
(t) = EUi

[Ui|xi, yi;θ(t−1)] , (13)

ũi
(t) = EUi

[logUi|xi, yi;θ(t−1)] , (14)

while the M-step divides into two-independent M-steps involving separately parameters

(µ,V ,B,C) and α. The second quantity (14) is needed only in the estimation of α. The

following notation is introduced for the next sections:

ū(t) =

∑n
i=1 ūi

(t)

n
(15)

ũ(t) =

∑n
i=1 ũi

(t)

n
. (16)
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E-step. The quantities (13) and (14) above require the posterior distribution of the Ui’s.

This distribution can be easily determined using the well known conjugacy of the Gamma and

Gaussian distributions for the mean. It follows then from standard Bayesian computation

that the posterior distribution is still a Gamma distribution with parameters specified below,

p(ui|Xi = xi, Yi = yi;θ
(t−1))

∝ Np(xi;µ(t−1) + V (t−1)B(t−1)C(t−1)Tsi,V
(t−1)/ui) G(ui;α

(t−1), 1)

= G(ui;α
(t−1) +

p

2
, 1 +

1

2
δ(xi, µ

(t−1) + V (t−1)B(t−1)C(t−1)Tsi,V
(t−1)))

where δ(xi,µ + V BCTsi,V ) = (µ + V BCTsi − xi)TV −1(µ + V BCTsi − xi) is the

Mahalanobis distance between xi and µ+ V BCTsi when the covariance is V .

The required moments (13) and (14) are then well known for a Gamma distribution, so

that it comes,

ū
(t)
i =

α(t−1) + p
2

1 + 1
2
δ(xi, µ(t−1) + V (t−1)B(t−1)C(t−1)Tsi,V (t−1))

ũ
(t)
i = Ψ(α(t−1) +

p

2
)− log(1 +

1

2
δ(xi,µ

(t−1) + V (t−1)B(t−1)C(t−1)Tsi,V
(t−1)))

where Ψ is the Digamma function. As it will become clear in the following M-step, ū
(t)
i acts as

a weight for xi. Whenever the Mahalanobis distance of xi to µ(t−1) +V (t−1)B(t−1)C(t−1)Tsi

increases, the weight ū
(t)
i of xi decreases and the influence of xi in the estimation of the

parameters will be downweighted in the next iteration. The idea of using weights to handle

outliers is common in the literature, Weighted Inverse Regression (WIRE) [13] gives weights

through a deterministic kernel function to ensure the existence of the first moment. Our

approach does not require previous knowledge to select an appropriate kernel and refers to

the wide range of t-distributions (the Cauchy distribution for which the first moment is not

defined lies in this family).

M- step. The M-step divides into the following two independent sub-steps.

M-(µ,V ,B,C) substep. Omitting terms that do not depend on the parameters in (12),

estimating (µ,V ,B,C) by maximization of Q consists, at iteration (t), of minimizing with

respect to (µ,V ,B,C) the following G function,

G(µ,V ,B,C) = log detV +
1

n

n∑
i=1

ūi
(t) (µ+V BCTsi−xi)TV −1(µ+V BCTsi−xi) . (17)
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To this aim, we introduce (omitting the index iteration (t) in the notation) the h×h weighted

covariance matrix W of s(Y ) defined by:

W =
1

n

n∑
i=1

ūi (si − s̄)(si − s̄)T ,

the h× p weighted covariance matrix M of (s,X) defined by

M =
1

n

n∑
i=1

ūi (si − s̄)(xi − x̄)T ,

and Σ the p× p weighted covariance matrix of X

Σ =
1

n

n∑
i=1

ūi (xi − x̄)(xi − x̄)T , (18)

where

x̄ =
1∑n
i=1 ūi

n∑
i=1

ūixi and (19)

s̄ =
1∑n
i=1 ūi

n∑
i=1

ūisi. (20)

We derive then the following lemma.

Lemma 1 Using the above notations, G(µ,V ,B,C) can be rewritten as

G(µ,V ,B,C) = log detV + tr(ΣV −1) + tr(CTWCBTV B)− 2tr(CTMB)

+ ū (µ− x̄+ V BCT s̄)TV −1(µ− x̄+ V BCT s̄) .

The proof is given in Appendix 7.2. Thanks to this representation of G(.) it is possible to

derive the following proposition which is a generalization to the multi-index case and Student

setting of the result obtained in case of Gaussian error ε in [4].

Proposition 2 Under (9), if W and Σ are regular, then the M-step for (µ,V ,B,C) leads

to the updated estimations (µ̂, V̂ , B̂, Ĉ) given below

• B̂ is made of the eigenvectors associated to the largest eigenvalues of Σ−1MTW−1M ,
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• V̂ = Σ− (MTW−1MB)(BTMTW−1MB)−1(MTW−1MB)T .

• Ĉ = W−1MB̂(B̂T V̂ B̂)−1,

• µ̂ = x̄− V̂ B̂ĈT s̄,

The proof is detailed in Appendix 7.3. Regarding parameter α it can be updated using an

independent part of Q as detailed in the next M-step.

M-α substep.

Parameter α can be estimated by maximizing independently with regards to α,

n∑
i=1

EUi
[logP (Ui;α)|xi, yi;θ(t−1)] . (21)

Then, since

EUi
[log p(Ui;α)|xi, yi;θ(t−1)] = −ūi(t) + (α− 1)ũi

(t) − log Γ(α) , (22)

setting the derivative with respect to α to zero, we obtain that α̂ = Ψ−1(ũ), where Ψ(.) is

the Digamma function.

In practice, for the procedure to be complete, the choice of the h basis functions sj needs

to be specified. Many possibilities for basis functions are available in the literature such as

classical Fourier series, polynomials, etc. In the next section, we discuss a choice of basis

functions which provides the connection with Sliced Inverse Regression (SIR) [23].

3.3 Connection to Sliced Inverse Regression

As in the Gaussian case [4, 9], a clear connection with SIR can be established for a specific

choice of the h basis functions. When Y is univariate a natural approach is to first partition

the range of Y into h + 1 bins Sj for j = 1, . . . , h + 1 also referred to as slices, and then

defining h basis functions by considering the first h slices as follows,

sj(.) = 1I{. ∈ Sj}, j = 1, . . . , h (23)

where 1I is the indicator function. Note that it is important to remove one of the slices

so that the basis functions remain independent. However, we define the following related
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quantities for j = 1, . . . , h+ 1:

nj =
n∑
i=1

ūi1I{yi ∈ Sj},

fj =
nj
n
. (24)

They represent respectively the number of yi in slice j weighted by the ūi and the weighted

proportion in slice j. We then denote the following weighted mean of X given Y ∈ Sj by

x̄j =
1

nj

n∑
i=1

ūi1I{yi ∈ Sj}xi (25)

and the p× p “between slices” covariance matrix by

Γ =
h+1∑
j=1

fj(x̄j − x̄)(x̄j − x̄)T .

In this context, the following consequence of Proposition 2 can be established.

Corollary 1 Under (9) and (23), if Σ is regular, then the updated estimation B̂ of B

is given by the eigenvectors associated to the largest eigenvalues of Σ−1Γ. In addition,

Γ = MTW−1M .

The proof is given in Appendix 7.4. When all ūi = 1, the iterative EM algorithm reduces

to one M-step and the quantities defined in this section correspond to the standard SIR

estimators. We referred to the EM algorithm resulting from this choice of basis functions as

the Student SIR algorithm. It is outlined in the next section.

3.4 Central subspace estimation via Student SIR algorithm

The EM algorithm can be outlined based on Proposition 2 and Corollary 1. It relies on two

additional features to be specified, initialization and stopping rule. As the algorithm alter-

nates the E and M steps, we can equivalently start with one of this step. It is convenient to

start with the Maximization step since the initialization of quantities ūi, ũi can be better in-

terpreted. If ūi is constant and ũi = 0, the first M-step of the algorithm results in performing

standard SIR. Regarding an appropriate stopping rule of the algorithm, EM’s fundamental

property is to increase the log-likelihood at each iteration. A standard criteria is then the

relative increase in log-likelihood, denoted by ∆(θ(t),θ(t−1)), between two iterations. At each
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iteration, for current parameters values, the log-likelihood is easy to compute using (4) and

(9). Another natural criterion is to assess when parameter estimation stabilizes. Typically, if

we focus on the central subspace B, we can consider the following proximity measure [6,14]:

r(B, B̂) =
trace(BBT B̂B̂T )

d
. (26)

The above quantity r ranges from 0 to 1 and evaluates the distance between the subspaces

spanned by the columns of B and B̂. If d = 1, r is the squared cosine between the two

spanning vectors. Although not directly related to the EM algorithm, we observed that in

practice this criterion gave similar results in terms of parameter estimation. Experiments on

simulated and real data are reported in the next two sections.
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Student SIR algorithm

Set h and partition the Y range into h+ 1 slices.

Set the dimension d of the e.d.r. space, and the desired tolerance value for convergence δ.

Initialize the ū
(0)
i , ũ

(0)
i ’s with ū

(0)
i = 1 and ũ

(0)
i = 0 for all i = 1, . . . , n.

(this first iteration of the algorithm gives the SIR estimation of Γ and B).

while ∆(θ(t),θ(t−1)) < δ do

M-step

Compute :

• ū(t) and ũ(t) (eq. (15) and (16)), f (t) = (f
(t)
1 , . . . f

(t)
h )T and f

(t)
h+1 (eq. (24)),

• x̄
(t)
j and x̄(t) (eq. (25) and (19)),

• Σ(t) (eq. (18)),

• M (t) where each row is given by M
(t)
j,. = f

(t)
j (x̄

(t)
j − x̄(t))T for j = 1, . . . , h,

• W (t)−1 = diag

(
1

f
(t)
1

, . . . , 1

f
(t)
h

)
+ 1

f
(t)
h+1

O, where O is the h× h matrix defined by Oij = 1,

• Γ(t) = M (t)TW (t)−1M (t),

• B(t) matrix formed by the d eigenvectors associated to the d largest eigenvalues of Σ(t)−1Γ(t),

• V (t) = Σ(t) − Γ(t)B(t)(B(t)T Γ(t)B(t))−1(Γ(t)B(t))T ,

• C(t) = W (t)−1M (t)B(t)(B(t)TV (t)B(t))−1,

• µ(t) = x̄(t) − V (t)B(t)C(t)T s̄(t),

• α(t) = Ψ−1(ũ(t)) .

E-step

Update the ūi, ũi’s using the quantities estimated in the M-step :

ūi
(t+1) =

α(t) + p
2

1 + 1
2δ(xi,µ

(t) + V (t)B(t)C(t)Tsi,V (t))
,

ũi
(t+1) = Ψ(α(t) +

p

2
)− log(1 +

1

2
δ(xi,µ

(t) + V (t)B(t)C(t)Tsi,V
(t))) .

end while
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4 Simulation study

Student SIR is tested on simulated data under a variety of different models and distributions

for the p-dimensional random variable X. The behavior of Student SIR is compared to

SIR and four other techniques that claim some robustness arising from the literature. For

comparison, we adopt the simulation setup described in [13,17].

4.1 Simulation setup

Three different regression models are considered:

I : Y = 1 + 0.6X1 − 0.4X2 + 0.8X3 + 0.2ε,

II : Y = (1 + 0.1ε)X1,

III : Y = X1/(0.5 + (X2 + 1.5)2)) + 0.2ε,

where ε follows a standard normal distribution. The three models are combined with three

possible distributions for the predictors X:

(i) X is multivariate normal distributed with mean vector 0 and covariance matrix defined

by its entries as σij = 0.5|i−j|;

(ii) X is standard multivariate Cauchy distributed;

(iii) X = (X1, . . . , Xp) , where each Xi is generated independently from a mixture of normal

and uniform distributions denoted by 0.8N (0, 1) + 0.2U(−ν, ν) where ν is a positive

scalar value.

Models I, III are homoscedastic while model II is heteroscedastic. Case (ii) is built to test

the sensitivity to outliers while the distribution of X is elliptical. In (iii) a non-elliptical

distribution of X is considered. The dimension is set to p = 10, the dimension of the e.d.r.

space is d = 1 for I, II and d = 2 for III. The nine different configurations of X and Y

are simulated with a number of samples varying depending on the experiment. In all tables

Student SIR is compared with standard SIR and four other approaches. Contour Projection

(CP-SIR) [25,28] applies the SIR procedure on a rescaled version of the predictors. Weighted

Canonical Correlation (WCAN) [30] uses a basis of B-splines first estimating the dimension
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d of the central subspace and then the directions from the nonzero robustified version of

the correlation matrices between the predictors and the B-splines basis functions. The idea

of Weighted Inverse Regression (WIRE) [13] is to use a different weight function capable

of dealing with both outliers and inliers. SIR is a particular case of WIRE with constant

weighting function. Slice Inverse Median Estimation (SIME) replaces the intra slice mean

estimator with the median which is well known to be more robust. All values referring to

CP-SIR, WCAN, WIRE, SIME in the tables are directly extracted from [13]. Values relative

to SIR have been recomputed using [10].

4.2 Results

To assess the sensitivity of the compared methods to different setting parameters, four sets of

tests are carried out and reported respectively in Tables 1 and 2. First, the 9 configurations

of X and Y models are tested for fixed sample size n = 200, number of slices h = 5 and

p = 10 (Table 1 (a)). Then, the effect of the sample size is illustrated for model I (Table

1 (b)). The number of slices is varied to evaluate the sensitivity to the h value (Table 2 (a))

and at last, different values of ν are tested in the model (iii) case (Table 2 (b)). In all cases

and tables, the different methods performance is assessed based on their ability to recover

the central subspace which is measured via the value of the proximity measure r (26).

Student SIR shows its capability to deal with different configurations. The proximity

criterion (26) in Table 1 (a) is very close to one, for the first two regression models inde-

pendently of the distributions of the predictors. In the Gaussian case, Student SIR and

SIR are performing equally well showing that our approach has no undesirable effects when

dealing with simple cases. For configuration III − (iii), a slightly different value has been

found for SIR compared to [13]. In this configuration however the trend is clear: standard

SIR, Student SIR, WIRE and SIME show similar performance. In contrast, configurations

I− (ii), II− (ii), III− (ii) illustrate that Student SIR can significantly outperform SIR. This

is not surprising since the standard multivariate Cauchy has heavy tails and SIR is sensitive

to outliers [17].

Table 1 (b) illustrates on model I the effect of the sample size n: Student SIR exhibits

the best performance among all methods. It is interesting to observe that, in case (ii), the

smaller value of r for standard SIR does not depend on the sample size n. In contrast, adding

observations results in a better estimation for Student SIR.

It is then known that SIR is not very sensitive to the number of slices h [24]. In Table
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2 (a), an analysis is performed with varying h. Student SIR appears to be as well not very

sensitive to the number of slices.

At last, extra inliers as well as outliers can affect the estimation. In case (iii), pa-

rameter ν is controlling the extra observations magnitude. Under different values of ν =

0.5, 0.2, 0.1, 0.05 ,Table 2 (b) shows that both SIR and Student SIR are robust to inliers

while CP-SIR and WCAN fail when ν is small and extra observations behave as inliers

concentrated around the average.

To summarize, through these simulations Student SIR shows good performance, out-

performing SIR when the distribution of X is heavy-tailed (case (ii)) and preserving good

properties such as insensitivity to the number of slices or robustness to inliers that are

peculiar of SIR.

5 Real data application: The galaxy dataset

5.1 Data

The Galaxy dataset corresponds to n = 362, 887 different galaxies. This dataset has been

already used in [7] with a preprocessing based on expert supervision to remove outliers. In

this study all the original observations are considered, removing only points with missing

values, which requires no expertise. The response variable Y is the stellar formation rate.

The predictorX is made of spectral characteristics of the galaxies and is of dimension p = 46.

5.2 Evaluation setting

The number of samples n is considerable to test the robustness of Student SIR, i.e. the

proportion of outliers is very small compared to the whole dataset. The following strategy

is adopted: 1000 random subsets of X of size na = 3, 000, Xa
i , i = 1, . . . , 1000 and size

nb = 30, 000, Xb
i , i = 1, . . . , 1000 are considered to compare the performance of SIR and

Student SIR. First a reference result B̂SIR, B̂st-SIR is obtained using the entire dataset X,

using respectively SIR and Student SIR with the dimension of the e.d.r. space set to d = 2

and the number of slices to h = 1000. The proximity measure r (26) between the two

reference spaces is r(B̂SIR, B̂st-SIR) = 0.95. SIR and st-SIR are identifying approximately

the same same e.d.r. space.
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5.3 Results

Let B̂SIR
i , B̂st-SIR

i be the estimations of the basis of the e.d.r. space for the random subsets

Xa
i , i = 1, . . . , 1000 using respectively SIR and Student SIR. The proximity measures rSIRi =

r(B̂SIR, B̂SIR
i ) and rst-SIRi = r(B̂st-SIR, B̂st-SIR

i ) are considered. All results are obtained setting

the number of slices to h = 10. The means (and standard deviations) of the resulting

proximity measures r are respectively 0.88(0.11) for SIR and 0.91(0.08) for Student SIR.

The experiment is better visualized in Figure 1 (a) where histograms show that Student SIR

significantly outperforms SIR most of the times. As expected SIR is less robust obtaining

with a higher frequency low values of r. The histograms show an important difference

between values around r = 0.96 (540 for Student SIR, 429 for SIR).

In the second test, the sample size of the subsets is increased to nb = 30, 000. Accordingly,

the number of slices is increased to h = 100. We observe not surprisingly, that the means (and

standard deviations) of rSIRi and rst-SIRi are increasing to 0.96(0.07) and 0.99(0.00). Student

SIR however still performs better (Figure 1 (b)) with some low values of the proximity

measure for SIR while Student SIR has almost all the values (993) concentrated around

r = 0.98. The difference between the two approaches is then further emphasized in Figure 2

where the cloud of points in the upper left corner of the plot corresponds to datasets for

which SIR was not able to estimate a correct basis of the e.d.r space while Student SIR

shows good performance. Even if the true e.d.r space is unknown, this analysis suggests that

Student SIR is robust to outliers and can be profitably used in real application.

6 Conclusion and future work

In this paper we proposed a new approach referred to as Student SIR to robustify SIR. In

contrast to most existing approaches which aim at replacing the standard SIR estimators

by robust versions, we consider the intrinsic characterization of SIR as a Gaussian inverse

regression model [9] and modify it into a Student model with heavier tails. The interest of

the resulting method has been illustrated through tests on simulated and real data. While

SIR is not robust to outliers, Student SIR has shown to be able to deal with different kind

of situations that depart from normality. As expected, when SIR provides good results,

Student SIR is performing similarly but at a higher computational cost due to the need for

an EM iterative algorithm for estimation.

Limitations of the approach include the difficulty in dealing with the case p > n or when

there are strong correlations between variables. Student SIR as SIR still suffers from the
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need to inverse large covariance matrices. A regularization, to overcome this problem, has

been proposed in [4] and could be extended to our Student setting. Another practical issue

is how to set the dimension d of the central subspace that has been assumed known so far.

The problem of selecting the dimension of the central space has been already addressed in

the literature [3, 14]. Despite all methods for dimensionality reduction are facing this issue,

it remains one of the hardest to deal with. A straightforward possibility to check what is

the best dimension d for a specific regression problem is to use cross validation after the

link function is found. Although in that case, the dimension d may vary depending on the

specific regression approach that the user selected. Another tool for the choice of dimension

d based on graphical consideration is the one described in [24] that can be easily used when

dealing with real data. A possible test for the algorithm when dealing with real data is to

insert the response variable Y in the predictor space. In such case it is straightforward to

see that d = 1 and a direction β = (0, .., 0, 1, 0...0) exists such that Y is independent of X

given βTX. If the proposed algorithm is not able to select the right dimension in this trivial

case, careful attention should be given to the interpretation of the results.

To conclude, Student SIR shows good performance in the presence of outliers and is

performing equally well in case of Gaussian errors. In our experiments, the algorithm has

shown fast convergence being a promising alternative to SIR since nowadays most of datasets

include outliers. The theory has been developed based on solid foundations that are well

established both in literature and applications where the EM algorithm has already been

extensively applied and studied providing good insights for further studies relying on the

t-distributions. Future work would be to extended this setting to a multivariate response

following the lead of [2, 12].
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7 Appendix: Proofs

7.1 Proof of Proposition 1

The proof generalizes the proof of Proposition 6 in [9] to the generalized Student case.

It comes from (7) that Xy follows a generalized Student distribution Sp(µy,V , α) where

µy = µ+V Bc(y). Generalized Student distributions have similar properties than Gaussian

distributions (see for instance section 5.5 in [21]). In particular any affine transformation

of a generalized Student distribution remains in this family. It follows that BTX|Y = y is

distributed as Sd(BTµy,B
TV B, α). Similarly marginals and conditional distributions are

retained in the family. It follows that X|BTX = BTx, Y = y is also a generalized Student

distribution Sp(µ̃, Ṽ , α̃, γ̃) with

µ̃ = µy + V B(BTV B)−1(BTx−BTµy)

= µ+ V B(BTV B)−1(BTx−BTµ)

Ṽ = V − V B(BTV B)−1BTV

α̃ = α + d

γ̃ =
1

2
+ (BTx−BTµy)

T (BTV B)−1(BTx−BTµy)

=
1

2
+ εTB(BTV B)−1BTε ,

from which we can clearly see that Ṽ , α̃, γ̃ and µ̃ do not depend on y. It follows that

X|BTX = BTx, Y = y has the same distribution as X|BTX = BTx for all values x.

Consequently Y is independent on X conditionally to BTX which implies that Y |X = x

and Y |BTX = BTx have identical distributions for all values x.

Note that it appears in [9], that the proof that E[X|BTX, Y = y] does not depend on

y is independent on the distribution of ε. Indeed the proof uses only the properties of the

conditional expectation seen as a projection operator. This means that B corresponds to

the mean central subspace as defined by E[X|BTX, Y = y] = E[X|BTX]. For the proof

of the proposition, it was necessary to show that the independence on y holds for the whole

distribution and not only for the mean.
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7.2 Proof of Lemma 1

The proof is adapted from the proof of lemma 1 in [4] taking into account the additional

quantities ūi’s. Let us remark that

R
def
= G(µ,V ,B,C)− log detV =

1

n

n∑
i=1

ūiZ
T
i V

−1Zi, (27)

where we have defined for i = 1, . . . , n,

Zi = µ+ V BCTsi − xi = (µ− x̄+ V BCT s̄) + V BCT (si − s̄)− (xi − x̄)
def
= Z1 +Z2,i −Z3,i.

Since Z2,. and Z3,. are centered, replacing the previous expansion in (27) yields

R = ū ZT
1 V

−1Z1 +
1

n

n∑
i=1

ūiZ
T
2,iV

−1Z2,i +
1

n

n∑
i=1

ūiZ
T
3,iV

−1Z3,i −
2

n

n∑
i=1

ūiZ
T
2,iV

−1Z3,i,

where

ZT
1 V

−1Z1 = (µ− x̄+ V BCT s̄)TV −1(µ− x̄+ V BCT s̄)

1

n

n∑
i=1

ūiZ
T
2,iV

−1Z2,i = tr(CTWCBTV B)

1

n

n∑
i=1

ūiZ
T
3,iV

−1Z3,i =
1

n

n∑
i=1

ūitr((xi − x̄)TV −1(xi − x̄)) =
1

n

n∑
i=1

ūitr(V
−1(xi − x̄)(xi − x̄)T )

= tr(V −1Σ)

1

n

n∑
i=1

ūiZ
T
2,iV

−1Z3,i = tr(CTMB),

and the conclusion follows.

7.3 Proof of Proposition 2

Cancelling the gradients of G(µ,V ,B,C) yields the system of equations

1

2
∇µG = V̂ −1(µ̂− x̄+ V̂ B̂ĈT s̄) = 0, (28)

1

2
∇BG = V̂ B̂ĈT (ūs̄s̄T +W )Ĉ −MT Ĉ + ū(µ̂− x̄)s̄T Ĉ = 0, (29)

1

2
∇CG = ū(s̄s̄T ĈB̂T V̂ B̂ + s̄(µ̂− x̄)T B̂) +WĈB̂T V̂ B̂ −MB̂ = 0, (30)

∇VG = V̂ −1 + B̂ĈT (ūs̄s̄T +W )ĈB̂T + (31)

− V̂ −1
(
ū(µ̂− x̄)(µ̂− x̄)T + Σ

)
V̂ −1 = 0. (32)
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From (28), we have

µ̂ = x̄− V̂ B̂ĈT s̄. (33)

Replacing in (29) and (30) yields the simplified system of equations

V̂ B̂(ĈTWĈ) = MT Ĉ, (34)

WĈ(B̂T V̂ B̂) = MB̂. (35)

It follows from the last equality that

Ĉ = W−1MB̂(B̂T V̂ B̂)−1 . (36)

Multiplying (34) by BTV B on the left, we get

V̂ B̂ĈTWĈB̂T V̂ B̂ = MT ĈB̂T V̂ B̂, (37)

and assuming W is regular, (35) entails Ĉ(B̂T V̂ B̂) = W−1MB̂. Replacing in (37) yields

V̂ B̂ĈTWĈB̂T V̂ B̂ = MTW−1MB̂. (38)

Now, multiplying (31) on the left and on the right by V̂ and taking account of (33) entails

Σ = V̂ + V̂ B̂(ĈTWĈ)B̂T V̂ . (39)

As a consequence of (39), we have

ΣB̂ = V̂ B̂(I + ĈTWĈB̂T V̂ B̂), (40)

and

V̂ B̂ = Σ̂B̂(I + ĈTWĈB̂T V̂ B̂)−1. (41)

Using this expression of V̂ B̂ above in (38), it comes

B̂
(
I + (ĈTWĈB̂T V̂ B̂)−1

)−1
= Σ−1MTW−1MB̂ , (42)

which means that the columns of B̂ are stable by Σ−1MTW−1M and thus are eigenvec-

tors of Σ−1MTW−1M . Let us denote by λ1, . . . , λd the associated eigenvalues. Matrix

Σ−1MTW−1M is of size p × p and of rank at most min(h, p) since W is assumed to be

regular. In practice we will assume h ≥ d and p ≥ d. Therefore d ≤ min(h, p). It remains

to show that λ1, . . . , λd are the d largest eigenvalues. To this aim, we observe that using

successively (35) and (39),

G(µ̂, V̂ , B̂, Ĉ) = log det V̂ + trace (ĈB̂T V̂ B̂CTW ) + trace (V −1Σ)− 2trace (B̂ĈTM)

= log det V̂ + trace (M̂B̂ĈT ) + p+ trace (M̂B̂ĈT )− 2trace (B̂ĈTM )

= p+ log det V̂ .
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Let us consider the two following matrices, ∆1 = BĈTWĈB̂T V̂ and ∆2 = ĈTWĈB̂T V̂ B.

∆1 is p × p of rank at most d and ∆2 is d × d of rank d, invertible with positive eigenval-

ues denoted by δ1, . . . , δd . The eigenvalues of ∆2 are that of ∆1 too. Indeed consider yk

an eigenvector for δk, then ĈTWĈB̂T V̂ Byk = δkyk. Multiplying on the left by B̂ and

considering zk = B̂yk, it comes that δk is also an eigenvalue for ∆1. Using (39), we have

then

log det V̂ = log det Σ− log det(I + ∆1) = log det Σ−
d∑

k=1

log(1 + δk) .

Multiplying (42) by B̂T and using B̂T B̂ = I, we get I+∆−12 = (B̂TΣ−1MTW−1MB̂)−1 =

diag(1/λk) from which we deduce that δk = 1
1−λk

− 1. Finally we get

G(µ̂, V̂ , B̂, Ĉ) = p+ log det Σ +
d∑

k=1

log(1− λk) .

G is then minimized when the λk are the largest. As a consequence of (39), we also have

that

V̂ = Σ− V̂ B̂(ĈTWĈ)B̂T V̂ . (43)

Replacing V̂ B̂ in (43) by the expression given in (34), it comes

V̂ = Σ−MT Ĉ(ĈTWĈ)−1ĈTM . (44)

Grouping the results in (44), (36), (33) and the considerations after (42) gives the Proposi-

tion.

7.4 Proof of Corollary 1.

Let us remark that, under (23), the coefficients Wij of W have an explicit form:

W =
1

n

n∑
i=1

ūi (si − s̄)(si − s̄)T

=
1

n

n∑
i=1

ūi sis
T
i −

2

n

n∑
i=1

ūi sis̄
T +

1

n

n∑
i=1

ūi s̄s̄
T

=
1

n

n∑
i=1

ūi sis
T
i −

2ff t

ū
+
ff t

ū

=
1

n

n∑
i=1

ūi sis
T
i −

ff t

ū
,
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where f = (f1, ..., fh). Using (23) the first sum corresponds to diag(f1, ..., fh) leading to

W = diag(f1, ..., fh) −
ff t

ū
. The inverse matrix of W can be calculated using Sherman-

Morrison formula:

W−1 = diag

(
1

f1
, . . . ,

1

fh

)
+

1

fh+1

O,

where O is the h×h matrix defined by Oij = 1 for all (i, j) ∈ {1, . . . , h}×{1, . . . , h}. Using

(23) the jth row of M is given by:

1

n

n∑
i=1

ūi(1I{yi ∈ Sj} − s̄j)(xi − x̄)T =
1

n

n∑
i=1

ūi1I{yi ∈ Sj}xTi −
1

n

n∑
i=1

ūi1I{yi ∈ Sj}x̄T−

+
1

n

n∑
i=1

ūis̄jx
T
i +

1

n

n∑
i=1

ūis̄jx̄
T

= fjx̄j
T − fjx̄T − fjx̄T + fjx̄

T

= fj(x̄j − x̄)T ,

for all j = 1, . . . , h. Now taking into account that O2 = hO, we have

MTW−1M =
h∑
j=1

fj(x̄j − x̄)(x̄j − x̄)T +
1

fh+1

MTOM

=
h∑
j=1

fj(x̄j − x̄)(x̄j − x̄)T +
1

hfh+1

(MTO)(MTO)T . (45)

Now, remarking that all the columns of MTO are equal to

h∑
j=1

fj(x̄j − x̄) =
h+1∑
j=1

fj(x̄j − x̄)− fh+1(x̄h+1 − x̄) = −fh+1(x̄h+1 − x̄),

where fh+1 = 1
n

n∑
i=1

ūi1I{yi ∈ Sh+1} = ū−
h∑
j=1

fj it follows that

(MTO)(MTO)T = hf 2
h+1(x̄h+1 − x̄)(x̄h+1 − x̄)T

and thus replacing in (45) yields

MTW−1M =
h+1∑
j=1

fj(x̄j − x̄)(x̄j − x̄)T = Γ.

The result is then a consequence of Proposition 2.
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Model X Method

SIR CP-SIR WCAN WIRE SIME st-SIR

(i) .99(.01) .99(.01) .98(.01) .98(.01) .99(.01) .99(.01)

I (ii) .63(.18) .92(.04) .88(.06) .87(.07) .91(.04) .98(.01)

(iii) .99(.01) .86(.12) .72(.27) .98(.01) .97(.01) .99(.01)

(i) .99(.01) .98(.01) .98(.01) .98(.01) 98(.01) .99(.01)

II (ii) .61(.18) .92(.04) .89(.06) .87(.08) .91(.05) .98(.01)

(iii) .99(.01) .67(.25) .69(.28) .98(.01) .97(.02) .99(.01)

(i) .88(.06) .87(.06) .89(.05) .86(.06) .87(.06) .87(.06)

III (ii) .40(.13) .78(.10) .78(.11) .76(.11) .78(.10) .85(.06)

(iii) .84(.07) .63(.12) .67(.13) .85(.07) .85(.07) .84(.07)

(a)

Model X n Method

SIR CP-SIR WCAN WIRE SIME st-SIR

I

(i)

50 .95(.03) .91(.09) .86(.11) .88(.11) .90(.08) .95(.03)

100 .98(.01) .96(.03) .96(.03) .95(.03) .96(.02) .98(.01)

200 .99(.01) .99(.01) .98(.01) .98 (.01) .99(.01) .99(.01)

400 1(.00) .99(.00) .99(.00) .99 (.01) .99(.00) 1(.00)

(ii)

50 .60(.22) .66(.18) .57(.23) .49(.24) .59(.21) .90(.07)

100 .62(.21) .85 (.08) .78(.11) .73(.15) .81(.10) .96(.02)

200 .62(.20) .92(.04) .88(.06) .87(.07) .91(.04) .98(.01)

400 .62(.18) .96(.02) .94(.03) .93(.03) .96(.02) .99(.00)

(iii)

50 .95(.02) .45(.29) .18(.19) .73(.25) .86(.09) .95(.02)

100 .98(.01) .66(.25) .35(.29) .94(.04) .94(.04) .98(.01)

200 .99(.01) .86(.12) .72(.27) .98(.01) .97(.01) .99(.00)

400 .99(.00) .96(.04) .96(.04) .93(.03) .99(.01) .99(.00)

(b)

Table 1: (a) Average of the proximity measure r (eq. (26)) for sample size n = 200; and (b) effect of

sample size n on the average proximity measure r, both over 200 repetitions with standard deviation in

brackets. Six methods are compared. SIR: sliced inverse regression; CP-SIR: contour projection for SIR;

WCAN: weighted canonical correlation; WIRE: weighted sliced inverse regression estimation; SIME: sliced

inverse multivariate median estimation and st-SIR: Student SIR. In all cases, the number of slices is h = 5

and the predictor dimension p = 10. Best r values are in bold.
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Model X h Method

SIR CP-SIR WCAN WIRE SIME st-SIR

I

(i)

2 .96(.02) .95(.03) .98(.01) .94(.03) .95(.03) .95(.02)

5 .99(.01) .98(.01) .98(.01) .98(.02) .98(.01) .99(.00)

10 .99(.00) .99(.01) .98(.01) .98 (.01) .98(.01) 1(.00)

20 1(.00) .99(.01) .98(.02) .98 (.02) .98(.01) 1(.00)

(ii)

2 .60(.18) .90(.05) .60(.34) .87(.06) .89(.06) .95(.02)

5 .62(.18) .92 (.04) .89(.06) .88(.07) .92(.04) .98(.01)

10 .63(.19) .92(.04) .88(.07) .87(.07) .86(.08) .99(.00)

20 .65(.21) .91(.05) .85(.08) .85(.08) .69(.14) 1(.00)

(iii)

2 .96(.02) .91(.06) .84(.20) .95(.02) .94(.05) .95(.02)

5 .99(.00) .64(.26) .67(.28) .98(.01) .98(.01) .99(.00)

10 1(.00) .63(.26) .48(.31) .98(.01) .98(.01) 1(.00)

20 1(.00) .53(.28) .43(.30) .98(.01) .98(.01) 1(.00)

(a)

Model Y ν Method

SIR CP-SIR WCAN WIRE SIME st-SIR

(iii)

I

.5 .99(.01) .98(.01) .96(.02) .96(.02) .98(.01) .99(.01)

.2 .99(.01) .96(.02) .87(.15) .97(.01) .97(.01) .99(.01)

.1 .99(.01) .86(.12) .72(.27) .98 (.01) .97(.01) .99(.01)

.05 .99(.01) .58(.24) .65(.30) .98 (.01) .97(.01) .99(.01)

II

.5 .99(.01) .98(.01) .96(.02) .96(.02) .98(.01) .99(.01)

.2 .99(.01) .96 .03) .86(.16) .98(.01) .98(.01) .99(.01)

.1 .99(.01) .67(.25) .69(.28) 98(.01) .97(.02) .99(.01)

.05 .99(.01) .28(.24) .59(.29) 98(.01) .97(.01) .99(.01)

III

.5 .88(.06) .85(.07) .84(.08) .77(.11) .87(.06) .88(.05)

.2 .84(.07) .76(.12) .71(.13) .84(.08) .86(.06) .84(.07)

.1 .84(.07) .63(.12) .67(.13) .85(.07) .85(.07) .84(.07)

.05 .83(.07) .58(.10) .65(.13) .86(.07) .86(.07) .82(.07)

(b)

Table 2: Effect of the number of slices (a) and of inlier magnitude ν (b) on the average proximity measure

r (eq. (26)), over 200 repetitions with related standard deviation in brackets. Six methods are compared.

SIR: sliced inverse regression; CP-SIR: contour projection for SIR; WCAN: weighted canonical correlation;

WIRE: weighted sliced inverse regression estimation; SIME: sliced inverse multivariate median estimation

and st-SIR: Student SIR. In all cases, the sample size is n = 200 and the predictor dimension p = 10. Best

r values are in bold.
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(a) (b)

Figure 1: Histograms of the proximity measure (26) rSIRi = r(B̂SIR, B̂SIR
i ) (blue) and rst-SIRi =

r(B̂st-SIR, B̂st-SIR
i ) (red) for i = 1, . . . , 1000 random subsets of X of size na=3000 (a) and nb=30,000 (b).

Figure 2: Horizontal axis rSIRi , vertical axis rst-SIRi , i = 1, . . . , 1000, proximity measures computed using

subsets of X of size nb = 30, 000. Almost all points are lying above the line y = x indicating that Student

SIR improves SIR results and significantly so for the subsets in the upper left corner.
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