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Introduction

Let X be a smooth projective variety of dimension n with Hodge numbers h p,q (X). It follows from Hirzebruch-Riemann-Roch theorem that d 2 du 2 E(X; u, 1) |u=1 = n(3n -5) 12 c n (X) + 1 6 c 1 (X)c n-1 (X) [START_REF] Batyrev | Stringy Hodge numbers of varieties with Gorenstein canonical singularities[END_REF] where E(X; u, v) = p,q (-1) p+q h p,q (X)u p v q , see Libgober and Wood [START_REF] Libgober | Uniqueness of the complex structure on Kahler manifolds of certain homotopy types[END_REF] and also Borisov [START_REF] Borisov | On Betti numbers and Chern classes of varieties with trivial odd cohomology groups[END_REF]Proposition 2.2]. By duality, we get p,q (-1) p+q h p,q (X)(p -

n 2 ) 2 = n 12 c n (X) + 1 6 c 1 (X)c n-1 (X) (2) 
More generally, if X is a n-dimensional projective variety with at most log-terminal singularities (we will focuse on the toric case), Batyrev [START_REF] Batyrev | Stringy Hodge numbers and Virasoro algebra[END_REF] has proved a stringy version of formula (1)

d 2 du 2 E st (X; u, 1) |u=1 = n(3n -5) 12 e st (X) + 1 6 c 1,n st (X)
where E st is the stringy E-function of X, e st is the stringy Euler number and c 1,n st (X) is a stringy version of c 1 (X)c n-1 (X).

On the singularity theory side, the expected mirror partners of toric varieties are the Givental-Hori-Vafa models [START_REF] Givental | Homological geometry and mirror symmetry, Talk at ICM-94[END_REF], [START_REF] Hori | Mirror symmetry[END_REF], a class of Laurent polynomial. One associates to such functions their spectrum at infinity, a sequence α 1 , • • • , α µ of rational numbers, suitable logarithms of the eigenvalues of the monodromy at infinity of the function involved (see [START_REF] Sabbah | Hypergeometric periods for a tame polynomial[END_REF]; the main features are recalled in section 5). A specification of mirror symmetry is that the spectrum at infinity of a given Givental-Hori-Vafa model is related to the degrees of the (orbifold in the singular case) cohomology groups of its mirror variety X. So one can expect a formula similar to [START_REF] Batyrev | Stringy Hodge numbers and Virasoro algebra[END_REF] involving the spectrum at infinity of any regular tame function: the aim of this text is to look for such a counterpart. The key observation is that the spectrum at infinity of a Laurent polynomial can be described (under a tameness condition due to Kouchnirenko [START_REF] Kouchnirenko | Polyèdres de Newton et nombres de Milnor[END_REF], see section 5) with the help of the Newton filtration of its Newton polytope. Since a polytope determines a stacky fan [START_REF] Borisov | The orbifold Chow ring of toric Deligne-Mumford stacks[END_REF], one is lead to define a stacky version of the E-polynomial. Given a Laurent polynomial f with Newton polytope P , global Milnor number µ and spectrum at infinity α 1 , • • • , α µ , the program is thus as follows:

• to construct a stacky version of the E-polynomial, a geometric spectrum Spec geo P (z): we define Spec geo P (z) := (z -1) n v∈N z -ν (v) where ν is the Newton function of the polytope P , see section 4. This geometric spectrum is closely related to the Ehrhart series and δ-vector of the polytope P , more precisely to their twisted versions studied by Stapledon [START_REF] Stapledon | Weighted Ehrhart Theory and Orbifold Cohomology[END_REF] after the work of Mustata-Payne [START_REF] Mustata | Ehrhart polynomials and stringy Betti numbers[END_REF]; this function is also an orbifold Poincaré series, thanks to the description of orbifold cohomology given by Borisov, Chen and Smith [3, Proposition 4.7],

• to show that this geometric spectrum is equal to the (generating function of the) spectrum at infinity of f : this would give a close formula for the latter and the expected identification between the spectrum at infinity and orbifold degrees, see section 6 and corollary 4.2.6,

• to show a formula

d 2 dz 2 Spec geo P (z) |z=1 = n(3n -5) 12 µ + 1 6 µ
where µ is a linear combination of intersection numbers (see theorem 7.1.5).

At the end one would get a version of (2) for the spectrum at infinity of Laurent polynomials:

µ i=1 (α i - n 2 ) 2 = n 12 µ + 1 6 µ (3) 
This is achieved in section 7.

In order to enlighten this formula, assume that N = Z 2 and that P is a full dimensional reflexive lattice polytope in N R . Then we have the following well-known Noether's formula

12 = µ P + µ P • (4) 
where P • is the polar polytope of P and µ P (resp. µ P • ) is the normalized volume of P (resp. P • ), see equation [START_REF] Douai | Gauss-Manin systems, Brieskorn lattices and Frobenius structures I[END_REF] (by Pick's formula, µ P = |∂P ∩ N | if P is reflexive). We show in section 8 that if P is a Fano lattice polytope (a polytope is Fano if its vertices are primitive lattice points) we have µ P = µ P • . From formula (3), we then get

µ P i=1 (α i -1) 2 = 1 6 µ P + 1 6 µ P • (5)
which is a generalization of formula (4): a reflexive polytope P in N R is Fano and its (algebraic and/or geometric) spectrum satisfies µ P i=1 (α i -1) 2 = 2. Last, if µ ≥ 0, it follows from (3) that, with obvious notations,

1 µ µ i=1 (α i - n 2 ) 2 ≥ α max -α min 12 (6) 
because α maxα min = n for Laurent polynomials and this inequality is expected to be true for any tame regular function: this is the global version of Hertling's conjecture about the variance of the spectrum, see section 9. For instance, formula [START_REF] Borisov | On Betti numbers and Chern classes of varieties with trivial odd cohomology groups[END_REF] show that this will be the case in the two dimensional case if the Newton polytope of f is Fano. We also give positive answers to this conjecture in the two dimensional case in theorem 7.2.2. We test these results on (fake) weighted projective spaces. This paper is organized as follows: in section 2 we recall the basic facts on polytopes and toric varieties that we will use. In section 3, we discuss of what should be the spectrum of a polytope. The geometric spectrum is defined in section 4 and the algebraic spectrum is defined in section 5: both are compared in section 6. The previous results are used in section 7 in order to get formula (3). We show Noether's formula for Fano polytopes in section 8. Last, we use our results in order to motivate (and partly show) the conjecture about the variance of the algebraic spectrum in section 9.

This text owes much to Batyrev's work [START_REF] Batyrev | Stringy Hodge numbers of varieties with Gorenstein canonical singularities[END_REF], [START_REF] Batyrev | Stringy Hodge numbers and Virasoro algebra[END_REF]. The starting point was [1, Remark 3.13] and its close resemblance with Hertling's conjecture about the variance of the spectrum of an isolated singularity [START_REF] Hertling | Frobenius manifolds and moduli spaces for singularities[END_REF]: this link is previously alluded to in [START_REF] Hertling | Frobenius manifolds and variance of the spectral numbers[END_REF]. Last, formula (3) is in essence produced by Hirzebruch-Riemann-Roch theorem and the contribution of this theorem to singularity theory has to be probably (?) further explored.

Polytopes and toric varieties (framework)

We give in this section an overview of the results that we will use and we set the notations.

Polytopes and reflexive polytopes

Let N be the lattice Z n , M its dual lattice, , the pairing between N R = N ⊗ Z R and M R = M ⊗ Z R. A full dimensional lattice polytope P ⊂ N R is the convex hull of a finite set of N such that dim P = n. If P is a full dimensional lattice polytope containing the origin in its interior, there exists, for each facet (face of dimension n -1)

F of P , u F ∈ M Q such that P ⊂ {n ∈ N R , u F , n ≤ 1} and F = P ∩ {n ∈ N R , u F , n = 1} (7) 
This gives the hyperplane presentation

P = ∩ F {n ∈ N R , u F , n ≤ 1} (8) 
We define, for v ∈ N R , ν F (v) := u F , v and ν(v) := max F ν F (v) where the maximum is taken over the facets of P . If P is a full dimensional lattice polytope in N R containing the origin, the polytope

P • = {m ∈ M R , m, n ≤ 1 for all n ∈ P }
is the polar polytope of P . A lattice polytope P is reflexive if it contains the origin and if P • is a lattice polytope. The vertices of P • are in correspondence with the facets of P via

u F vertice of P • ↔ F = P ∩ {x ∈ N R , u F , x = 1} (9) 
The polytopes considered in this paper are full dimensional lattice polytopes containing the origin in their interior. We will write µ P := n! Vol(P ) [START_REF] Douai | Gauss-Manin systems, Brieskorn lattices and Frobenius structures I[END_REF] where the volume Vol(P ) is normalized such that the volume of the unit cube is equal to 1.

Ehrhart polynomial and Ehrhart series

Let Q be a full dimensional lattice polytope. The function ℓ → Ehr Q (ℓ) := Card((ℓQ) ∩ M ) is a polynomial of degree n, the Ehrhart polynomial. We have

F Q (z) := m≥0 Ehr Q (m)z m = δ 0 + δ 1 z + • • • + δ n z n (1 -z) n+1 (11) 
where the δ j 's are positive integers [4, Theorem 3.12]: F Q is the Ehrhart series and the vector

δ = (δ 0 , • • • , δ n ) ∈ N n+1 (12) 
is the δ-vector of the polytope Q. We have

δ 0 = 1, δ 1 = Card(Q ∩ M ) -(n + 1), δ n = Card(Int(Q) ∩ M ) (13) 
and 

δ 0 + • • • + δ n = n! Vol(Q) ( 14 
i = δ n-i for i = 0, • • • , n.

Toric varieties

Let ∆ be a fan in N R and denote by ∆(i) the set of its cones of dimension i. The rays of ∆ are its one-dimensional cones. Let X := X ∆ be the toric variety of the fan ∆: X is simplicial if each cone ∆ is generated by independent vectors of N R , complete if the support of its fan (the union of its cones) is N R . The variety X is smooth if each cone is generated by a part of a basis of N . In general the Euler characteristic of a complete toric variety X ∆ is the number of maximal cones in the fan. If moreover X ∆ is simplicial, its cohomology groups vanish in odd degrees [START_REF] Cox | Toric varieties[END_REF]Theorem 12.3.11] and b 2 (X ∆ ) = |∆(1)|n [6, Theorem 12.3.12]. Otherwise stated, all toric varieties that we will consider are complete and simplicial.

One can get toric varieties from polytopes in the following ways:

• The toric variety of a polytope in M R : a full dimensional lattice polytope Q in M R yields a toric variety X Q , associated with the normal fan Σ Q of Q, which is a fan in N .

• The toric variety of a polytope in N R : let P ⊂ N R be a full dimensional lattice polytope containing the origin in its interior; we get a complete fan ∆ P in N R by taking the cones over the proper faces of P . We get in this way a toric variety X ∆ P .

Both constructions are dual, see for instance [6, Exercise 2.3.4]: if P • is the polar polytope of the polytope P in N R then ∆ P is the normal fan of ℓP • where ℓ is an integer such tha ℓP • is a lattice polytope and

X ∆ P = X ℓP • . In particular, X ∆ P = X P • if P is reflexive.
Recall that a projective normal toric variety X is (Gorenstein if not smooth) Fano (resp. weak Fano) if the anticanonical divisor -K X is Cartier and ample (resp. nef and big). (Weak) Fano toric varieties play an important role in our vision of mirror symmetry, see section 5.2. We will say that a full dimensional lattice polytope P containing the origin in its interior is

• Fano if the origin is contained in the strict interior of P and if each of its vertex is a primitive lattice point of N ,

• smooth Fano if the origin is contained in the strict interior of P and if each of its facets has exactly n vertices forming a basis of the lattice N .

Stacky fans and orbifold cohomology

Let ∆ be a complete simplicial fan, ρ 1 , • • • , ρ r be its rays generated respectively by the primitive

vectors v 1 , • • • , v r of N . Choose b 1 , • • • , b r ∈ N whose images in N Q generate ρ 1 , • • • , ρ r : the data ∆ = (N, ∆, {b i }
) is a stacky fan, see [START_REF] Borisov | The orbifold Chow ring of toric Deligne-Mumford stacks[END_REF]. One associates to a stacky fan a Deligne-Mumford stack X (∆) and its orbifold cohomology

H • orb (X (∆), Q): by [3, Proposition 4.7]
we have

H 2i orb (X (∆), Q) = ⊕ σ∈∆(n) ⊕ v∈2(σ)∩N H 2(i-ϕ(v)) (X Star(σ) , Q) where 2(σ) := { ρ i ⊂σ λ i b i , λ i ∈ [0, 1[} and ϕ : N R → R is the linear function on each cone of ∆ such that ϕ(b i ) = 1 for i = 1, • • • , r.
If P is a lattice polytope containing the origin, there are integers a i such that b i := a i v i ∈ ∂P ∩ N : the polytope P defines a stacky fan ∆ = (N, ∆ P , {b i }), where the toric variety ∆ P is assumed to be simplicial: this is the stacky fan of P .

Batyrev's stringy functions

Let X ∆ be a normal Q-Gorenstein toric variety and ρ : Y → X ∆ be a toric (log-)resolution defined by a refinement ∆ ′ of ∆, see [START_REF] Cox | Toric varieties[END_REF]Proposition11.2.4]. The irreducible components of the exceptional divisor of ρ are in one-to-one correspondence with the primitive generators

v ′ 1 , • • • , v ′ q of the rays of ∆ ′ (1) of Y that do not belong to ∆(1)

and in the formula

K Y = ρ * K X ∆ + q i=1 a i D i ( 15 
)
we have a i = ϕ(v ′ i ) -1 where ϕ is the support function of the divisor K X ∆ , see for instance [START_REF] Cox | Toric varieties[END_REF]Lemma 11.4.10]. In our toric situation we have

a i > -1 because ϕ(v ′ i ) > 0.
Recall the E-polynomial of a smooth variety X defined by

E(X, u, v) := n p,q (-1) p+q h p,q (X)u p v q (16)
where the h p,q (X)'s are the Hodge numbers of X. Notice that E(X, 1, 1) = χ(X), the Euler characteristic of X. It is possible to extend this definition to singular spaces having log-terminal singularities and to get stringy invariants that extend topological invariants of smooth varieties.

Here is the construction: let ρ : Y → X be a resolution of X := X ∆ as above, I = {1, • • • , q} and put, for any subset J ⊂ I,

D J := ∩ j∈J D j if J = ∅, D J := Y if J = ∅ and D • J = D J - j∈I-J D j
The following definition is due to Batyrev [START_REF] Batyrev | Stringy Hodge numbers of varieties with Gorenstein canonical singularities[END_REF] (we assume that the product over ∅ is 1; recall that a i > -1):

Definition 2.5.1 Let X be a toric variety. The function

E st (X, u, v) := J⊂I E(D • J , u, v) j∈J uv -1 (uv) a j +1 -1 ( 17 
)
is the stringy E-function of X. The number

e st (X) := lim u,v→1 E st (X, u, v) (18) 
is the stringy Euler number.

The stringy E-function can be defined using motivic integrals, see [START_REF] Batyrev | Stringy Hodge numbers of varieties with Gorenstein canonical singularities[END_REF] and [START_REF] Veys | Arc spaces, motivic integration and stringy invariants[END_REF]. By [1, Theorem 3.4], E st (X, u, v) do not depend on the resolution. In our setting, E st depends on the variable z := uv, and we will write E st (X, z) instead of E st (X, u, v).

The spectrum of a polytope

Let P be a full dimensional lattice polytope in N R . In this text, a spectrum Spec P of P is a priori an ordered sequence of rational numbers

α 1 ≤ • • • ≤ α µ
that we will identify with the generating function Spec P (z) := µ i=1 z α i . The specifications are the following (d(α i ) denotes the multiplicity of α i in the Spec P ):

• Rationality : the α i 's are rational numbers,

• Positivity : the α i 's are positive numbers,

• Poincaré duality : Spec P (z) = z n Spec P (z -1 ),

• Volume : lim z→1 Spec P (z) = n! Vol(P ) := µ P • Normalisation : d(α 1 ) = 1 • Modality (Lefschetz) : d(α 1 ) ≤ d(α 2 ) ≤ • • • ≤ d(α ℓ ) if α ℓ ≤ [ n 2 ]
In particular Spec P is contained in [0, n] and µ i=1 α i = n 2 µ P .

Geometric spectrum of a polytope

We define here the geometric spectrum of a polytope and we give several methods in order to compute it. Recall that the toric varieties considered here (and in the sequel) are assumed to be simplicial.

The geometric spectrum

Let P be a full dimensional lattice polytope in N R , containing the origin in its interior. Recall the Newton function ν of P of definition 2.1.1.

Definition 4.1.1 The function

Spec geo P (z) := (z -1) n v∈N z -ν(v)
is the geometric spectrum of the polytope P . The number e P := lim z→1 Spec geo P (z) is the geometric Euler number of P .

We shall see (corollary 4.2.2) that Spec geo P (z) = i d(c i )z c i where the c i 's are non-negative rational numbers and the d(c i )'s are non-negative integers such that i d(c i ) = e P . Let β 1 , β 2 , • • • , β e P be the sequence (arranged by increasing order)

c 1 , • • • , c 1 , c 2 , • • • , c 2 , • • • , c ℓ , • • • , c ℓ each c i being counted d(c i )-times so that Spec geo P (z) = z β 1 + z β 2 + • • • + z βe P
We shall also say that the sequence β 1 , β 2 , • • • , β e P is the geometric spectrum of the polytope P . 

Various interpretations

We give three methods to compute Spec geo P , showing that it yields finally a spectrum of P in the sense of section 3. The first one and the third one are inspired by the works of Mustata-Payne [START_REF] Mustata | Ehrhart polynomials and stringy Betti numbers[END_REF] and Stapledon [START_REF] Stapledon | Weighted Ehrhart Theory and Orbifold Cohomology[END_REF]. The second one is inspired by Batyrev's stringy E-functions.

First interpretation: fundamental domains

Let P be a full dimensional lattice polytope in N R , containing the origin in its interior, ∆ := ∆ P be the complete fan whose maximal cones are built on the facets of P . As in section 2.4, we identify each vertice of P with an element b

i ∈ N . If σ ∈ ∆(r) is generated by b 1 , • • • , b r , set 2(σ) := { r i=1 q i b i , q i ∈ [0, 1[, i = 1, • • • , r}, and 
Box(σ) := { r i=1 q i b i , q i ∈]0, 1[, i = 1, • • • , r} Proposition 4.2.1 We have Spec geo P (z) = n r=0 (z -1) n-r σ∈∆(r) v∈2(σ)∩N z ν(v) (19) 
and e P = n! Vol(P ).

Proof. Let σ ∈ ∆(r). A lattice element v ∈

• σ has one of the following decomposition:

• v = w + r i=1 λ i b i with w ∈ Box(σ) ∩ N and λ i ≥ 0 for all i, • v = w + r i=1 λ i b i with w ∈ Box c (σ) ∩ N -{0}, λ i ≥ 0 for all i ≥ 2 and λ 1 > 0, • v = r i=1 λ i b i where λ i > 0 for all i
where Box c (σ) is the complement of Box(σ) in 2(σ). We get

(z -1) r v∈ • σ∩N z -ν(v) = v∈Box(σ)∩N z r-ν(v) + v∈Box c (σ)∩N -{0} z r-1-ν(v) + 1 (20) 
because

• λ 1 ,••• ,λr≥0 z -ν(w) z -λ 1 • • • z -λr = z r-ν(w) (z-1) r if w ∈ Box(σ) ∩ N , • λ 1 >0,λ 2 ,••• ,λr≥0 z -ν(w) z -λ 1 • • • z -λr = z r-1-ν(w) (z-1) r if w ∈ Box c (σ) ∩ N -{0}, • λ 1 ,••• ,λr>0 z -λ 1 • • • z -λr = 1 (z-1) r
(and we use the fact that ν(b i ) = 1). Moreover,

• α ∈ ν(Box(σ)) := {ν(v), v ∈ Box(σ)} if and only if r -α ∈ ν(Box(σ)), • α ∈ ν(Box c (σ)) := {ν(v), v ∈ Box c (σ)} if and only if r -1 -α ∈ ν(Box c (σ)).
because q i ∈]0, 1[ if and only if 1q i ∈]0, 1[. We then deduce from ( 20) that

(z -1) n v∈ • σ∩N z -ν(v) = (z -1) n-r v∈2(σ)∩N z ν(v) (21) 
for any σ ∈ ∆(r). The expected equality follows because the relative interiors of the cones of the complete fan ∆ give a partition of its support. For the assertion about the Euler number, notice that lim 

z→1 Spec geo P (z) = σ∈∆(n) v∈2(σ)∩N 1 = n! Vol(P ) because the volume of σ ∩ {v ∈ N R , ν(v) ≤ 1} is
(z) = σ∈∆ v∈Box(σ)∩N h σ (z)z ν(v)
where h σ (z) := σ⊆τ (z -1) n-dim τ . In particular, Spec geo P (z) = i d(c i )z c i where the c i 's are nonnegative rational numbers and the d(c i )'s are non-negative natural numbers such that i d(c i ) = e P .

Proof. The expected equality follows from [START_REF] Mustata | Ehrhart polynomials and stringy Betti numbers[END_REF]. For the remaining assertions, notice that h σ is the E-polynomial of the orbit closure V (σ) (as defined for instance in [6, page 121]), hence the E-polynomial of a toric variety: it follows that its coefficients are non-negative natural numbers. 2

Second interpretation: resolution of singularities

Let P be a full dimensional lattice polytope in N R , containing the origin in its interior. Let ρ : Y → X be a resolution of X := X ∆ P as in section 2.5, ρ 1 , • • • , ρ r be the rays of Y with primitive generators v 1 , • • • , v r and associated divisors D 1 , • • • , D r and I. Put, for any subset

J ⊂ I := {1, • • • , r}, D J := ∩ j∈J D j if J = ∅, D J := Y if J = ∅ and define E st,P (z) := J⊂I E(D J , z) j∈J z -z ν j z ν j -1 (22) 
where ν j = ν(v j ) and ν is the Newton function of P , see definition 2.1.1.

Proposition 4.2.3

We have Spec geo P (z) = E st,P (z). In particular, E st,P (z) does not depend on the resolution ρ.

Proof. Using the notations of section 2.5 we have E(D

• J , z) = J ′ ⊂J (-1) |J|-|J ′ | E(D J ′ , z) and E st,P (z) = J⊂I E(D • J , z) j∈J z -1 z ν j -1 as in [1, Proof of theorem 3.7]. Let σ be a smooth cone of ∆ ′ , the fan of Y , generated by v i 1 , • • • , v ir and v ∈ • σ: we have v = a 1 v i 1 + • • • + a r v ir for a 1 , • • • , a r > 0 and ν(v) = a 1 ν(v i 1 ) + • • • + a r ν(v ir ). Thus v∈ • σ∩N z -ν(v) = 1 z ν(v i 1 ) -1 • • • 1 z ν(v ir ) -1
With these two observations in mind, the proof of the proposition is similar to the one of [START_REF] Batyrev | Stringy Hodge numbers of varieties with Gorenstein canonical singularities[END_REF]Theorem 4.3]. 2

Corollary 4.2.4 We have z n Spec geo P (z -1 ) = Spec geo P (z).

Proof. Applying Poincaré duality to the smooth subvarieties D J , we get

E(D J , z -1 ) j∈J z -1 -z -ν j z -ν j -1 = z |J|-n E(D J , z)z -|J| j∈J z -z ν j z ν j -1
and the assertion follows. 2

Third interpretation: twisted δ-vector

Let P be a full dimensional lattice polytope in N R , containing the origin in its interior. Following [START_REF] Stapledon | Weighted Ehrhart Theory and Orbifold Cohomology[END_REF], we define

F 0 P (z) = m≥0 v∈mP ∩N z ν(v)-⌈ν(v)⌉+m
which is a twisted version of the Ehrhart series F P (z) defined in section 2.2.

Proposition 4.2.5 We have Spec geo P (z) = (1z) n+1 F 0 P (z).

Proof. Notice first that v ∈ mP if and only if ν(v) ≤ m: this follows from the presentation [START_REF] Douai | Quantum differential systems and some applications to mirror symmetry[END_REF] and the definition of the Newton function ν. We thus have 

F 0 P (z -1 ) = m≥0 ν(v)≤m z -ν(v)+⌈ν(v)⌉-m = v∈N ⌈ν(v)⌉≤m z -ν(v)+⌈ν(v)⌉-m = 1 1 -z -1 v∈N z -ν(v) It follows that (z -1) n (1 -z -1 )F 0 P (z -1 ) = Spec geo P (z) and (1 -z) n+1 F 0 P (z) = z n Spec geo P (z -1 ) =
∩ [0, 1[= {ν(v), v ∈ Int P ∩ N }
where ν is the Newton function of P , the left hand side denoting the part of the spectrum contained in [0, 1[. Moreover the multiplicity of 1 in Spec geo P is equal to |∂P ∩ N |n.

Proof. Scrutinization of the coefficients of z a , a ≤ 1, in Spec geo P (z) and proposition 4.2.5. See also [START_REF] Stapledon | Weighted Ehrhart Theory and Orbifold Cohomology[END_REF]Lemma 3.13].

2

If P is reflexive, we have the following link between the δ-vector of P from section 2.2 and its geometric spectrum (see also [START_REF] Mustata | Ehrhart polynomials and stringy Betti numbers[END_REF]): Corollary 4.2.8 Let P be a reflexive full dimensional lattice polytope containing the origin in its interior. Then

Spec geo P (z) = δ 0 + δ 1 z + • • • + δ n z n ( 23 
)
where δ = (δ 0 , • • • , δ n ) is the δ-vector of P .

Proof. By ( 9) we have ν(v) ∈ N for all v ∈ N because P is reflexive. We thus get F 0 P (z) = F P (z) where F P (z) is the Ehrhart series of P of section 2.2 because

F P (z) = m≥0 |mP ∩ N |z m = m≥0 v∈mP ∩N z m
By proposition 4.2.5 we have Spec geo P (z) = (1z) n+1 F P (z) and we use formula [START_REF] Douai | Gauss-Manin systems, Brieskorn lattices and Frobenius structures II[END_REF]. 2

Résumé

The geometric spectrum is thus a spectrum in the sense of section 3. Rationality, positivity and the volume property are given by proposition 4.2.1, symmetry (Poincaré duality) by corollary 4.2.4 and modality by corollary 4.2.6.

Algebraic spectrum of a polytope

Singularity theory associates to a (tame) Laurent polynomial function a spectrum at infinity, see [START_REF] Sabbah | Hypergeometric periods for a tame polynomial[END_REF]. We recall its definition and its main properties in section 5.3. We can shift this notion to the Newton polytope P of f and get in this way the algebraic spectrum of P . In order to motivate the next sections, we describe the Givental-Hori-Vafa models [START_REF] Givental | Homological geometry and mirror symmetry, Talk at ICM-94[END_REF], [START_REF] Hori | Mirror symmetry[END_REF] which are the expected mirror partners of toric varieties. This will also emphasizes the link between regular functions and polytopes and we will test our results on this class of examples. In order to make the text as self-contained as possible, we first recall Kouchnirenko's results.

Preliminaries: Kouchnirenko's framework

We briefly recall the setting of [START_REF] Kouchnirenko | Polyèdres de Newton et nombres de Milnor[END_REF]. Let f : (C * ) n → C be a Laurent polynomial, f (u) = a∈Z n c a u a where u a := u a 1 1 • • • u an n . The Newton polytope P of f is the convex hull of the multi-indices a such that c a = 0. We say that f is convenient if P contains the origin in its interior, nondegenerate if, for any face F of P , the system

u 1 ∂f F ∂u 1 = • • • = u n ∂f F ∂u n = 0
has no solution on (C * ) n where f F (u) = a∈F ∩P c a u a and the sum is taken over the multi-indices a such that c a = 0. A convenient and nondegenerate Laurent polynomial f has only isolated critical points and its global Milnor number µ f (the number of critical points with multiplicities) is µ P := n! Vol(P ). Moreover, f is tame in the sense that the set outside which f is a locally trivial fibration is made from critical values of f , and these critical values belong to this set only because of the critical points at finite distance.

Givental-Hori-Vafa models and mirror symmetry

Let N = Z n , M be the dual lattice, ∆ be a complete and simplicial fan and v 1 , • • • , v r be the primitive generators of its rays. Consider the exact sequence

0 -→ Z r-n ψ -→ Z r ϕ -→ Z n -→ 0 where ϕ(e i ) = v i for i = 1, • • • , r ((e i )
denotes the canonical basis of Z r ) and ψ describes the relations between the v i 's. Applying Hom Z (--, C * ) to this exact sequence, we get

1 -→ (C * ) n -→ (C * ) r π -→ (C * ) r-n -→ 1 where π(u 1 , • • • , u r ) = (q 1 , • • • , q r-n ) = (u a 1,1 1 • • • u a r,1 r , • • • , u a 1,r-n 1 • • • u a r,r-n r ) (24) 
and the integers a i,j satisfy r j=1 a j,i v j = 0 for i = 1, • • • , rn. The Givental-Hori-Vafa model of X ∆ is the function

u 1 + • • • + u r restricted to U := π -1 (q 1 , • • • , q r-n )
We will denote it by f ∆ . The stacky version of this construction is straightforward (replace the v i 's by the b i 's).

Proposition 5.2.1 Assume that (v 1 , • • • , v n ) is the canonical basis of N . Then f ∆ is the Laurent polynomial defined on (C * ) n by f ∆ (u 1 , • • • , u n ) = u 1 + • • • + u n + r i=n+1 q i u v i 1 1 • • • u v i n n if v i = (v i 1 , • • • , v i n ) ∈ Z n for i = n + 1, • • • , r.
Proof. We have v i = n j=1 v i j v j for i = n + 1, • • • , r and we use presentation [START_REF] Veys | Arc spaces, motivic integration and stringy invariants[END_REF]. 2

Above f we make grow a differential system and we say that f is a mirror partner of a variety X if this differential system is isomorphic to the one associated with the (small quantum) cohomology of X, see for instance [START_REF] Douai | Quantum differential systems and some applications to mirror symmetry[END_REF], [START_REF] Douai | The small quantum cohomology of a weighted projective space, a mirror D-module and their classical limits[END_REF], [START_REF] Reichelt | Logarithmic Frobenius manifolds, hypergeometric systems and quantum D-modules[END_REF]. If f is the mirror partner of a smooth variety X the following properties are in particular expected (non-exhaustive list):

• the Milnor number of f is equal to the rank of the cohomology of X,

• the spectrum at infinity of f (see section 5.3 below) is equal to half of the degrees of the cohomology groups of X,

• multiplication by f on its Jacobi ring yields the cup-product by c 1 (X) on the cohomology algebra of X.

(the ulterior motive of this text was to discuss the singular case, where cohomology should be replaced by orbifold cohomology). The first thing to do is to compare the dimension of the Jacobi ring of f ∆ , hence its Milnor number µ f ∆ , and the rank of the cohomology algebra of X ∆ . In the smooth case, we have equality if (and only if) X ∆ is weak Fano. Indeed, let P be the convex hull the primitive generators of the rays of ∆:

• If X ∆ is Fano (P is a smooth Fano polytope, see section 2.3), the Givental-Hori-Vafa model of X ∆ on the fiber π

-1 (1, • • • , 1) is f ∆ (u) = a∈P ∩Z n u a ;
f ∆ is convenient and nondegenerate, thanks to the smooth Fano condition, and its Milnor number is

µ f ∆ = n! Vol(P ) = χ(X ∆ ).
• If X ∆ is weak Fano (P is reflexive), we can argue as above, decomposing P into simplices: f ∆ is convenient and (generically with respect to the parameter q) nondegenerate.

If X ∆ is smooth, complete, but not weak Fano we have µ f ∆ > χ(X ∆ ): see section 5.5 for a picture of this phenomenon.

The spectrum at infinity of a tame Laurent polynomial

We assume in this section that f is a convenient and nondegenerate Laurent polynomial, defined on U := (C * ) n , with global Milnor number µ. For the (very small) D-module part, we use the notations of [10, 2.c]. Let G be the Fourier-Laplace transform of the Gauss-Manin system of f , G 0 be its Brieskorn lattice (G 0 is indeed a free C[θ]-module because f is convenient and nondegenerate and G = C[θ, θ -1 ] ⊗ G 0 , see [START_REF] Douai | Gauss-Manin systems, Brieskorn lattices and Frobenius structures I[END_REF]Remark 4.8]) and V • be the V -filtration of G at infinity, that is along θ -1 = 0. From these data we get by projection a V -filtration on the µ-dimensional vector space

Ω f := Ω n (U )/df ∧ Ω n-1 (U ) = G 0 /θG 0 , see [10, Section 2.e].
Definition 5.3.1 The spectrum at infinity Spec f of f is the spectrum of the V -filtration defined on Ω f . Thus, the spectrum at infinity of f is the (ordered) sequence α 1 , α 2 , • • • , α µ of rational numbers with the following property: the frequency of α in the spectrum is equal to dim C gr α V Ω f . We will write Spec f (z) = µ i=1 z α i . Recall the following facts, see for instance [START_REF] Douai | Gauss-Manin systems, Brieskorn lattices and Frobenius structures I[END_REF]:

• Spec f is positive : α i ≥ 0 for all i, • Spec f (z) = z n Spec f (z -1 )
In particular, Spec f ⊂ [0, n].

In the convenient and nondegenerate case, the spectrum at infinity of f can be computed using the Newton function of the Newton polytope of f : let us define the Newton filtration ν • on Ω n (U ) by

ν α Ω n (U ) := {ω ∈ Ω n (U ), ν(ω) ≤ α} where ν(ω) := ν(v) if ω = u v 1 1 • • • u vn n du 1 ∧ • • • ∧ du n u 1 • • • u n and v = (v 1 , • • • , v n ) ∈ N (notice the normalization ν( du 1 ∧•••∧dun u 1 •••un ) = 0)
. This filtration induces a filtration on Ω f by projection and the spectrum at infinity of f is equal to the spectrum of this filtration, see [START_REF] Douai | Gauss-Manin systems, Brieskorn lattices and Frobenius structures I[END_REF]Corollary 4.13].

Proposition 5.3.2 Let f be a convenient and nondegenerate Laurent polynomial. Then Spec f depends only on the Newton polytope P of f and

Spec f ∩ [0, 1[= {ν(v), v ∈ Int P ∩ N }
where ν is the Newton function of P and Spec f ∩ [a, b[ denotes the part of Spec f contained in [a, b[. In particular, the multiplicity of 0 in Spec f is equal to one.

Proof. Let f and g be two convenient and nondegenerate Laurent polynomials having the same Newton polytope P . By [START_REF] Kouchnirenko | Polyèdres de Newton et nombres de Milnor[END_REF] we have µ f = µ g and it follows from [START_REF] Nemethi | Semicontinuity of the spectrum at infinity[END_REF] that Spec f (z) = Spec g (z). This gives the first assertion. The second then follows from [10, Lemma 4.6], as in [10, Example 4.17]. 2

The algebraic spectrum of a polytope

We define the algebraic spectrum Spec alg P of a full dimensional lattice polytope P containing the origin in its interior to be the spectrum at infinity of the convenient and nondegenerate Laurent polynomial f (u) = b∈V(P ) u b where V(P ) denotes the set of the vertices of P . As usual, we will identify it with its generating function Spec alg P (z) = µ i=1 z α i . In the two dimensional case, this algebraic spectrum of is easily described: Proposition 5.4.1 Let P be a full dimensional lattice polytope in N R = R 2 . Then

Spec alg P (z) = (Card(∂P ∩ N ) -2)z + v∈Int P ∩N (z ν(v) + z 2-ν(v) )
where ν is the Newton function of P .

Proof. Let f be a convenient and nondegenerate Laurent polynomial whose Newton polytope is P . From proposition 5.3.2 and the symmetry of the spectrum we get

Spec alg P (z) = Spec f (z) = (Card(∂P ∩ N ) -2)z + v∈Int P ∩N (z ν(v) + z 2-ν(v) )
The coefficient of z is computed using Pick's formula because µ f = 2! Vol(P ). 2

We also have the following description for reflexive polytopes:

6.2 A significant class of examples: weighted projective spaces 

Let (λ 0 , • • • , λ n ) ∈ (N * ) n+1 such that gcd(λ 0 , • • • , λ n ) =
, • • • , λ n ) is the convex hull P of e 0 , • • • , e n .
Notice that µ 10)). Moreover, P is reflexive if and only if λ i divides µ P for all i.

P = 1 + λ 1 + • • • + λ n and µ P • = (1+λ 1 +•••+λn) n λ 1 •••λn (recall that µ Q := n! Vol(Q) if Q is a polytope in N R , see equation (
The Givental-Hori-Vafa model of

P(1, λ 1 , • • • , λ n ) (a mirror theorem is shown in [9]) is the Laurent polynomial defined on (C * ) n by f (u 1 , • • • , u n ) = u 1 + • • • + u n + q u λ 1 1 • • • u λn n
where q ∈ C * , see proposition 5.2.1 and its Milnor number is 

µ f = 1 + λ 1 + • • • + λ n = µ P . Let F := ℓ λ i | 0 ≤ ℓ ≤ λ i -1, 0 ≤ i ≤ n .
f 1 , • • • , f 1 d 1 , f 2 , • • • , f 2 d 2 , • • • , f k , • • • , f k d k
arranged by increasing order. The following result can be found in [11, 1. Let a be a positive integer, ∆ be the fan whose rays are (1, 0), (-1, -a) and (0, 1) and P their convex hull: P is the polytope of P(1, 1, a). Using the fan ∆ ′ whose rays are (1, 0), (0, -1), (-1, -a) and (0, 1) we get Spec geo P (z) = E(F a , z) + E(P 1 , z) zz 2/a z 2/a -1 = 1 + 2z + z 2 + (1 + z)( z -1 z 2/a -1 -1) = 1 + z + z 2 + z 2/a + z 4/a + • • • + z 2(a-1)/a = Spec alg P (z) where F a is the Hirzebruch surface. We have e P = a + 2 = µ P .

2. Let ∆ be the fan whose rays are (1, 0), (-ℓ, -ℓ) for ℓ ∈ N * and (0, 1) and P their convex hull: P is the polyope of P(1, ℓ, ℓ). The variety X := X ∆ P is P 2 , generated by the rays v 1 = (-1, -1), v 2 = (0, 1) and v 3 = (1, 0), with ν(v 1 ) = 1 ℓ and we get Spec geo P (z) = E(P 2 , z) + E(P 1 , z) zz 1/ℓ z 1/ℓ -1 = 1 + z + z 2 + (1 + z) zz 1/ℓ z 1/ℓ -1 = z 2 + z + 1 + z 1/ℓ + • • • + z (ℓ-1)/ℓ + z 1+1/ℓ + • • • + z 1+(ℓ-1)/ℓ = Spec alg P (z) We also have e P = 1 + 2ℓ = µ P .

3. Let ∆ be the fan whose rays are (1, 0), (-2, -5) and (0, 1) and P their convex hull: P is the polytope of P(1, 2, 5). Using the fan ∆ ′ whose rays are (1, 0), (0, -1), (-1, -3), (-2, -5), (-1, -2) and (0, 1) we get Spec geo P (z) = z 2 + 4z + 1 + (z + 1)

zz 3/5 z 3/5 -1 + (z + 1) zz 4/5 z 4/5 -1 + zz 3/5 z 3/5 -1 . zz 4/5 z 4/5 -1

Gathering the different terms we also get Spec geo P (z) = z 2 + 2z + 1 + z 3/5 + z 4/5 + z 6/5 + z 7/5 = Spec alg P (z)

We have e P = 8 = µ P .

7 Libgober-Wood's formula for the spectra

We are now ready to prove formula (3) of the introduction. We first show it for the geometric spectrum.

Spectra and Hirzebruch-Riemann-Roch

In order to get first a stacky version of the Libgober-Wood formula (1), we give the following definition, inspired by Batyrev's stringy number c 1,n-1 st (X), see [2, Definition 3.1]:

Definition 2 . 1 . 1

 211 The function ν : N R → R is the Newton function of P .

Remark 4 . 1 . 2

 412 Let X be a toric variety, v 1 , • • • , v k be the the primitive generators of the rays of its fan. Assume that the v i 's are the vertices of a convex polytope P . Then Spec geo P (z) = E st (X, z) (this follows from the definition of ν and [1, Theorem 4.3]).

and f 1 ,

 1 • • • , f k the elements of F arranged by increasing order. We then defineS f i := {j| λ j f i ∈ Z} ⊂ {0, • • • , n} and d i := Card S f i Let c 0 , c 1 , • • • , c µ-1 be the sequence

  The polytope Q is reflexive if and only if δ

	)
	see [4, Chapter 3]. The δ-vector gives a characterization of reflexive polytopes, see for instance [4,
	Theorem 4.6]:
	Proposition 2.2.1

  equal to the number of lattice points in 2(σ). 2

	Corollary 4.2.2 We have
	Spec geo P

  Assume that X is simplicial. The coefficient of z α i in Spec geo P (z) is equal to dim C H 2α i orb (X (∆), C) where X (∆) is the stack defined by P (see section 2.4).Proof. Follows from proposition 4.2.5 and[START_REF] Stapledon | Weighted Ehrhart Theory and Orbifold Cohomology[END_REF] Theorem 4.3].

	Spec geo P (z) Corollary 4.2.6 2 by corollary 4.2.4. 2 Corollary 4.2.7 We have Spec geo P

  1 and X be the weighted projective space P(λ 0 , • • • , λ n ). The (stacky) fan of X is the simplicial complete fan whose rays are generated by vectors e 0 , • • • , e n in N such that 1. λ 0 e 0 + • • • + λ n e n = 0 2. the e i 's generate N Such a family is unique, up to isomorphism. We have λ 0 = 1 if and only if (e 1 , • • • , e n ) is a basis of N and this will be our favorite situation: we assume from now on that λ 0 = 1. The polytope of P(1, λ 1

	Definition 6.2.1

  Lemma 6.2.2 The spectrum of f is the sequence α0 , α 1 , • • • , α µ-1 where α k := kµc k for k = 0, • • • , µ -1.Notice that the spectrum of f is integral if and only if the polytope ofP(1, λ 1 , • • • , λ n ) is reflexive.Proposition 6.2.3 Let P be the polytope of the weighted projective space P(1, λ 1 , • • • , λ n ). Then Spec alg P (z) = Spec geo P (z).Example 6.2.4 We test proposition 6.2.3 (the computation of the geometric spectrum is done using proposition 4.2.3).

	Proof. Use corollary 4.2.6 and [9, Lemma 3.4.2].	2

Theorem 1]

:

This will always be the case if n =
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Proposition 5.4.2 Let P be a full dimensional reflexive polytope in N R = R n . Then:

Proof. Because P is reflexive, the Newton function takes integer values at the lattice points, see [START_REF] Douai | The small quantum cohomology of a weighted projective space, a mirror D-module and their classical limits[END_REF]. This gives the first point because Spec alg P ⊂ [0, n]. For the second one, use the symmetry and the fact that 0 is in the spectrum with multiplicity one because the origin is in the interior of P . The third assertion follows from [START_REF] Kouchnirenko | Polyèdres de Newton et nombres de Milnor[END_REF]. 2

Example: Hirzebruch surfaces and their Givental-Hori-Vafa models

Let m be a positive integer. The fan ∆ Fm of the Hirzebruch surface F m is the one whose rays are generated by the vectors v 1 = (1, 0), v 2 = (0, 1), v 3 = (-1, m), v 4 = (0, -1), see for instance [START_REF] Fulton | Introduction to toric varieties[END_REF].

The surface F m is Fano if m = 1, weak Fano if m = 2. Its Givental-Hori-Vafa model is the Laurent polynomial

defined on (C * ) 2 , where q 1 and q 2 are two non zero parameters. We have

Indeed, for m = 2 we have µ fm = 2! Vol(P ), where P is the Newton polytope of f m , because f m is convenient and nondegenerate for all non zero value of the parameters, see section 5.1. For m = 2, f 2 is nondegenerate if and only if q 2 = 1 4 and the previous argument applies in this case (if q 2 = 1/4 the Milnor number is 2). The spectrum is given by proposition 5.4.1.

The function f 2 is a guenine mirror partner of the surface F 2 , see [START_REF] Douai | Quantum differential systems and some applications to mirror symmetry[END_REF], [START_REF] Reichelt | Logarithmic Frobenius manifolds, hypergeometric systems and quantum D-modules[END_REF]. If m ≥ 3, we have µ fm > 4 and the model f m has too many critical points: because F m is not weak Fano in this case, this is consistent with the results of section 5.2.

Geometric spectrum vs algebraic spectrum

We show the equality Spec alg P (z) = Spec geo P (z) in some cases. We expect it to be true for any full dimensional lattice polytope P containing the origin in its interior.

First cases of equality

A first step towards equality: Proposition 6.1.1 Let P be a full dimensional lattice polytope containing the origin in its interior. Then In the two dimensional case we get: Corollary 6.1.2 Let P be a full dimensional polytope in N R = R 2 , containing the origin in its interior. Then Spec alg P (z) = Spec geo P (z).

Proof. Use proposition 6.1.1, the symmetry and the fact that Spec alg P (1) = Spec geo P (1) = µ P where the last equality follows from proposition 4.2.1.

2

Let now P be a full dimensional reflexive polytope in N R containing the origin, and X := X ∆ P , see section 2.3. Proposition 6.1.3 Assume that X has a crepant resolution 1 . Then Spec alg P (z) = Spec geo P (z). In particular, the multiplicity of 1 in Spec alg P is equal to Card(∂P ∩ N )n.

Proof. Let us denote by ρ : Y → X the crepant resolution alluded to. Because P is reflexive, Y is smooth and weak Fano and thus has a mirror partner f Y , see for instance [21, Proposition 3.9].

We have

The first equality follows from the fact that f Y is the mirror partner of Y , the second one follows from [1, corollary 3.6] because Y is smooth, the third one by [1, Theorem 3.12] because ρ is crepant, the fourth one by [START_REF] Batyrev | Stringy Hodge numbers of varieties with Gorenstein canonical singularities[END_REF]Proposition 4.4] because P is reflexive and the last one by remark 4.1.2. We also have Spec f Y = Spec alg P by proposition 5.3.2 and the result follows. For the assertion about the multiplicity of 1, use corollary 4.2.8 and equations [START_REF] Givental | Homological geometry and mirror symmetry, Talk at ICM-94[END_REF]. 2

Definition 7.1.1 Let P be a full dimensional lattice polyope in N containing the origin in its interior and let ρ : Y → X be a resolution of X := X ∆ P . We define

where the notations in the right hand term are the ones of section 4.2.2 (convention:

The number µ P is a rational number and we shall see in corollary 7.1.4 that it does not depend on the resolution ρ.

Theorem 7.1.3 Let P be a full dimensional lattice polyope in N containing the origin in its interior and Spec geo P (z) = e P i=1 z β i be its geometric spectrum. Then

where µ P is defined by formula (25) and µ P := n! Vol(P ).

Proof. Recall the stacky E-fonction E st,P (z) := J⊂I E(D J , z) j∈J z-z ν j z ν j -1 , see [START_REF] Sabbah | Hypergeometric periods for a tame polynomial[END_REF]. Then we have 

where E is the E-polynomial of V , see [START_REF] Libgober | Uniqueness of the complex structure on Kahler manifolds of certain homotopy types[END_REF]Proposition 2.3]; in order to get (27), apply this formula to the components E(D J , z) of E st,P (z) and use the equalities

(the first one follows from the fact that the value at z = 1 of the Poincaré polynomial is the Euler characteristic and we get the second one using Poincaré duality for D J ) and The version for singularities is given by the following result:

Theorem 7.1.5 Let f be a convenient and nondegenerate Laurent polynomial with global Milnor number µ and spectrum at infinity Spec f (z) = µ i=1 z α i . Let P be its Newton polytope and assume that Spec alg P (z) = Spec geo P (z). Then

where µ P is defined by formula (25) and µ P := n! Vol(P ).

Proof. We have Spec alg P (z) = Spec f (z) and the assertion thus follows from theorem 7.1.

2

The smooth case is not surprising and is described by the following result (mirror symmetry is discussed in section 5.2):

Corollary 7.1.6 Assume that f is the mirror partner of a projective, smooth, weak Fano toric variety X of dimension n. Then

Proof. Let P be the convex hull of the primitive generators of the rays of the fan of X. Then P is reflexive because X is weak Fano. By proposition 6.1.3, Spec alg P (z) = Spec geo P (z) and (32) follows from theorem 7.1.5 and remark 7.1.2. Last, c 1 (X)c n-1 (X) ≥ 0 because X is weak Fano. 2

The two dimensional case

In this section, P denotes a full dimensional polytope in N R = R 2 , containing the origin, and ∆ P denotes the complete fan in N R obtained by taking the cones over the proper faces of P . Let ρ : Y → X be a resolution of X := X ∆ P as in section 4.2.2. We assume that the v i 's (primitive generators of the rays of Y ) are numbered clockwise. In what follows, indices are considered as integers modulo r (r is the cardinality of ∆ ′ (1)) so ν r+1 := ν 1 (recall that ν i := ν(v i ) where ν is the Newton function of P ).

Proposition 7.2.1 We have

Proof. By definition, we have

and thus

It follows that

and this gives the first point. For the second, notice that (

where the last equality is given by the first point. 

Examples

We test theorem 7.1.5 weighted projective spaces: given X = P(1, λ 1 , • • • , λ n ), f will denote its Givental-Hori-Vafa model (see section 6.2), with spectrum at infinity µ i=1 z α i given by lemma 6.2.2, and P will denote the polytope of X, see definition 6.2.1. In what follows, we put V (α) :

• The polytope P is Fano (see section 2.3): For P(1, 1, a), the polytope P is the convex hull of (1, 0), (0, 1) and (-1, -a) and we consider the resolution obtained by adding the ray generated by (0, -1). Using the notations of theorem 7.2.2 we have ν 1 = 1, ν 2 = 2 a , ν 3 = 1 and ν 4 = 1. For P(1, 2, 5), the polytope P is the convex hull of (1, 0), (0, 1) and (-2, -5) and we consider the resolution obtained by adding the ray generated by (0, -1), (-1, -3) and (-1, -2): we have ν 1 = 1, ν 2 = 3 5 , ν 3 = 4 5 , ν 4 = 1, ν 5 = 1 and ν 6 = 1. Notice that in these examples we have µ P = µ P • where µ P • is the volume of the polar polyptope: this is not a coincidence, see section 8 below (this will be no longer true if P is not Fano, see the example P(1, ℓ, ℓ) below).

• The polytope P is not Fano: For P(1, ℓ, ℓ), ℓ ≥ 2, the polytope P is the convex hull of (1, 0), (0, 1) and (-ℓ, -ℓ) and we have Spec geo P (z) = Spec alg P (z) by 6.2.4, example [START_REF] Batyrev | Stringy Hodge numbers and Virasoro algebra[END_REF]. Formula (25) gives

For P(1, 2, 2, 2), P is the convex hull of (-2, -2, -2), (1, 0, 0), (0, 1, 0) and (0, 0, 1). We have X := X ∆ P = P 3 , generated by the rays v 1 = (-1, -1, -1), v 2 = (1, 0, 0), v 3 = (0, 1, 0) and v 4 (0, 0, 1), with ν(v 1 ) = 1 2 . Thus,

because Spec alg P (z) = z 3 + z 2 + z + 1 + z 1/2 + z 3/2 + z 5/2 by lemma 6.2.2. Formula (25) gives

Let us consider now a more general situation: 

Example µ V (α) µn/12 µ P P 1,2,2 8 3 4/3 10

This agrees with formula (31)

8 A Noether's formula for two dimensional Fano polytopes

In this section, we still focuse on the two dimensional case: P denotes a full dimensional polytope in N R = R 2 , containing the origin. Recall that a convex lattice polytope is Fano if the origin is contained in the strict interior of P and if each of its vertex is a primitive lattice point of N , see section 2. where P • is the polar polytope of P .

Proof. Notice first that, because of the Fano assumption, the support function of the Q-Cartier divisor K X is equal to the Newton function of P and thus ρ * (-K X ) = r i=1 ν i D i since ρ * (-K X ) and -K X have the same support function. We shall show that 

and, as noticed at the beginning of this proof,

Now, observe the following:

• if v i-1 , v i and v i+1 are primitive generators of rays of Y inside a same cone of the fan of X, we have

and the Newton function is linear on each cone of the fan of X. Because Y is smooth and complete, it follows that 4.15] as a global counterpart of C. Hertling's conjecture for germs of holomorphic functions (see [START_REF] Hertling | Frobenius manifolds and moduli spaces for singularities[END_REF], where the equality is inversed). The tameness assumption is discussed in section 5.1.

Conjecture on the variance of the spectrum (global version) Let f be a regular, tame function on a smooth n-dimensional affine variety U . Then if f belongs to the ideal generated by its partial derivatives (recall that the multiplication by f on its Jacobi ring corresponds to the cup-product by c 1 (X) on the cohomology algebra), see [START_REF] Dimca | Monodromy and Hodge theory of regular functions[END_REF] and [START_REF] Hertling | Frobenius manifolds and moduli spaces for singularities[END_REF] for quasi-homogeneous polynomials. Example: f (x, y) = xy(x -1) for which we have µ = 2 and α 1 = α 2 = 1.