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1Université Grenoble Alpes, F-38000 Grenoble, France

2CNRS, Institut NEEL, F-38042 Grenoble, France
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The Kondo effect is the many-body screening of a local spin by a cloud of electrons at very low
temperature. It has been proposed as an explanation of the zero-bias anomaly in quantum point
contacts where interactions drive a spontaneous charge localization. However, the Kondo origin of
this anomaly remains under debate, and additional experimental evidence is necessary. Here we
report on the first phase-sensitive measurement of the zero-bias anomaly in quantum point contacts
using a scanning gate microscope to create an electronic interferometer. We observe an abrupt shift
of the interference fringes by half a period in the bias range of the zero-bias anomaly, a behavior
which cannot be reproduced by single-particle models. We instead relate it to the phase shift
experienced by electrons scattering off a Kondo system. Our experiment therefore provides new
evidence of this many-body effect in quantum point contacts.

Quantum point contacts1,2 (QPCs) are small constric-
tions in high-mobility two-dimensional electron gases
(2DEGs) controlled by a metallic split gate at the surface
of a semiconductor heterostructure. Despite their appar-
ent simplicity, they reveal complex many-body phenom-
ena which defy our understanding. When these quasi-
one-dimensional ballistic channels are sufficiently open,
electrons are perfectly transmitted via each available
transverse mode3, and the conductance is quantized in
units of the conductance quantum 2e2/h. Below the first
conductance plateau however, this single-particle picture
fails due to the increasing importance of many-body ef-
fects. An additional shoulder shows up in the linear
conductance curve around 0.7 × 2e2/h, called the 0.7
anomaly4, and a narrow peak of enhanced conductance
appears around zero bias in the non-linear conductance
curves at low enough temperature, called the zero-bias
anomaly7 (ZBA). The peak behavior versus temperature
and magnetic field was shown to share strong similarities
with the Kondo effect in quantum dots6,7 (QDs), i.e. the
many-body screening of a local spin by conduction elec-
trons below a characteristic temperature5,8,9. However,
deviations of the ZBA from the established Kondo effect
have been reported6–8,11, and the occurrence of this effect
in QPCs remains a debated issue14–16.

Because of enhanced electron interactions at low den-
sity, a spontaneous charge localization is predicted in
QPCs below the first plateau17,18, showing similari-
ties with the one-dimensional Wigner crystallization19,20.
This phenomenon is supported by two recent experiments
where localized states with even and odd numbers of
charges have been observed13,21. The development of a
Kondo effect is therefore expected at very low temper-
ature, but its specific properties for a self-consistently
localized state have not been calculated yet, due to the
complexity of the problem. In this unsettled situation,
the ZBA remains the subject of intensive investigations,
and any new information pointing to a Kondo origin is
important.

Here we use a scanning gate microscope14 (SGM)
to create a Fabry-Pérot (FP) cavity between the QPC
and the tip24,25, and measure the phase of the electron
wave function scattered by the QPC in the ZBA regime.
Phase-sensitive experiments indeed provide unique in-
formation on quantum phenomena and, in the case of
QPCs, will help us to clarify the microscopic origin of
the ZBA. Recently, a phase measurement on a QPC has
been reported26, but no significant deviation from the
single-particle prediction has been found27. In the past,
the transmission phase of QDs in the Kondo regime was
measured by embedding them in Aharonov-Bohm (AB)
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FIG. 1: (a) QPC conductance versus gate voltage at 30 mK
(different cool down than other figures). Inset: image of the
metallic split gate. (b) Differential conductance versus source-
drain bias at 25 mK and different gate voltages. (c) Temper-
ature dependence of the 0.7 anomaly from 50 to 900 mK. (d)
Temperature dependence of the ZBA from 25 to 870 mK.
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rings28–30. Here we measure instead the reflection phase
of the system and observe a phase shift by π of the in-
terference fringes in the bias voltage range of the ZBA.
This shift occurs via two phase jumps, and disappears
with gate voltage and temperature in the same way as
the ZBA. Calculations of the reflection phase for a single-
particle resonant level give a smooth shift across the
resonance15, in strong contrast with the two phase jumps
observed in our experiment, thereby indicating a many-
body origin. The observed behavior shows characteris-
tic signatures of the Kondo effect, where the transmis-
sion phase at the Fermi energy is locked at π/2 in the
Kondo valleys9, and where a “sharp Kondo double phase
lapse” is predicted as a function of source-drain bias16.
We therefore attribute the observed phase shift to the
Kondo effect, thus providing new evidence of this effect
as the origin of the zero-bias anomaly in QPCs.

The QPC is defined in a GaAs/AlGaAs heterostruc-
ture by the 270 nm long and 300 nm wide gap of a Ti/Au
split gate (inset of Fig. 1(a)). The 2DEG located 105 nm
below the surface has a 2.5× 1011 cm−2 electron density
and a 1.0 × 106 cm2V−1s−1 electron mobility. The de-
vice is fixed to the mixing chamber of a dilution fridge in
front of a cryogenic scanning probe microscope33,34 and
cooled down to a base temperature of 25 mK at zero gate
voltage. The four-probe differential conductance is mea-
sured by a lock-in technique using a 10 µV excitation. A
series resistance of 1600 Ω is subtracted from all data in
order to have the first conductance plateau at 2e2/h.

At the base temperature (25 mK), the linear conduc-
tance shows quantized plateaus and smooth transitions
versus gate voltage (Fig. 1(a)), while at higher tem-
peratures, the conductance exhibits the well-known 0.7
anomaly4 below the first plateau (Fig. 1(c)). The non-
linear differential conductance versus source-drain bias
shows a narrow peak at zero bias (Fig. 1(b)), the so-
called ZBA7, which vanishes rapidly at higher temper-
atures (Fig. 1(d)). The temperature dependence of the
peak height can be rescaled on the universal scaling law
of Kondo QDs2–4 with a single scaling parameter TK ,
called Kondo temperature, for all gate voltages (Fig. S1
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FIG. 2: (a) Principle of scanning gate interferometry. (b)
Potential landscape created by the split gate and the tip. (c)
SGM image of the conductance at 25 mK when the QPC is
tuned to the first conductance plateau. The QPC center is
located at the coordinates (−500 nm, 650 nm).
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FIG. 3: (a) Interference fringes along line 1 (Fig. 2(c)) versus
source-drain bias at −0.67 V gate voltage in (b). The conduc-
tance is differentiated with respect to tip position. Top panel:
conductance curve for the tip position indicated by the arrow.
Right panel: 3D plot showing the position of the phase shift
at the bottom of the zero-bias peak. (b) Interference fringes
along the same line versus gate voltage (at zero bias). The
pinch-off voltage is shifted by 40 mV in the presence of the
polarized tip with respect to Fig. 1(c). Top panel: conduc-
tance curve for the tip position indicated by the arrow. Right
panel: 3D plot showing the position of the phase shift at the
border of the plateau.

in the Supplemental Material38).

We now investigate the scattering phase of the QPC in
the ZBA regime at very low temperature (25 mK) using
a SGM-based interferometry experiment (Fig. 2(a)). The
SGM tip is scanned above the 2DEG at finite distance
from the QPC, with a tip voltage of −6 V and a tip-to-
surface height of 30 nm, chosen such as to locally deplete
the 2DEG (Fig. 2(b)). Electrons propagating out of the
QPC are scattered by this tip-induced perturbation and
partially reflected towards the QPC. Interference fringes
show up in the SGM images (Fig. 2(c)) due to the coher-
ent superposition of waves reflected by the QPC and the
tip, forming together a FP cavity. To probe the scatter-
ing phase at the ZBA, the tip is scanned along individ-
ual lines where regular fringe patterns are observed (red
lines). In the ZBA region below the first plateau, a shift
of the interference fringes appears around zero source-
drain bias, with abrupt jumps on each side of the ZBA
(Fig. 3(a)). When the fringes are recorded while sweep-
ing the gate voltage (Fig. 3(b)), a similar shift is observed
when the conductance drops below the first plateau, i.e.
when the QPC enters the ZBA region. This phase shift
reveals the non-trivial scattering phase of the ZBA and
constitutes a new experimental signature of this many-
body effect.
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The phase of the interference fringes in various situa-
tions is extracted in Fig. 4 from a Fourier transform per-
formed along the scan axis. When the QPC is tuned to
the first plateau (Fig. 4(a), top panel), the fringes evolve
monotonically with source-drain bias due to a change in
wavelength for electrons injected at higher energy44, and
the extracted phase is linear (blue curve, bottom panel).
Below the first plateau (second panel), the fringes exhibit
a sharp phase jump at negative bias and a smooth one
at positive bias, also visible on the extracted phase (red
curve, bottom panel). These phase jumps occur when the
conductance increases above the background to build the
zero-bias peak (red curve, third panel). Figure S2 in the
Supplemental Material38 presents additional data.

In order to measure the zero-bias phase shift, it is nec-
essary to have a reference phase at the same gate voltage
for a situation without the ZBA. This can be obtained by
recording the interference pattern at different tempera-
tures and fixed gate voltage (Fig. 4(b)). At a temperature
where the ZBA has disappeared (top panel), the phase
evolves linearly (blue curve, bottom panel), whereas at
the lowest temperature where the ZBA is at maximum
(second panel), the phase shows two jumps with a shift
of about π (red curve, bottom panel). At intermedi-
ate temperatures, the phase jumps remain at the same
bias voltages, but the shift disappears progressively, in
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FIG. 4: (a) Interference fringes along line 1 on the plateau
(first panel) and below the plateau (second panel) at respec-
tively −0.65 V and −0.67 V gate voltages in Fig. 3(b). Third
panel: conductance curve at the tip position of the arrow, be-
low the plateau (red curve) and on the plateau (blue curve).
Bottom panel: the phase of the fringes exhibits a shift in the
bias range of the ZBA (red curve) and evolves linearly on the
plateau (blue curve). (b) Interference fringes along line 2 at
a gate voltage below the plateau at 760 mK (first panel) and
25 mK (second panel). Third panel: conductance curve at
the tip position of the arrow, at 25, 240, 440, and 760 mK
from top to bottom. Bottom panel: phase of the fringes at
the same temperatures.

a non-uniform way, explaining larger fluctuations in the
extracted phase (Fig. S338).

A better accuracy on the phase determination can be
obtained by choosing a longer scanning line with more in-
terference fringes, but the difficulty is to find such a long
line where the ZBA remains relatively constant along the
entire scan. Indeed, as reported in Ref.13, the ZBA splits
up into finite bias peaks due to a periodic change of the
localized state occupancy with tip distance, and this lim-
its the available scan lengths. However, when the tip is
scanned along the red line 3, the interference fringes are
regularly spaced (Fig. 5(a), top panel) and the ZBA is
only slightly disturbed. The phase (bottom panel) shows
an abrupt jump at negative bias and a smoother change
at positive bias, with a zero-bias shift close to π. The
phase shift is also observed versus gate voltage along this
scanning line (Fig. S438).

In our experiment, the sensitivity of the interference
pattern to the ZBA, which is an intrinsic QPC property,
demonstrates that the QPC is part of the interferometric
cavity. The QPC represents one of the cavity mirrors, as
also realized in Refs.24,45, but in contrast to experiments
where interference was attributed to impurities in the
2DEG14,46. This situation is consistent with the fact that
the interference fringes are observed within the thermal
length LT = ~vF /kBT which is 1.5 µm at 1 K and much
more below (Fig. S538). In addition, the zero-bias phase
shift is observed for all scanning lines that have been
investigated, showing that it really corresponds to the
scattering phase of the QPC, and does not result from
specific scatterers in the 2DEG region between the QPC
and the tip. It has also been observed in a second device
(Fig. S638).

For quantitative analysis, it is important to note that
our SGM experiment realizes a FP cavity47 and there-
fore probes the reflection phase of the QPC. This situa-
tion differs from previous experiments on QDs using AB
rings48 which probe the transmission phase of the em-
bedded device. In the case of a single-particle resonant
level in a QD, the transmission phase presents a smooth
shift by π across the resonance48, while the reflection
phase of an asymmetric QD presents a shift by 0 or 2π
depending on which side the highest barrier is located15.
The reflection phase measured in our SGM experiment is
therefore between zero and twice the transmission phase
of the QPC and should be interpreted carefully.

The spontaneous charge localization in QPCs results
from the formation of self-consistent barriers along the
channel17,18. The QPC can thus be modeled by a small
QD with two asymmetric barriers on top of the main po-
tential barrier controlled by the gate6. The phase of tip-
induced interference fringes has been calculated for non-
interacting electrons using this simple model (Fig. 5(b)
and Fig. S738). For all barrier asymmetries, the calcu-
lated phase exhibits a single smooth shift across the reso-
nance (Fig. 5(b), bottom panel), in contrast with the ex-
perimental behavior showing phase jumps on both sides
of the resonance (Fig. 5(a)). This difference indicates
that the observed phase shift does not result from scat-
tering on a localized state. The spontaneously localized
states are indeed expected at larger energy and to survive
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experimental data(a) (b) non-interacting model

ε0

ΓL

ΓR

TtipDtipleft lead right lead

FIG. 5: (a) Interference fringes when the tip is scanned along
line 3. Bottom panel: average conductance curve (blue) and
phase of the fringes (red) showing a shift by π within the ZBA.
(b) Model of the SGM-based interferometry experiment where
the QPC is represented by an asymmetric QD. Bottom panel:
conductance in the symmetric case (blue) and phase of the
interference fringes versus energy, for different asymmetries
of the tunneling rates ΓL and ΓR (red to yellow). Central
panel: tip-induced interference fringes for the asymmetry of
the red curve.

up to much higher temperatures49. Here, we are dealing
with a low-energy phenomenon, that we attribute to the
screening of the localized states by the Kondo effect at
very low temperature5,8,9. This screening produces a nar-
row resonance in the density of states at the Fermi level
and gives rise to a conductance peak at zero bias50.

Below the Kondo temperature, the transmission phase
of a symmetric QD equals π/2 in the gate voltage range
of a Kondo valley28–30, and the conductance reaches
2e2/h3,51. The phase shift observed in our experiment at
zero bias may correspond to this Kondo scattering phase,
but in the reflection coefficient, which can be twice the
value of the transmission coefficient15. This situation
arises if the smallest barrier is located on the cavity side,
which is likely to occur since the main gate-controlled
barrier induces this asymmetry on the self-consistent con-

finement potential6. A phase shift by π is therefore ex-
pected at zero bias, which is close to the value found
experimentally.

At finite bias voltage, the Kondo phase shift has been
calculated in Ref.16 for a QD in equilibrium (Fig. S838).
It exhibits three switches from 0 to π corresponding to
the transmission through the single-particle level (first
and second electrons) and through the Kondo resonance
(always centered at zero bias). A “sharp Kondo double
phase lapse” has been predicted around the Kondo peak
at low enough temperature16, and the double phase jump
seen in our experiment around the ZBA may correspond
to such an effect. Phase lapses by π are usually observed
versus gate voltage between the successive charge states
of QDs in the Coulomb blockade regime, and explained
by the coupling of the different orbitals to the leads52–54.
But to our knowledge, phase lapses versus source-drain
bias have not been reported before. In addition, decoher-
ence of the Kondo correlations at finite bias voltage50,55

is also an effect that should be considered, but no theo-
retical prediction of the Kondo phase shift out of equilib-
rium exists at the moment. We expect our experiment
to stimulate theoretical works in this direction.

To conclude, we performed the first phase-sensitive
measurements on the QPC conductance anomalies us-
ing scanning gate interferometry. Whenever the ZBA
is present, a phase shift of the interference fringes is ob-
served around zero bias, and we interpret it as the Kondo
phase shift experienced by electrons at the Fermi level.
In addition, the two phase jumps around the conduc-
tance peak may correspond to the predicted phase lapses
around the Kondo resonance. These results reinforce our
understanding of the ZBA in terms of a Kondo effect on
spontaneously localized states.
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47 C. Rössler, D. Oehri, O. Zilberberg, G. Blatter, M. Karalic,
J. Pijnenburg, A. Hofmann, T. Ihn, K. Ensslin, C. Reichl,
and W. Wegscheider, Phys. Rev. Lett. 115, 166603 (2015).

48 R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Uman-
sky, and H. Shtrikman, Nature (London) 385, 417 (1997).

49 Y. Yoon, L. Mourokh, T. Morimoto, N. Aoki, Y. Ochiai,
J. L. Reno, and J. P. Bird, Phys. Rev. Lett. 99, 136805
(2007).

50 S. Hershfield, J. H. Davies, and J. W. Wilkins, Phys. Rev.
Lett. 67, 3720 (1991).

51 A. V. Kretinin, H. Shtrikman, D. Goldhaber-Gordon, M.
Hanl, A. Weichselbaum, J. von Delft, T. Costi, and D.
Mahalu, Phys. Rev. B 84, 245316 (2011).

52 Y. Oreg and Y. Gefen, Phys. Rev. B 55, 13726 (1997).
53 C. Karrasch, T. Hecht, A. Weichselbaum, Y. Oreg, J. von

Delft, and V. Meden, Phys. Rev. Lett. 98, 186802 (2007).
54 T. Hecht, A. Weichselbaum, Y. Oreg, and J. von Delft,

Phys. Rev. B 80, 115330 (2009).
55 Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. Lett.

70, 2601 (1993).

http://arxiv.org/abs/1306.6689


6

Supplemental Material for
Electron phase shift at the zero-bias anomaly of quantum point contacts

B. Brun,1,2 F. Martins,3 S. Faniel,3 B. Hackens,3 A. Cavanna,4 C. Ulysse,4 A. Ouerghi,4 U. Gennser,4

D. Mailly,4 P. Simon,5 S. Huant,1,2 V. Bayot,1,3 M. Sanquer,1,6 and H. Sellier1,2
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I. SCALING ANALYSIS OF THE ZERO-BIAS CONDUCTANCE VERSUS TEMPERATURE

The temperature dependence of the linear conductance at zero bias is shown in Fig. S1(a). The 0.7 anomaly
observed at high temperature is related to the suppression of the conductance peak observed versus source-drain bias
as shown in Fig. S1(b). The zero-bias conductance G at finite temperature, normalized to its value Gmax at the lowest
temperature, is plotted in Fig. S1(c) as a function of the temperature T , rescaled by a parameter TK called Kondo
temperature. This parameter is chosen such that the data points follow the universal scaling law1 of Kondo quantum
dots (QDs) which can be approximated by the phenomenological formula2–4:

G(T/TK) = Gmax(1 + (21/s − 1)(T/TK)2)−s

where s is a fixed parameter close to 0.2 for S = 1/2 Kondo QDs. The single scaling parameter TK is shown in
Fig. S1(d) and depends on the gate voltage. Note that the conductance Gmax at zero temperature is less than 2e2/h
and might be expressed as5:

Gmax = (2e2/h)4ΓLΓR/(ΓL + ΓR)2

using asymmetric tunneling rates ΓL,R for the main gate-controlled QPC barrier and the weak self-consistent barrier
resulting from Coulomb interactions6.

In Kondo QDs3,4 and in QPCs6–8, the full width at half-maximum (FWHM) of the zero-bias peak is often assumed
to equal 2kBTK/e, but recent investigations9–11 have shown that the full width at 2/3 of the maximum (FW2/3M)
gives a better estimate of TK. In our QPC, the peak width (almost temperature independent) is plotted in Fig. S1(d)
as a function of gate voltage. The FW2/3M values (open symbols and dotted line) show a slightly better agreement
with the TK values from the scaling analysis than the FWHM values (open symbols and dashed line).

In the absence of a generally accepted theory of the Kondo effect in QPCs, we have also investigated the possibility
of a S = 1 Kondo effect, for which the parameter s is close to 0.1612. However, the quality of the fit is not better, and
the new set of Kondo temperatures is found to be 1.4 times larger, in worse agreement with the values of the peak
width, in particular with the FW2/3M values. Since the S = 1/2 Kondo model describes better the behavior of the
ZBA, we have here an indication of the Kondo mechanism responsible for the ZBA in QPCs.

(a) (c)(b) (d)

FIG. S1: (a) Conductance at zero bias versus gate voltage from 50 mK (blue) to 900 mK (red). (b) Differential conductance
versus source-drain bias from 25 mK (blue) to 870 mK (red), at the four gate voltages indicated by the colored symbols in (a).
Temperatures are 25, 90, 145, 230, 380, 650, 870 mK. (c) The conductance at zero-bias from (b) is normalized to the lowest
temperature value and plotted versus a rescaled temperature T/TK . The symbol color corresponds to the data taken from (b)
at the gate voltage indicated in (a). The solid line indicates the universal Kondo behavior. (d) The Kondo temperatures TK

used in the scaling analysis in (c) are plotted versus gate voltage as colored symbols. The graph also shows (open symbols)
the characteristic temperatures T ∗

K = e∆V/2kB given by the full width ∆V of the zero-bias peaks shown in (b) at 25 mK.
Top symbols (connected by a dashed line) are obtained using the full width at 1/2 of the peak maximum (FWHM). Bottom
symbols (connected by a dotted line) are obtained using the full width at 2/3 of the peak maximum (FW2/3M).
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II. EVOLUTION OF THE PHASE SHIFT WITH GATE VOLTAGE (LINE 1)

(b)(a)

(c)

FIG. S2: (a) Same SGM image as in Fig. 2(c). The QPC is on the first conductance plateau. (b) Same data as in Fig. 3(b).
The interference fringes at zero bias along the red line in (a) are plotted versus gate voltage. Top panel: conductance curve at
200 nm tip distance. (c) Interference fringes along the red line in (a) versus source-drain bias, for gate voltages every 5 mV from
-0.675 to -0.650 V (from left to right). Central panels: raw conductance plot. Bottom panels: derivative of the conductance
with respect to tip distance. Top panels: conductance curves at 0, 200, and 400 nm (from bottom to top). A phase shift with
two phase jumps are visible around the ZBA when the conductance is below 0.8 × 2e2/h. Above this value, the ZBA splits up
in two finite bias peaks, as reported in Ref.13, and the interference fringes shows an additional phase jump at zero-bias.
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III. EVOLUTION OF THE PHASE SHIFT WITH TEMPERATURE (LINE 2)

760 mK25 mK 440 mK240 mK

FIG. S3: Interference fringes versus source-drain bias for different temperatures. This figure shows the data at 240 and 440 mK
mentioned in Fig. 4(b), together with the data at 25 and 760 mK already shown in Fig. 4(b). The gate voltage is -0.68 V and
the tip is scanned along line 2 in Fig. 2(c). Top panels: conductance curves at 0, 100, 200, and 300 nm (from bottom to top).
The phase shift disappears with increasing temperature in the same way as the ZBA.

IV. PHASE SHIFT VERSUS BIAS VOLTAGE AND GATE VOLTAGE (LINE 3)

(a) (b)

FIG. S4: Interference fringes when the tip is scanned along line 3 in Fig. 2(c). (a) Interference fringes versus source-drain bias
at -0.69 V gate voltage (same data as in Fig. 5(a)). Top panel: conductance curves every 100 nm from 0 to 900 nm (from
bottom to top). (b) Interference fringes versus gate voltage at zero bias. Top panel: conductance curves every 100 nm from 0
to 900 nm (from right to left). The fringes show a phase shift at the border of the conductance plateau, similar to that shown
in Fig. 3(b) which was measured along line 1.
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V. TEMPERATURE DEPENDENCE OF THE FRINGES VISIBILITY

(b)(a)

FIG. S5: (a) Interference fringes versus source-drain bias (below the first conductance plateau) when the tip is scanned along a
line close to the end of line 3 in Fig. 2(c). Top panel: conductance curve at 0 nm. (b) Interference fringes at zero-bias along the
same scanning line, measured as a function of temperature. Top panel: evolution of the fringes visibility, showing an exponential
decay on a characteristic temperature of about 800 mK. Above this temperature, the thermal length LT = ~vF /kBT becomes
shorter than the distance to the QPC (about 1 µm) and the interference fringes are smeared out by thermal averaging14. The
conductance is differentiated with respect to tip position in (a) and (b).

VI. PHASE SHIFT AT THE ZBA MEASURED IN ANOTHER QPC DEVICE

(a) (b) (c) (d)

(c)

(d)

FIG. S6: Results obtained on a similar QPC device fabricated on the same 2DEG (this sample was studied in Ref.13). All data
are recorded at the base temperature of 20 mK. (a) Conductance versus gate voltage. (b) SGM map at −0.95 V gate voltage,
−6 V tip voltage, and 40 nm tip height. (c,d) Source-drain bias spectroscopy of the interference fringes along the line indicated
in (b) at two gate voltages: −1 V for (c) and −0.95 V for (d). The interference fringes exhibit a phase shift in the bias range
of the zero-bias peak in (c) while the fringes are linear on the conductance plateau in (d).
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VII. MODEL OF THE SCANNING GATE INTERFEROMETRY EXPERIMENT

We consider a one-dimensional Fabry-Pérot (FP) cavity formed between an asymmetric quantum dot (QD), that
represents the QPC, and a local potential perturbation, corresponding to the SGM tip (Fig. S7(a)). At zero temper-
ature, the conductance is given by the transmission of the FP cavity:

TFP =

∣∣∣∣ tdotttip
1− rdotrtip exp(2ikDtip)

∣∣∣∣2
where the cavity length Dtip is changed by moving the tip, k is the electron wave-vector, tdot, rdot and ttip, rtip are the
complex transmission and reflexion amplitudes of the dot and the tip, respectively. The scattering amplitudes of the
dot can be calculated exactly in the non-interacting case, using a tight-binding model made of a single site at energy
ε0 connected via two tunnel barriers (hoping terms VL and VR) to two semi-infinite leads (hoping term t and lattice
parameter a):

tdot =
2i sin(ka)VLVR/t

ε(k)− ε0 +A cos(ka) + iA sin(ka)

rdot = − ε(k)− ε0 +A cos(ka) + iB sin(ka)

ε(k)− ε0 +A cos(ka) + iA sin(ka)

where ε(k) = −2t cos(ka), A = (V 2
L + V 2

R)/t, and B = (V 2
L − V 2

R)/t. Note that the reflection coefficient is for waves
arriving from the cavity, i.e. on the right side of the dot. The transmission TFP of the interferometer is calculated
for a weak tip back-scattering (ttip = 0.99) and various asymmetries of the dot barriers (VL/t, VR/t) = (0.132, 0.05),
(0.109,0.09), (0.1,0.1), (0.093,0.107), (0.0515,0.132). The interference fringes are plotted in Fig. S7(c) as a function of
tip distance and electron energy, in two situations corresponding to opposite barrier asymmetries. The simulations
are plotted as a function of −ε to be easily compared with the experiments where the conductance is plotted as a
function of source-drain bias (eVbias = −ε). The global slope of the fringes simply results from the change of the
electron wavelength with energy, and the shift around ε = ε0 results from the resonant level in the QD. The phase
of the fringes is extracted from the Fourier transform of TFP with respect to Dtip and plotted in Fig. S7(b), bottom
panel, for the five tunneling rate ratios ΓR/ΓL = V 2

R/V
2
L indicated above. Because of the weak tip-induced reflection

(ttip = 0.99), the phase extracted from the interference fringes is close to the reflection phase of the dot:

φdot = arctan

(
B sin(ka)

ε(k)− ε0 +A cos(ka)

)
− arctan

(
A sin(ka)

ε(k)− ε0 +A cos(ka)

)
+ π

which was also discussed in Ref.15. In contrast to the transmission |tdot|2 of the dot which follows the well-known Breit-
Wigner formula for any barrier asymmetry (Fig. S7(b), top panel), the phase shift that occurs across the resonance
strongly depends on the relative values of the tunneling rates (Fig. S7(b), bottom panel). The shift is 2π when the
right barrier is the most transparent because the dot belongs to the cavity (Fig. S7(c), bottom panel), it is only π for

(a)

ε0

ΓL

ΓR

TtipDtipleft lead right lead

(b) (c)

FIG. S7: (a) Model of the SGM-based interferometry experiment where the QPC is represented by an asymmetric QD with a
single level ε0. (b) Conductance of the QD (top) and phase of the tip-induced interference (bottom) as a function of energy
ε for different asymmetries of the QD tunneling rates ΓL and ΓR. (c) Pattern of tip-induced interference fringes for the blue
(top) and red (bottom) curves in (b). The conductance is differentiated with respect to Dtip to show only the fringes.
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the symmetric case, and it reduces to zero when the right barrier is the least transparent because the dot is outside
the cavity (Fig. S7(c), top panel). As a consequence, the reflection phase measured by scanning gate interferometry is
between zero and twice the transmission phase and should be interpreted carefully. This simple model also shows that
only smooth phase shifts are expected for non-interacting electrons in contrast to the abrupt phase jumps observed
in our experiment. To discuss the theoretical predictions for QDs in the Kondo regime, the solution of the Anderson
model with finite Coulomb interaction U in the dot, calculated in Ref.16, is reported schematically in Fig. S8 and
discussed below.

VIII. EXPECTED TRANSMISSION PHASE FOR A KONDO QUANTUM DOT

When a QD is in a Coulomb blocked region with an odd number of electrons, the Kondo effect gives rise to an
enhanced transmission amplitude that reaches 2e2/h at low enough temperature and for symmetric couplings to the
leads (Fig. S8(a), top panel, red line). The transmission phase of the electrons at low bias is locked at π/2 in this
Kondo valley (Fig. S8(a), bottom panel, red line), according to the Friedel sum rule which relates the phase to the
occupation probability per spin (this quantity equals 1/2 in the Kondo regime due to screening of the unpaired spin by
the surrounding conduction electrons). At finite bias voltage, the problem is more complex due to decoherence of the
Kondo correlations between the two reservoirs. Assuming that the QD remains in equilibrium, the spectral properties
of the transmission coefficient have been discussed in Ref.16. In the Kondo regime, the transmission amplitude shows
a sharp resonance at the Fermi level, whose width is given by the Kondo temperature TK , in addition to the two peaks
of width Γ, separated by the Coulomb charging energy U , and corresponding to the spin-degenerate single-particle
energy levels (Fig. S8(b), top panel). The transmission phase exhibits a smooth shift from 0 to π when the energy
is swept across the single-particle energy levels and across the Kondo resonance at zero bias (Fig. S8(b), bottom
panel). Between each of these peaks, the phase shows a sharp lapse by −π, resulting in the “Kondo double phase
lapse” predicted in Ref.16 at low enough temperature. In absence of Kondo correlations, the phase shows only one
lapse by −π between the Coulomb blockade peaks corresponding to the spin-degenerate single-particle energy levels
(Fig. S8(a), blue lines).

(a)
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(b)

FIG. S8: Red lines show the amplitude and phase of the transmission coefficient through a QD in the Kondo regime at zero
temperature according to Ref.16 versus (a) gate voltage and (b) bias voltage at fixed gate voltage U/2. Blue lines in (a) show
the Coulomb blockade regime without Kondo correlations.
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