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Abstract

We review the current status of theoretical calculations of the hadronic light-by-light scattering
contribution to the muon anomalous magnetic moment. Different approaches and related issues
such as OPE constraints and large breaking of chiral symmetry are discussed. Combining results
of different models with educated guesses on the errors we come to the estimate

a
HLbL = (10.5 ± 2.6) × 10−10

.

The text is prepared as a contribution to the Glasgow White Paper on the present status of the
Muon Anomalous Magnetic Moment.
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1. Introduction.

From a theoretical point of view the hadronic light–by–light scattering (HLbL) contribution to the
muon magnetic moment is described by the vertex function (see Fig. 1 below):

Γ(H)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

∫
d4k2

(2π)4
Π

(H)
µνρσ(q, k1, k3, k2)

k2
1k

2
2k

2
3

γν(6p2+ 6k2 −mµ)−1γρ(6p1− 6k1 −mµ)−1γσ , (1)

where mµ is the muon mass and Π
(H)
µνρσ(q, k1, k3, k2), with q = p2 − p1 = −k1 − k2 − k3, denotes the

off–shell photon–photon scattering amplitude induced by hadrons,

Π(H)
µνρσ(q, k1, k3, k2) =

∫

d4x1

∫

d4x2

∫

d4x3 exp[−i(k1 · x1+k2 · x2+k3 · x3)]

×〈0|T {jµ(0) jν(x1) jρ(x2) jσ(x3)}|0〉 . (2)

Here jµ is the Standard Model electromagnetic current, jµ(x) =
∑

q Qqq̄(x)γµq(x), where Qq denotes
the electric charge of quark q. The external photon with momentum q represents the magnetic field.
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Figure 1: Hadronic light–by–light scattering contribution.

We are interested in the limit q → 0 where the current conservation implies that Γ
(H)
µ is linear in q,

Γ(H)
µ = −aHLbL

4mµ

[γµ , γν ] qν . (3)

The muon anomaly can then be extracted as follows

aHLbL =
−ie6

48mµ

∫
d4k1

(2π)4

∫
d4k2

(2π)4
1

k2
1k

2
2k

2
3

[
∂

∂qµ
Π

(H)
λνρσ(q, k1, k3, k2)

]

q=0

× tr
{
(6p + mµ)[γµ, γλ](6p + mµ)γν(6p+ 6k2 − mµ)−1γρ(6p− 6k1 − mµ)−1γσ

}
. (4)

Unlike the case of the hadronic vacuum polarization (HVP) contribution, there is no direct ex-
perimental input for the hadronic light–by–light scattering (HLbL) so one has to rely on theoretical
approaches. Let us start with the massive quark loop contribution which is known analytically,

aHLbL(quark loop) =
(α

π

)3

NcQ
4
q

{[
3

2
ζ(3) − 19

16

]

︸ ︷︷ ︸

0.62

m2
µ

m2
q

+ O
[

m4
µ

m4
q

log2 m2
µ

m2
q

]}

, (5)

where Nc is the number of colors and mq ≫ mµ is implied. It gives a reliable result for the heavy
quarks c , b , t with mq ≫ ΛQCD. Numerically, however, heavy quarks do not contribute much. For
the c quark, with mc ≈ 1.5 GeV,

aHLbL(c) = 0.23 × 10−10 . (6)
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To get a very rough estimate for the light quarks u, d, s let us use a constituent mass of 300 MeV for
mq . This gives aHLbL(u, d, s) = 6.4 × 10−10. QCD tells us that the quark loop should be accurate
in describing large virtual momenta, ki ≫ ΛQCD, i.e. short–distances. What is certainly missing
in this constituent quark loop estimate, however, is the low–momenta piece dominated by a neutral
pion–exchange in the light–by–light scattering. Adding up this contribution, discussed in more detail
below, approximately doubles the estimate to aHLbL ≈ 12× 10−10. While the ballpark of the effect is
given by this rough estimate, a more refined analysis is needed to get its magnitude and evaluate the
accuracy. Details and comparison of different contributions will be discussed below, but it is already
interesting to point out that all existing calculations fall into a range:

aHLbL = (11 ± 4) × 10−10 , (7)

compatible with this rough estimate. The dispersion of the aHLbL results in the literature is not too
bad when compared with the present experimental accuracy of 6.3×10−10. However the proposed new
gµ−2 experiment sets a goal of 1.4 × 10−10 for the error, which calls for a considerable improvement
in the theoretical calculations as well. We believe that theory is up to this challenge; a further use of
theoretical and experimental constraints could result in reaching such accuracy soon enough.

The history of the evaluation of the hadronic light–by–light scattering contribution is a long one
which can be found in the successive review articles on the subject. In fact, but for the sign error in
the neutral pion exchange discovered in 2002 [1, 2], the theoretical predictions for aHLbL have been
relatively stable over more than ten years.

Here we are interested in highlighting the generic properties of QCD relevant to the evaluation of
Eq. (4), as well as their connection with the most recent model dependent estimates which have been
made so far.

2. QCD in the Large Nc and Chiral Limits

For the light quark components in the electromagnetic current (q = u , d , s) the integration of the
light–by–light scattering over virtual momenta in Eq. (4) is convergent at characteristic hadronic
scales. We choose the mass of the ρ meson mρ to represent that scale. Of course, hadronic physics
at such momenta is non–perturbative and the first question to address is what theoretical parameters
can be used to define an expansion. Two possibilities are: the large number of colors, 1/Nc ≪ 1, and
the smallness of the chiral symmetry breaking, m2

π/m2
ρ ≪ 1. Their relevance can be seen from the

expansion of aHLbL as a power series in these parameters,

aHLbL ∼
(α

π

)3 m2
µ

m2
ρ

[

c1 Nc + c2

m2
ρ

m2
π

+ c3 + O(1/Nc)
]

, (8)

where mπ > mµ is implied. Only the power dependencies are shown; possible chiral logarithms,
ln(mρ/mπ), are included into the coefficients ci.

Terms leading in the large Nc limit

The first term, linear in Nc , comes from the one–particle exchange of a meson M in the HLbL
amplitude, see Fig. 2(a). In principle, the meson M is any neutral, C–even meson. In particular this
includes pseudoscalar mesons π0, η, η′; scalars f0, a0; vectors π0

1 ; pseudovectors a0
1, f1, f∗

1 ; spin 2
tensor and pseudotensor mesons f2, a2, η2, π2 .

The neutral pion exchange is special because of the Goldstone nature of the pion; its mass is much
smaller than the hadronic scale mρ. In aHLbL(π0) this leads to an additional enhancement by two
powers of a chiral logarithm [2],

aHLbL(π0) =
(α

π

)3

Nc

m2
µNc

48π2F 2
π

[

ln2 mρ

mπ

+ O
(

ln
mρ

mπ

)

+ O(1)
]

. (9)

Here the π0γγ coupling is fixed by the Adler–Bell–Jackiw anomaly in terms of the pion decay constant
Fπ ≈ 92 MeV. This constant is O

(√
Nc

)
, therefore Nc/F 2

π behaves as a constant in the large–Nc
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Figure 2: Diagrams for HLbL: (a) meson exchanges, (b) the charged pion loop, the blob denotes the full
γ
∗

γ
∗

→ π
+

π
− amplitude.

limit . The mass of the ρ plays the role of an ultraviolet scale in the integration over ki in Eq. (4)
while the pion mass provides the infrared scale. Of course, the muon mass is also important at low
momenta but one can keep the ratio mµ/mπ fixed in the chiral limit.

Equation (9) provides the result for aHLbL for the term leading in the 1/Nc expansion in the
chiral limit where the pion mass is much less than the next hadronic scale. In this limit the dominant
neutral pion exchange produces the characteristic universal double logarithmic behavior with the exact

coefficient given in Eq. (9). Testing this limit was particularly useful in fixing the sign of the neutral
pion exchange.

Although the coefficient of the ln2(mρ/mπ) term in Eq. (9) is unambiguous, the coefficient of the
ln(mρ/mπ) term depends on low–energy constants which are difficult to extract from experiment [2, 3]
(they require a detailed knowledge of the π0 → e+e− decay rate with inclusion of radiative corrections).
Model dependent estimates of the single logarithmic term as well as the constant term show that these
terms are not suppressed. It means that we cannot rely on chiral perturbation theory and have to
adopt a dynamical framework which takes into account explicitly the heavier meson exchanges as well.

Note that the overall sign of the pion exchange, for physical values of the masses, is much less
model dependent than the previous chiral perturbation theory analysis seems to imply. In fact, if the
π0γ∗γ∗ form factor does not change its sign in the Euclidean range of integration over ki, the overall
sign is fixed even without knowledge of the form factor. This implies the same positive sign without
use of the chiral limit, i.e. the same sign for exchanges of heavier pseudoscalars, JPC = 0−+, where
no large logarithms are present. Moreover, one can verify the same positive sign for exchanges by
mesons with JPC = 1++, 2−+ with an additional assumption about dominance of one of the form
factors. Exchanges with JPC = 0++, 1−+, 2++ give, however, contributions with a negative sign to
aHLbL under similar assumptions, but they are much smaller.

Next–to–leading terms in the large Nc limit

Now let us turn to the next–to–leading terms in 1/Nc expansion. Generically these terms are due to
two–particle exchanges in the HLbL amplitude, see the diagram in Fig. 2(b) with π+π− substituted by
any two meson states. What is specific about the charged pion loop is its strong chiral enhancement
which is not just logarithmic but power–like in this case. In Eq. (8) it is reflected in the term c2 m2

ρ/m2
π .

The point–like pion loop calculation which gives aHLbL(ππ) = −4.6 × 10−10 corresponds to c2 =
−0.065. The rather small value of c2 can be contrasted with the one of the coefficient c1 which is not
suppressed: c1 ≈ 1.7. As we will see the smallness of c2 is related to the fact that chiral perturbation
theory does not work in this case. To see that this is indeed what happens is sufficient to compare
the point–like loop result with the model dependent calculations where form factors are introduced.
Two known results, aHLbL(ππ) = −(0.4 ± 0.8) × 10−10 [4, 5] and aHLbL(ππ) = −(1.9 ± 0.5) × 10−10

[7, 8], show a 100% deviation from the point–like number. It means that the bulk of the contribution
does not come from small virtual momenta ki and, therefore, chiral perturbation theory should not
be applied. In other words, the term c3 in Eq. (8) with no chiral enhancement is comparable with
c2(m

2
ρ/m2

π). It means that loops with heavier mesons should also be included.
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Breaking of the chiral perturbation theory looks surprising at first sight. Indeed, the inverse chiral
parameter m2

ρ/m2
π ≈ 30 is much larger than Nc = 3. What happens is that the leading terms in the

chiral expansion are numerically suppressed, which makes chiral corrections governed not by m2
π/m2

ρ

but rather by ≈ 40 m2
π/m2

ρ . This can be checked analytically in the case of the HVP contribution
to the muon anomaly. The charged pion loop is also enhanced in this case by a factor m2

ρ/m2
π but

the relative chiral correction due to the pion electromagnetic radius (evaluated with a cutoff at m2
ρ

in the ππ spectral function) is ∼ 40 m2
π/m2

ρ ln(mρ/2mπ). Of course, if the pion mass (together with
the muon mass) would be, say, 5 times smaller than in our real world, the charged pion–loop would
dominate both in the HVP and the HLbL contributions to the muon anomalous magnetic moment.

In concluding this Section, we see that the 1/Nc expansion works reasonably well, so one can use
one–particle exchanges for the HLbL amplitude. On the other hand, chiral enhancement factors are
unreliable, so we cannot limit ourselves to the lightest Goldstone–like states, and this is the case both
for the leading and next–to–leading order in the 1/Nc expansion.

3. Short–Distance QCD Constraints.

The most recent calculations of aHLbL in the literature [1, 6, 8, 9] are all compatible with the QCD chiral
constraints and large–Nc limit discussed above. They all incorporate the π0–exchange contribution
modulated by π0γ∗γ∗ form factors F(k2

i , k2
j ), correctly normalized to the π0 → γγ decay width. They

differ, however, in the shape of the form factors, originating in different assumptions: vector meson
dominance (VMD) in a specific form of Hidden Gauge Symmetry (HGS) in Refs. [4, 5, 6]; a different
form of VMD in the extended Nambu–Jona-Lasinio model (ENJL) in Ref. [7, 8]; large–Nc models
in Refs. [1, 9]; and on whether or not they satisfy the particular operator product expansion (OPE)
constraint discussed in Ref. [9], upon which we next comment.

Let us consider a specific kinematic configuration of the virtual photon momenta k1, k2, k3 in the
Euclidean domain. In the limit q = 0 these momenta form a triangle, k1+k2+k3 = 0, and we consider
the configuration where one side of the triangle is much shorter than the others, k2

1 ≈ k2
2 ≫ k2

3 .
When k2

1 ≈ k2
2 ≫ m2

ρ we can apply the known operator product expansion for the product of two
electromagnetic currents carrying hard moments k1 and k2,

∫

d4x1

∫

d4x2 e−ik1·x1−ik2·x2 jν(x1) jρ(x2) =
2

k̂2
ǫνρδγ k̂δ

∫

d4z e−ik3·z jγ
5 (z) + O

(
1

k̂3

)

. (10)

Here jγ
5 =

∑

q Q2
q q̄γγγ5q is the axial current where different flavors are weighted by squares of their

electric charges and k̂ = (k1 − k2)/2 ≈ k1 ≈ −k2 . As illustrated in Fig. 3 this OPE reduces the HLbL
amplitude, in the special kinematics under consideration, to the AVV triangle amplitude.

k

k k

q 01

2 3

q 0

k3

γ γγ 5H

Figure 3: OPE relation between the HLbL scattering and the AVV triangle amplitude.

There are a few things we can learn from the OPE relation in Eq. (10). The first one is that the
pseudoscalar and pseudovector meson exchanges are dominant at large k1,2. Indeed, only 0− and 1+

states are coupled to the axial current. It also provides the asymptotic behavior of form factors at
large k2

1 ≈ k2
2 . In particular, we see that the π0γ∗γ∗ form factor F(k2, k2) goes as 1/k2 and similar

asymptotics hold for the axial–vector couplings. The relation in Eq. (10) does not imply that other
mesons, like e.g. scalars, do not contribute to HLbL, it is just that their γ∗γ∗ form factors should fall
off faster at large k2

1,2 .
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The AVV triangle amplitude consists of two parts: the anomalous, longitudinal part and the
non–anomalous, transverse one; we consider the chiral limit where m2

π → 0. Because of the absence
of both perturbative and non–perturbative corrections to the anomalous AVV triangle graph in the
chiral limit, the pion pole description for the isovector part of the axial current works at all values
of k2

3 connecting regions of soft and hard virtual momenta. This, in particular, implies the absence
of a form factor F(0, k2

3) in the vertex which contains the external magnetic field. At first sight, this
conclusion seems somewhat puzzling because for non–vanishing external momentum q the form factor
F(q2, k2

3) certainly is attributed to the pion exchange. The answer is provided by the observation that
this form factor enters not in the longitudinal anomalous part, but in the transverse part. It is for
this reason that the axial anomaly is not corrected by the form factor. In the transverse part the form
factor shows up together with the massless pion pole in the form

F(q2, k2
3) −F(0, 0)

(k3 + q)2
. (11)

At q = 0 this combination contains no pion pole at k2
3 = 0 . It means that the discussed piece conspires

with the pseudovector exchange to produce the transverse result and in this sense becomes part of
what could be called the pseudovector exchange. It provides the leading short–distance constraint
for the pseudovector exchange. Contrary to the case of the longitudinal component, the transverse,
non–anomalous part of the AVV triangle is, however, corrected non–perturbatively [10, 11].

Additional constraints on subleading terms in the F(k2
i , k2

j ) form factor, which were derived in
Ref. [12], are also taken into account in the calculation quoted in Ref. [9].

The large momentum behavior which singles out pseudoscalar and pseudovector exchanges is, how-
ever, not sufficient to fix per se a unique model for the evaluation of aHLbL because the bulk of the
integral in Eq. (4) comes from momenta ki of the order of an hadronic scale. However, the faster
decreasing of exchanges other than pseudoscalar and pseudovector ones makes these contributions
numerically smaller. Moreover, the importance of asymmetric momenta configurations with two mo-
menta much larger than the third one was checked in [9, 13] numerically. This check is related to a
question which we next discuss.

There are other short–distance constraints than those associated with the particular kinematic
configuration governed by the AVV triangle. At present, none of the light–by–light hadronic pa-
rameterizations made so far in the literature can claim to satisfy fully all the QCD short–distance
properties of the HLbL amplitude which is needed for the evaluation of Eq. (4). In fact, within the
large–Nc framework, it has been shown [14] that, in general, for other than two–point functions and
two–point functions with soft insertions, this requires the inclusion of an infinite number of narrow
states. However, a numerical dominance of certain momenta configuration could help. In particular,
in the model of Ref. [9] with a minimal set of pseudoscalar and pseudovector exchanges, the corrections
due to additional constraints not satisfied in the model turn out to be quite small numerically. Note
that in the frameworks of the ENJL model [7, 8] the QCD short–distance constraints are accounted
for by adding up the quark loop with virtual momenta larger than the cutoff scale of the model.

4. Hadronic Model Calculations

In the previous section we have mentioned a few models used for the calculations of aHLbL: HGS model
in [4, 5, 6], ENJL model in [7, 8], the pseudoscalar exchange only in [1], the OPE based model of
pseudoscalar and pseudovector exchanges in [9]. In order to compare different results it is convenient
to separate the hadronic light–by–light contributions which are leading in the 1/Nc–expansion from
the non-leading ones [15].

Contributions which are leading in the 1/Nc expansion

Among these contributions, the pseudoscalar meson exchanges which incorporate the π0, and to a
lesser degree the η and η′ exchanges, are the dominant ones. As discussed above, there are good QCD
theoretical reasons for that. In spite of the different definitions of the pseudoscalar meson exchanges
and the associated choices of the F(k2

i , k2
j ) form factors used in the various model calculations, there

is a reasonable agreement among the final results, which we reproduce in Table 1.
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Table 1: Contribution to aHLbL from π0, η and η′ exchanges

Result Reference

(8.5 ± 1.3) × 10−10 [7, 8]

(8.3 ± 0.6) × 10−10 [4, 5, 6]

(8.3 ± 1.2) × 10−10 [1]

(11.4 ± 1.0) × 10−10 [9]

In fact, the agreement is better than this table shows. One should keep in mind that in the ENJL
model (the first line) the momenta higher than a certain cutoff are accounted separately via quark
loops while in the OPE based model these momenta are already included into the result (the last
line in the Table 1). Assuming that the bulk of the quark loop contribution is associated with the
pseudoscalar exchange channel one gets 10.7×10−10 in the ENJL model instead of 8.5×10−10. In the
calculations quoted in the two other entries, the higher momenta were suppressed by an extra form
factor in the soft photon vertex and no separate contribution was added to compensate for this.

Closely related to pseudoscalar exchanges is the exchange by the pseudovectors. Both enter the
axial–vector current implying relations between form factors (see the discussion of the triangle am-
plitude in the previous section). Again, here the estimates in the literature differ by the shape of
the form factors used for the Aγ∗γ∗ and Aγ∗γ vertex. Different assumptions on hadronic mixing is
another source of uncertainty. Although the contribution from axial–vector exchanges is found to be
much smaller than the one from the Goldstone–like exchanges by all the authors, the central values,
shown in Table 2, differ quite a lot. The authors of Ref. [9] attribute this to the influence of the OPE

Table 2: Contribution to aHLbL from axial-vector exchanges

Result Reference

(0.25 ± 0.10) × 10−10 [7, 8]

(0.17 ± 0.10) × 10−10 [4, 5, 6]

(2.2 ± 0.5) × 10−10 [9]

constraint for the non–anomalous part of the AVV triangle amplitude, discussed above. Further study
of the discrepancy in this channel is certainly needed.

The scalar exchange contributions have only been taken into account in Refs. [7, 8]. In fact, within
the framework of the ENJL model, these contributions are somewhat related to the constituent quark
loop contribution. The result is:

Contribution to aHLbL from Scalar exchanges [7, 8]

−(0.7 ± 0.2) × 10−10 .

It is much smaller than the contribution from the Goldstone–like exchanges and negative. In compar-
ison with the pseudovector exchange, the magnitude for the scalar is a few times smaller than for the
pseudovector in the OPE–based model but a few times larger in HGS and ENJL models.

As we discussed in Section 2 there is some number of other C–even mesonic resonances in the
mass interval 1–2 GeV, not accounted for in the ENJL model, which could contribute to aHLbL

comparably to the contribution from scalars. These contributions are of both signs depending on
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quantum numbers. At the moment we can only guess about their total effect. Thus, it seems reasonable
to use the scalar exchange result rather as an estimate of error associated with these numerous
contributions.

Contributions which are subleading in the 1/Nc expansion

As we discussed in Section 2 the charge pion loop chirally enhanced as m2
ρ/m2

π is a priori the dominant
contribution in the subleading 1/Nc order. It occurs, however, that the chiral enhancement does not
work and loops involving other heavier mesons can compete with the simple pion loop contribution.

The dressed pion loop results are considerably smaller than the one for the point–like pion. They
are presented in Table 3. The last line from Ref. [9] is not the result of a calculation. Strictly speaking

Table 3: Contribution to aHLbL from a dressed pion loop

Result Reference

−(0.45 ± 0.85)× 10−10 [4, 5]

−(1.9 ± 0.5)× 10−10 [7, 8]

(0 ± 1) × 10−10 [9]

it represents an error estimate of the meson loop contributions subleading in 1/Nc–expansion. One
can probably increase this error to cover the ENJL result in the second line.

5. Numerical Conclusions and Outlook

What final result can one give at present for the hadronic light–by–light contribution to the muon
anomalous magnetic moment? It seems to us that, from the above considerations, it is fair to proceed
as follows:

Contribution to aHLbL from π0, η and η′ exchanges

Because of the effect of the OPE constraint discussed above, we suggest to take as central value the
result of Ref. [9] with, however, the largest error quoted in Refs. [7, 8]:

aHLbL(π , η , η′) = (11.4 ± 1.3) × 10−10 . (12)

Let us recall this central value is quite close to the one in the ENJL model when the short–distance
quark loop contribution is added there.

Contribution to aHLbL from pseudovector exchanges

The analysis made in Ref. [9] suggests that the errors in the first and second entries of Table 2 are
likely to be underestimates. Raising their ±0.10 errors to ±1 puts the three numbers in agreement
within one sigma. We suggest then as the best estimate at present

aHLbL(pseudovectors) = (1.5 ± 1) × 10−10 . (13)

Contribution to aHLbL from scalar exchanges

The ENJL–model should give a good estimate for these contributions. We keep, therefore, the result of
Ref. [7, 8] with, however, a larger error which covers the effect of other unaccounted meson exchanges,

aHLbL(scalars) = −(0.7 ± 0.7) × 10−10 . (14)

Contribution to aHLbL from a dressed pion loop
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Because of the instability of the results for the charged pion loop and unaccounted loops of other
mesons, we suggest using the central value of the ENJL result but wit a larger error:

aHLbL(π−dressed loop) = −(1.9 ± 1.9) × 10−10 . (15)

From these considerations, adding the errors in quadrature, as well as the small charm contribution
in Eq. (6), we get

aHLbL = (10.5 ± 2.6) × 10−10 , (16)

as our final estimate.
We wish to emphasize, however, that this is only what we consider to be our best estimate at

present. In view of the proposed new gµ−2 experiment, it would be nice to have more independent
calculations in order to make this estimate more robust. More experimental information on the decays
π0 → γγ∗, π0 → γ∗γ∗ and π0 → e+e− (with radiative corrections included) could also help to confirm
the result of the main contribution in Eq. (12).

More theoretical work is certainly needed for a better understanding of the other contributions
which, although smaller than the one from pseudoscalar exchanges, have nevertheless large uncertain-
ties. This refers, in particular, to pseudovector exchanges in Eq. (13) but other C-even exchanges
are also important. Experimental data on radiative decays and two-photon production of C-even
resonances could be helpful. An evaluation of 1/Nc–suppresed loop contributions present even a more
difficult task. New approaches to the dressed pion loop contribution, in parallel with experimental
information on the vertex π+π−γ∗γ∗, would be very welcome. Again, measurement of the two-photon
processes like e+e− → e+e−π+π− could give some information on that vertex and help to reduce the
model dependence and therefore the present uncertainty in Eq. (15).
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