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A variant of the spectral clustering method using
/1-penalty to promote sparse eigenvectors basis

Mélanie Blazere

Abstract

The spectral clustering method is one of the most well-known graph clustering
algorithm, that is used in a wide range of fields and applications. In this paper, we
propose a variant of the spectral clustering algorithm, called ¢;-spectral clustering.
This procedure does not require the use of k-means to cluster the nodes of the graph,
but directly estimates the indicators of the communities by computing a specific eigen-
basis using ¢; penalty.
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1 Introduction

Since many systems of various kinds can be represented as networks, graphs play a cen-
tral role in complex system [HG10],[Str01],[New03],|AB02]. Fields of application are many
and various, ranging from mathematics (graph theory, combinatoric problems) to physics
(systems of particles [Hop82]), sociology (social networks [HG10]), marketing (consumers
preferences graphs), informatics (decision trees, combinatorial optimization, World Wild
Web [PSV07]) or biology (neural, proteins networks, genes [JTAT00]). In biology, there
exists a lot of applications [MLF*09], [YH07],[GA05],[ZHT05],[DHJ*04],[MDJL04], just
to name a few.

Community detection is an important task for complex networks, that can help to
understand the functional modules on the whole network. Community structures are
believed to play an important role in the functioning of the complex systems modeled
by graphs, so that detecting theses structures is of the highest importance. There exists
different ways of defining community structures. The heuristic one corresponds to groups
of nodes that are densely connected with sparse connections in between [GNO02],[NGO04].
Among different community detection methods based on graph structures, the spectral
clustering method is currently one of the most popular and has been widely used in
various fields. This method uses the eigenvectors of adjacency type matrices to cluster the
nodes of a graph into a given number of communities. The nodes are not directly clustered
but k-means is applied to the eigenvectors to detect the communities. If this method is
so popular, it is mainly because spectral clustering is very easy to implement and easy to
use. The computations are very fast and efficient, even for very large graphs. However,
there is no guarantee to reach the best or most natural partitioning in general cases.

The purpose of this work is to present an alternative method to the classical spectral
clustering for a specific random graph model, called ¢;-spectral clustering. This is an
alternative method in the sense that the partitioning of the graph is essentially based on the
computation of the singular value decomposition of the adjacency matrix (or normalized



adjacency matrix). The associated algorithm actually aims at finding a sparse basis of the
eigenvectors of the adjacency matrix, starting from an initial basis that is not necessarily
sparse but can be computed very quickly by any eigensolvers. This procedure turns out
to solve an optimization problem of the form

argmin || v ||1,
veES

where S is a subset in € R"~! based on some transformations of the initial eigenvectors of
the adjacency matrix. The remainder of this paper is organized as follows. In Section 2, we
introduce the notations. Section 3 is devoted to the presentation of the model we suggest
to work on, i.e. a random graph model that is closely related to a stochastic block model.
We actually assume that the observed graph results from a deterministic graph with an
exact community structure, whose edges have been disturbed by Bernoulli variables. In
Section 4, we recall the basic principles of the spectral clustering method. Then, we present
a new method to estimate block membership of nodes, from the observation of the noisy
graph. The performance of this procedure is strongly dependent on the perturbation of the
adjacency matrix and more specifically on the Frobenius norm of the noise matrix. Some
results on the expectation of the Frobenius norm of the noisy matrix (associated to the
random model we consider) are given in Section 5. Finally, we study the performances of
the suggested method on simulated data. Results are presented in Section 6. Experimental
results indicate that this algorithm works well on simulated datasets and is effective at
finding the good communities.

2 Graph notation

A graph G refers to a set of vertices and a set of edges. The nodes represent the
individuals or objects and the edges the interactions and relationships between them.
From a mathematical point of view, a graph G is a pair (V,E) where V is the set of
vertices and E refers to the set of edges that pairwise connect the vertices [Die05]. An
edge e € E that connects a node 7 and a node j is denoted by e = (i, j).

An important object associated to the graph is the adjacency matrix A = (A;;)(; j)cv2-
The element A;; represents the weight on the edge between node ¢ and node j. For
unweighted graphs, the adjacency matrix is defined by

A — 1 if there is an edge between ¢ and j
Y10 otherwise

If the graph contains n nodes i.e. | V |= n, then A € M,(R). When the graph is
undirected, A is a symmetric matrix. Its diagonal elements are equal to zero when there
is no loop.

The degree d; of a node ¢ is equal to the number of edges incident to i

The matrix D, called the degree matrixz, contains the degree of the nodes dy, ..., d, on the
diagonal and zero anywhere else



Given a subset of vertices C C V, we denote by C its complement, that is V' \ C. We
define the indicator vector 1o € R™ as the vector whose entries are defined by

(10), = 1 if vertex ¢ belongs to C
=N 0 otherwise

A subset C' C V of a graph is said to be connected if any two vertices in C' are connected
by a path in C' (sequence of vertices in C' connected by edges that joined the two initial
vertices). In addition, C is called a connected component if there are no connections
between vertices in C' and C. Non empty sets C1,..,C) form a partition of the graph if
C’iﬂCj:@and Ciu...uC,=V.

3 Presentation of the model

There is no formal definition of what should be a community. But, there exists a
consensus on the fact that it should refer to groups of vertices highly connected with
sparse connections in between.

In this section, we assume that the observed graph, denoted by G’, is actually a per-
turbed version of a graph G that has k fully connected components (called the communi-
ties). We actually assume that the observed graph G results from a deterministic graph
with an exact community structure, whose edges have been perturbed by Bernoulli vari-
ables. We consider only undirected graph with no loops and we assume that the observed
graph is connected (otherwise, it would be equivalent to work on each of the connected
components of the graph).

Hereafter, observed quantities will be denoted by a hat.

3.1 The ideal graph

The ideal graph G is assumed to be the union of k£ complete graphs that are discon-
nected from each other. The number of vertices is n. The vertices are labelled from 1
to n. We allow the number of vertices in each subgraph to be different. We denote by
S1,..., Sk (> 2) their respective size (of course Zle s; = n). To simplify and without loss
of generality, we assume that the nodes {1,...,n} are ordered with respect to their block
membership, in increasing order with respect to the size of the blocks. In other words, the
nodes in the smallest cluster are denoted by 1, ..., s1 and so on.

From a matricial point of view, the associated adjacency matrix A is block diagonal
and has the following form

All A12 o Alk:
A12 A22 o AQk

n

where -
A ::Osi,sj- 1<i#j<k



and

01 ... 1
) 10 ...1
AV=N, —I,=| . . | eS,R), 1<i<k
11 0

Si

I, denote the identity matrix of size s; and N, the square matrix of same size s;, whose
entries are all equal to one.
In other words,

0 1 1
10 1 0
11 0
S1
A= (1)
0 1 1
0 10 1
11 0

Sk

~
n

3.2 Perturbed version G of the graph G

We assume that we do not have access to this graph G. This is the case, for instance,
if the graph has been inferred by estimating the dependencies between the vertices. We
just observe a perturbed version of G denoted by G (some edges have been added between
the communities and others have been removed within the communities independently
with respect to a given probability). For instance, this perturbation may arise because
of a partial knowledge of the graphs. This can be due to errors of measurement or to
estimation noise (if the graph is estimated).

Let us detail what we exactly mean here by perturbations. Let A be the adjacency
matrix associated to G. We assume that

A—AbB (2)

where

° A\i]‘ = {A@% B} = Al‘j +Bij (mod 2).
ij
e B is asymmetric matrix of size n, whose upper entries are realizations of independent
Bernoulli variables
Bij ~ B(p) iid.,, i<y
B;;=0
Bij = sz'



B is therefore the adjacency matrix of an Erdos-Renyi graph G(n,p). We recall that
an Erdos-Renyi graph G(n,p) has n vertices. The entries of its adjacency matrix are
independent (up to the constraint that the adjacency matrix is symmetric) and equal 1
with probability p and 0 with probability 1 — p (except on the diagonal where the entries
are deterministic and always equal to 0). A value of B;; equal to one means that the edge
between nodes ¢ and j is removed if the edge exists, or conversely that an edge is added
if there was no edge before. To sum up

o If B;; =1 and A;; = 1, we remove an edge between vertex ¢ and j in G.
o If B;j =1 and A;; =0, we add an edge between vertex ¢ and j in G.
e If B;; = 0 we do not change any thing on the initial graph.

The noise is independent from one edge to the other, so that a change appears with the
same probability for all the edges. An edge is removed in a community with probability
p and added between two communities with the same probability. So that, two nodes
are connected with probability 1 — p if they belong to the same community and with
probability p when they do not belong to the same community. We can easily generalize
this model by considering different perturbation probabilities within and between each of
the blocks. To simplify, in what follows, we keep the same value of p for all of the entries.

The difference between purely random graphs and our model is that we do not assume
that a group structure emerges by chance but because there exists an underlying structure.
This structure can be based on a real physical or biological mechanism that have been
significantly changed. Hence, the model is random but the underlying group structure is
considered as fixed and is well defined. This is a kind of probabilistic-statistical model
that is well suited to model graphs that have been inferred from observations.

The model we consider is similar to the stochastic block-model, in the sense that the
probability of an edge between two nodes depends only on the communities membership.
But here, the membership of a node to a community is assumed to be fixed and not
randomly assigned as in the stochastic block model. In the stochastic block-model, we
have

PlA| 7] = H P[Ai; | 7(i),7(j)] = H (1- PT(i),T(j))l_A” ,

(i,5)€V?2 (i,5)€V?2
i£j i#£j

where 7 is the random block membership function. This means that, conditionally to 7,
the entries A;; of the adjacency matrix are independent Bernoulli random variables with
parameter given by P -(5) (that depends on the community membership of the nodes i
and j). The equivalent quantity of p; in a stochastic block model is somehow the nodes
density of the communities. In our setting, there is no conditioning. The sizes of the
communities are assumed to be fixed and equal to (s;)i<i<k. In addition, the number
of nodes is kept fixed. But, it is the probability of an edge between two nodes that is
supposed to vary. We implicitly assume that this probability p depends on a parameter
and tends to zero when this parameter tends to infinity. For instance, we can imagine that
the nodes of the graph represent features whose interactions have been estimated based

on m observations, so that p — 0.
m—+00

Because the graph and the adjacency matrix are equivalent, in what follows, we forget
the graph and we only focus on the adjacency matrix.

3.3 Notations

Let us now detail some of the notations we will need later.



For 1 € {1,...,k}, let

-1 l
/\/ll:{ie[l,n]:Zsr—leiSZsr}.
r=0 r=0

M, represents the indices of the nodes in community I. {M;,..., My} is a partition of
[1,n], so that [1,n] = (J;<;<; M. We also define

M=)\ M= |J Mmn.
1<m<k
m#l

Forl € {1,...,k} and m € {1, ..., k}, we define
Tim = My @ My, = {(i,j) eLn?:ieM,j eMm}.
{Jim}1<i<m<p 1s a partition of [1,n]?, so that [1,n]* = Ui<tm<k Jim- We also define

Ju~ =A{(,3) € Ju, i # j}-

For any adjacency matrix F', we denote by Dp the degree matrix associated to F'.
Its diagonal entries are denoted by dZF , where we recall that dZF = 2?21 Fj;. The ideal
adjacency matrix A given by Equation (1) has its degrees equal to

A=) Ay=s-1, if ieM,.
j=1

Forl=1,...,k, let d; := s; — 1. We have

DA = diag(dl, N ,dl, dk, ey dk)
————

S1 Sk

4 A new graph community detection procedure: [;-spectral
clustering,

In this section, we suggest an alternative to spectral clustering to find the k underlying
communities of a graph G from the observation of the noisy graph G. This new algorithm
is based on the research of a ”sparse” eigenvectors basis through /; minimization. We
denote by Cf,...,Cy the k connected components of G, that match the k& communities.
We recall that these connected components are sorted in increasing order of size, with size
equal to s1, ..., Sg.

4.1 Assumption

In addition to the number of communities, we assume that we know one representative
for each of the community. By a representative, we mean a node belonging to this com-
munity. This assumption is not so restrictive compared to traditional spectral clustering
where the number of communities is assumed to be known. In practice, the number of
communities can be inferred from the structure of the graph or from the knowledge of the
biological or physical process that drives the graphs. For instance, in genes networks, the
groups of genes we search for often represent metabolism functions. These functions are



a priori known and some genes implied in these metabolic functions have already been
evidences by experiments. The aim is to cluster genes around these initial well-known
ones to detect new genes and gain thereby new understanding of the complex system. If
we do not exactly know a representative for each group, we can estimate them by first
applying a rough partitioning algorithm or just an algorithm that aims at finding the hub
of very densely connected parts of the graph.

We denote by i1, ..., 4, the indices of these initial elements.

4.2 Background on spectral clustering

One of the most commonly used method to cluster a graph into communities is the
spectral clustering method [VLO7]. The algorithm behind spectral clustering has been
rediscovered and reapplied in various and different fields, since the initial work of Fiedler
[FIE]. For a detailed history of spectral clustering we refer to [ST07] and to [VLBBOS|.

The idea behind spectral clustering is to use eigenvectors of matrices, based on the
adjacency matrix, to cluster the graph. In the spectral clustering procedure, ones use
the first k eigenvectors of a normalized or unormalized version of the Laplacian matrix
(derived from the adjacency one) to cluster the nodes of the graph.

Let G = (V, E) a graph whose adjacency matrix is denoted by A. There are mainly
three matrices whose spectral properties can be studied to discover structures in a graph
[SR95], [VLOT7]. These matrices are listed below and essentially depend on the adjacency
matrix A.

1. The Laplacian matrix
L=D-A.

2. The symmetric Laplacian matrix
Loym = D7Y/2AD7Y/2,
denoted by Lgym, because it is a symmetric version of the Laplacian matrix.

3. The random walk Laplacian matrix
Lyw=D'L=1—-D714,

denoted by L,, because DA may represent the transition matrix of a random
walk.

The L matrix is often referred as the unormalized Laplacian and Lgy.,, Ly, as the normal-
ized Laplacian matrices. To implement spectral clustering one has to compute the first &
eigenvectors (those corresponding to the k smallest eigenvalues) of one of the Laplacian
matrix above. This step allows to get a representation of the of the initial data into a low-
dimensional space in order to be clustered, by k-means for instance. We refer to [VL07]
for details.

If these matrices are so important in graph clustering, it is because, as explained in
Proposition 4.1 below, the distribution of its eigenvalues indicates the number of connected
components in the graphs. In addition, its eigenvectors fully describe the vertices that lie
in each of these connected components.

Proposition 4.1. [VL07]



The multiplicity k of the 0 eigenvalue of L and L, and the multiplicity k of the
generalized 0 eigenvalue of Lgyn, are equal to the number of connected components C1, ..., Cy,
in the graph.

For L and L., the eigenspace associated to 0 is spanned by the indicator vectors
{1Ci}1§i§n'

For Lgym, the eigenspace associated 0 is spanned by {Dl/Qlci}1<i<n~

If the Laplacian (or one of its equivalent) is so appealing, it is because the multiplicity
of the null eigenvalue (that corresponds to the smallest eigenvalue) is equal to the num-
ber of connected components. In addition, a particular basis of the associated eigenspace
is spanned by the community indicators. Therefore, if the graph is made of exactly &
connected components, the computation of the eigenvectors of L,Lgy,, and L, enables
to recover these components. When these components are sufficiently connected, they
represent communities. In practice, the graph is not made of connected components, but
of densely connected subgraphs that are sparsely connected to each other. These densely
connected subgraphs represent somehow a perturbed version of the initial connected com-
ponents that form the communities. If the perturbation is not too high, we can still hope
that the eigenvectors of the perturbed Laplacian matrix (associated to this perturbed
graph) still contain enough information on the graph structure to detect these communi-
ties. In particular, for one specific eigenvectors basis, the vectors coeflicients are likely to
be very close for indices corresponding to nodes in the same community. Therefore, it is
natural to then apply k-means to the rows of the matrix containing these eigenvectors in
columns.

The way the eigenvectors basis of the adjacency (or Laplacian matrix) is built is of the
highest importance to ensure a good recovery of the communities. To better understand
where the idea of this new method comes from, we go back to the ideal case where the dif-
ferent blocks are not connected. In this case, the indicators of the communities {1¢; }; ;<
are the eigenvectors of the normalized and unormalized adjacency or Laplacian matrix.
Let U be the concatenation of these vectors. In this situation, we easily see that rows
corresponding to indices of nodes in the same class are equal. Hence, clustering the rows
of U provides, by the same way, the knowledge of the blocks. Of course, if the adjacency
matrix or the Laplacian matrix are perturbed by an additive noise, then the eigenvectors
will also be modified. But, if the perturbation is small, we can still hope that the rows (of
the modified version of U) will remain close enough, so that k-means on these rows find
the good clusters. However, since 0 is a repeated eigenvalue, the eigenspace associated to
0 is spanned by {1¢;},,~;. Hence, there is no guarantee that the implementation of the
eigensolvers provides the community indicators as eigenvectors. They can be replaced by
a linear combination of the community indicators. For instance, the eigensolvers can find
the sum of the indicators as an eigenvector. In this case all the coefficients of the vector
are equal to one. Therefore, they are of no use for clustering the nodes of the graph. Once
we add a perturbation on the adjacency matrix, the eigenvalues are not multiple anymore
and the eigenspace becomes of dimension one. But, the eigenvalues can remain very close
and if the eigengap is small the first top eigenvectors given by an eigensolvers may no be
very useful to well cluster the groups. The first eigenvectors are not equally informative.
This may explain why the original spectral clustering method can fail to recover the good
communities in some case. The choice of the k eigenvectors is in fact of the highest im-
portance. The key is to select relevant eigenvectors that provide useful information about
the natural grouping of the data. In what follows, we do not use directly the subspace
spanned by the first eigenvectors to find the communities but we first compute another
eigenbasis that promotes sparse solutions for the eigenvectors.



4.3 A new approach

The alternative method we suggest is based on the same principle as spectral clustering.
We still focus on the space spanned by the k first eigenvectors. But, instead of computing
and directly using one basis among others, we wisely compute from this initial basis (that
has been fastly computed by any eigensolver) a basis better suited for clustering.

We do not work on the Laplacian or normalized Laplacian but directly on the adjacency
matrix. However, the idea remains the same if we replace the adjacency matrix by the
Laplacian or its normalized version by the normalized Laplacian matrix.

The community indicator are the eigenvectors associated to the largest eigenvalues: the
eigenvalues of A associated to {1¢;}, ., are equal to di, ..., d; and the other eigenvalues
are equal to —1. We assume that the eigenvalues of A denoted by Ap,..., A, are sorted
in decreasing order. Let ug,..,u, be the associated normalized eigenvectors given by any
eigensolvers, so that the k first eigenvectors of A (associated to the k largest eigenvalues)
are denoted by uq,...,ur. We denote by U the matrix that contains uy,...u; in columns
and by Vj the one that contains ug1, ..., u,. We define

U, = Span {uq, ..., up}.

4.3.1 Community detection in the ideal case

Proposition 4.2 and Proposition 4.3 below show that the community indicators are
solution of some specific minimization problem.

Proposition 4.2. The minimization problem

argmin || v ||
veli\ {0}

has a unique solution (up to a constant) given by 1¢,.
We recall that || v |[o=| {j : v; # 0} |. In other words, 1¢, is the sparsest non-zero

eigenvector in the space spanned by the first k£ eigenvectors.

Proof. Since {lci}lgigk is a basis of U}, a vector v in U}, can be written as v = Z§:1 a;jlg;
where (o, ..., a;) € R*\ {0} . Therefore, we deduce that || v || is equal to 14,2081 + ... +
1., 205k, Because at least one of the a; is non zero and s1 < s3 < ... < 53, the vector in
U, with the smallest I norm is the one for which a; # 0 and «; = 0 for all ¢ #£ 1. ]

We can generalized Proposition 4.2 to find the other indicators of the communities.
Fori=2, ..,k letUi ={vely:vLlg, I=1,.,i—1}.

Proposition 4.3. Fori=2,..., k, the minimization problem

argmin || v |
velti\{0}

has a unique solution (up to a constant) given by 1¢;.

Notice that the constraints are linear. However, because of the [p-norm this minimiza-
tion problem is NP-hard. Fortunately, based on the knowledge of one representative for
each group, we can replace the [g-norm by its convex relaxation given by the [;-norm.

Recall that 1, ...,7; are the indices of these representative elements and let

Z/N{k:{UEUk:Uh:l}.

This is straightforward to see that the community indicator of the smallest community is
solution of the following optimization problem.



Proposition 4.4. The minimization problem (P1)

argmin || v |1
UEZ;{]C

has a unique solution given by 1c,.

Proof. Since {1¢;},<;<; is also a basis of Uy, a vector v in U, can be written as v =

Z§:1 a;lc, where (1,...,a;) € R*. We deduce that || v || is equal to aisy + ... + agsp.
Because at least one of the «; is not zero and s; < sy < ... < sg, the vector in U} that
satisfies || v ||co= 1 and has the smallest /; norm is the one for which a; # 0 and a; = 0

for all i # 1 and a; = 1. O

To simplify and without loss of generality, we assume that i corresponds to the first
index (up to a permutation).

Corollary 4.5. Problem (P1) is equivalent to

min_ || 0 |1 .
vern—1
(1,2)eUy,
Because the columns of the matrix U form an orthonormal basis, v € U}, is equivalent
to VkTv = 0, where we recall thatV}, is the restriction of U to the last n — k columns.
Let w be the first column of VkT. We define W as the matrix VkT whose first column
w has been deleted.

Proposition 4.6. The solution v* of problem (Py) is given by v* = (1,7*) where

0" € argmin || U |1 .
sern—1
Wi=—w

This solution v* is equal to 1¢,. There exists very efficient algorithms that solve
this type of [{-minimization problem with linear constraints. They have been proved to
converge to the right solution and can be easily solved using R or Matlab. For instance,
we can use the R Optimization Infrastructure (ROI) package or the [1-eq function, from
the Matlab optimization package [1-Magic.

The other community indicators are computed in the same way, adding the constraints
that the target vector is orthogonal to the previous computed vectors. In practice, we can
deflate the matrix A. We get a matrix A, so that the indicator of the second smallest
community corresponds now to the sparsest eigenvector associated to the space spanned
by the k largest eigenvalues of A. Hence, the problem is traced back to the first one and
SO on.

4.3.2 Minimization problem under perturbations

In practice, we do not have access to this unperturbed graph. So, the question is what
if the adjacency is perturbed as in Equation (2) ? We denote by Uy, the perturbed version
of Ug. This matrix contains the first k£ eigenvectors of the adjacency matrix A associated
to the observed graph G. Vi denotes the matrix containing the others n — k eigenvectors.
To simplify, we just present the solution to find the first community indicators (for the
others, the idea remains the same except that we add the constraint of being orthogonal to
the previous solution vectors). The solution consists in releasing the equality constraints

10



of Problem (751) given in Proposition 4.6. This is equivalent to solve the minimization
problem (P;)

argmin | Wi+ |2 +X || 0 |1, (P1)

veRn—1L
where A > 0 is the penalty parameter, W e M,k n—1 is the matrix VkT whose first
column 1 has been deleted. The term || W& 4 @ ||3 means that we search for a vector
close to the space spanned by the first £ eigenvectors of A and whose first coefficient is
equal to one. || ¥ ||; is what controls the sparsity of the solution. As for all regularizing
methods depending on a parameter, the main issue is the choice of A\. Figure 1 below
shows that the behaviour of the estimated coefficients is of two kinds. The simulations
have been performed on a model with nine communities with size between 10 and 30 and
a perturbation equal to 0.1. There is a clear splitting in the behaviour of the coefficients,
depending if they belong to the first community or not. By looking in more details to the
data, we see that the upper batch of curves are associated to nodes in the first community
and the lower batch of curves to ones in the other communities. This is true whatever is the
value of the penalty parameter. Figure 1 below does not represent a particular situation
but a typical behaviour of the Lasso when applied to our model (we have implemented
models with various parameters).

Trace Plot of coefficients fit by Lasso
df
14- 2 130 185202 219 231 243 248 253258 266

1.2r

0.81
0.6
0.4

0.2r

0 5 10 15 20 25 30 35 40

Figure 1: Lasso path for the first community indicators estimates

Figure 2 represents the coefficients Lasso path in the estimation of the community
indicators. The graph has five communities, of size between 20 and 50, that have been
perturbed with a value of p equal to 0.2. Here again, we retrieve this particular behaviour
of the estimated coefficients. Of course this splitting vanished as p increases.

11



Nb Group=5, p=0.1, Size=12 12 13 17 18,lter=1
df Trace Plot of coefficients fit by Lasso

2 14 28 33 39 48 51 54 58 64 67 df
311 13 19 25 38 55 636465 66

First vector Second vector

Trace Plot of coefficients fit by Lasso
o Trace Plot of coefficients fit by Lasso

5 13 30 3539 53 58 60 65 6658 df

5 19 27 3947 53 59 62 63 67 69

0 2 4 6 8 10 12 14 16 18 - 0 5 10 15 20
L1 L1

Third vector Fourth vector

Figure 2: Mlustration of the Lasso path for the four community indicators estimates

This peculiar behaviour can be explained by the fact that the ideal target parameter
has coefficients equal to zero or one and does not take continuous values. In addition, the
fact that one of the coefficients in the true community is already equal to one forces the
other coefficients in the same community to be close to one too, under small perturbations.
So that we can hope to discriminate the membership of the nodes by keeping an equality
constraint and then hardly thresholding the coefficients with respect to one-half.

Finally, the first community indicators 1¢, is estimated as follows.

1. Compute
0 € argmin || v || .

'uieanfl
Wo=—w

2. Compute 91 = (1,).

For the other vectors ((0;)2<i<k), we add the constraint of being orthogonal to the
previous computed vectors and we do the same to estimate the other community indicators.
Then, for all ¢ =1, ..., k, 1¢, is estimated by 1¢, where

. 1if (%), >3 o), #1, 1=1,..,i—1
(]-C',) — 1 (’U )j >3 and (,Lil‘)] 7é 17 ! y ey
J 0 if (0:); < 3

4.4 Algorithm

We detail below the algorithm we suggest to use to cluster nodes of a graph into k
communities. This algorithm can be easily implemented using R or Matlab and is called
the [1-spectral clustering algorithm. The [;-spectral clustering method sequentially build

12



Algorithm 1 [i-spectral clustering algorithm

INPUT Adjacency matrix A of the observed graph G = (E, V), number of communities
k and the community representatives ci, ..., cg .

F=].

Fori=1,..k

Step 1: Consider ¢; the edge representative associated to the i-th community.

Step 2: Compute the eigendecomposition [U, D] of A i.e. A= UD'U.

Step 3: Sort the eigenvalues of A in increasing order and do the same for the associated
eigenvectors.

Step 4: Compute the matrix R that contains the eigenvectors associated to the n—k—+i+1
smallest eigenvalues

Step 5: Compute V =! R.

Step 6: Compute W = V=% and w = V% (where w = V% is the cﬁh column of V' and
V¢ is the V matrix where we have removed the c/" column).

Step 7: Compute the solution s’ of the following problem

min || u | .
ueRn—1

Wu=—w

(using for instance the 11eq Matlab function).

Step 8: Form the solution f; = [s} sé...siﬁl 1 st ..sh].
Step 9: Compute F' = [F'f;] and deflate A with f;.
End For.

Step 10: Do

Fj=1 if Fjy>1/2and Fy#1,1=1,..,i—1
Fij:O Zf Fz’j<1/2

OUTPUT £k vectors v!, ..., v* that are the columns of F (v; = 1 means that the edge j
belongs to community ).

13



k vectors representing the k& community indicators. Algorithm 1 details the main steps of
the procedure.

In algorithm 1, we can replace A by D~'A and the singular value decomposition of A
by the computation of the generalized eigenelements of D! A.

Remarks:

1. One of the advantage of this algorithm is that it is computationally feasible, even
for large graphs, thanks to efficient algorithms that solve /; minimization problems.

2. In practice, we may just hope to have at hand a representative for each of the k com-
munities. However, we do not know which one belongs to the smallest community.
If the number of community is not too large, we can still proceed as described above
by reviewing the k possible choices and choosing the one for which the objective
function is minimal. This requires k! more step but if k£ is small this is not very
time-consuming.

5 Frobenius norm of the perturbation

To sum up, finding communities in the ideal case turns out to be equivalent to solve

‘min_ || 7 | (P)
ve]R”‘l
Wioi=—w

After perturbation, the community indicators are estimated by solving

min, 1. (P)

seRn—1

Wi=—w
The objective function still remains the same. Only the constraints space has been per-
turbed. Let E = A — A be the perturbation applied to the initial adjacency matrix. A
natural question is under which conditions on E (and thus on the parameter p of the
Bernoulli matrix that represents the noise) can we expect that the solution of Problem
(P) remains closed to the one of Problem (P) and what is the rate of convergence? A noise
perturbation on A implies a perturbation on U and thereby on W and w (since all these
objects depend on the eigenvalues of U). If a small level of noise on A leads to a small
perturbation of the eigenvectors of the associated normalized adjacency matrix then there
is a hope to recover the community structure. So the main issue is what is the stability of
the eigenvectors to matrix perturbations? Matrix perturbation theory [SSJ90] indicates
that it essentially depends on the Frobenius norm of E and on the eigengap. This is the
Davis-Kahan theorem stated below.

Theorem 5.1. [SSJ90] Let A, E € M,,(R) be symmetric matrices and let || . |r be the
Frobenius norm. Consider A :== A+ E as a perturbed version of A. Let S; C R. be an
interval. Denote by og, (A) the set of eigenvalues of A which are contained in Si, and by
V1 the eigenspace corresponding to all those eigenvalues. Denote by 051([1) and by Vi the
analogous quantities for A. Define the distance between Sy and the spectrum of A outside
of S1 as
0 =min{| A —s|; A eigenvalue of A,A\¢& Sy, s € S1}.

Then the distance d(Vl,Vl) =|| sin©(V1, 171) || between the two subspaces Vi and Vi is

bounded by
~ E

Here after, we assume without loss of generality that each node in the observed graph
has a degree larger than one.
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5.1 Expression of the error term

We recall that A;; = 0 and A;j,¢ # j is defined by

. 1-By; if (7)€ |J T~
Aij = Az‘j + Bij (mod 2) = 1<I<k
B;; otherwise

Therefore, the degree matrix of Ais given by
D; = diag (df, d2>

where, for all [ =1, ...,k and ¢ € M,

d?zzgij: Z(l_Bij)+ Z B;j =d; — Z Bij + Z Bij.
j=1

JEMy JEMS JeMy JEMF
i i#i

Proposition 5.2. A=A+ F where E € M, (R) is given by
—Bi; if (hi)e |J du”

Eij = Aij + Bl'j (mod 2) = 1<I<k
B;; otherwise

when © # § and Ey; = 0.
Proposition below provides an expression of the difference between (D A)_IA and

A
(D4)~' A in terms of the elements of A and B.

-1

Proposition 5.3. (D;) A= (D4) ' A+ E where the entries of E € M, (R) are given

by
1 e P _ o
. —m le%-Bij if (4,j)edn ,1<I<kji#j
ij = éij
S ) ,7) € Tim, L <Il#Fm<k
d;le_'_dl f ( .7) Im 7&
E; =0
where
n
Odlizd?: Aij,’iGMl.
=1
AR LTI SRR SN
je.;v_ll ]E./\/l}2 j‘:f:\&/_ll
JF JF

n
o df = "By
j=1

J#i

Proof. See Subsection 5.3.
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5.2 Frobenius norm of the error

Proposition 5.6 and Proposition 5.4 below gives the expression of the Frobenius norm
of the unormalized and normalized adjacency matrix.

Proposition 5.4. The Frobenius norm of E, that satisfies A=A+ E, is equal to

| E 3= ZBU—2ZZBU

=1 5>
J#z

This proposition is a straightforward consequence of the definition of B and of the fact
that BEJ = Bij and Bz‘j = Bji.

Corollary 5.5.
E[l| E|}] =n(n—1)p

E [d (ukuk)} cnn=bp

51

and

where we recall that s1 is the size of the smallest community.

In particular, if all the communities are of equal size, we get
E [d (ukuk)} < (n— 1)kp.

If the number of nodes is assumed to be fixed, we easily see that the distance between U
and U}, will tend to zero as p goes to zero.

Proposition 5.6. The Frobenius norm of E, that satisfies (Dg)f1 A= (DA)_1 A+ FE, is
equal to

IS i +d) Zdl > & (Hdg)_la

=1 ieM, €M,

where we recall that

o dii=df! =) Aij ,ie M

j=1
odA dAA ZBij-i‘ZBij:dzB_2ZBij'
e JEMg jemy
i i

n
B =3 "B

Another expression of the Frobenius norm only in terms of (Bij)1<i7éj<n s given by

By
E J
I £ 7= Z Z Z 2osea (1= Bij) + 2 jepmy Big

’LGMZ Jj= 1
J#

16



B
Because, it is not possible to exactly compute the expectation of the ratio L

dd +d,
we just provide an approximation of the expectation. Let R and S be two discrete Z1"andom
variables where S has no mass at 0. Using a Taylor expansion of f : (z,y) — %, we have

R E(R
E (S) R EES) (first order)

and

E <R> _ER  Cov(R,S) N Var(S)ER (second order).

S) T ES  E2S E3S
We apply this result with R = d? and S = df‘g + dj.

Corollary 5.7. In a first order approximation, we have

k
(n—1)p
E irst order
ENE I~ Y G g+ o=mp U )
and
E {d (Uk Ukﬂ L ! Z (n = 1p (first order)
’ ~ didi(1—2p) +(n—1)p

where we recall that sy, is the size of the largest community.
In particular, if all the communities are of equal size, we get

) 20y — ’
E [d <L{k,Z/{k)} s e k)(fli (Zp) _:2” . (first order).

These results provide a first understanding of what theoretical results could be expected
for the [1-spectral clustering method and how the level of noise p impacts on the eigenspace
associated to the community indicators.

5.3 Proof
5.3.1 Proof of Proposition 5.3

Proof. We have
(Di)” A=(Da+Da)™ (A+ A,
where A. = A — A and
e A, := A — A. The entries of this matrix are equal to 1 when an edge is added and
to —1 when an edge is removed. The other entries are 0. In other words,

-By; if(i,5) e |J

(Ae)y; = Aij — Aij = 1<I<k
B;j otherwise
® Dy, := Dj — Da. This matrix is diagonal and its non zero entries denoted by

<d§45>1<‘< represent the difference of degree between the observed and the ideal
<i<n

graph, for each of the n vertices. We have, for all [ € {1,...,k} and i € M,

d?s = — Z Bz]“’ Z Bzg

JEM, JEMF
J#L
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To simplify the notations, let F:= (D + Da.)"  and C = D' — (Da+ Da.)~!. We
have
~1; -1
D'A=D'A+E,
where

E:=FA, — CA.

F' is a diagonal matrix and its entries are equal to

1
Poi= F,,:i’
f’L 2 d?s_i_dl

foralll=1,...,k and i € M.

Then, computing the inverse of the diagonal matrices Dy + D 4_ and Dy, we deduce
that C

is also a diagonal matrix whose entries (¢;)1<i<n are equal to

a1
Ci = A )
dl di 4+ dl
foralll=1,...,k and i € M.
Thus, on the one hand,
B’Lj . . . p—
T A lf(Z,])Ej,lSlSk
(FAa)ij = dj}‘—i_dl e . .
and
(FA:)y =0.
On the other hand, C'A is a block diagonal matrix and its entries are defined by
d?s 1 e . —
(CA)yj =< & df+d, (0 j) €Ty, 1=l
0 if(i,)) € Timy 1 <1#m <k
and
(CA); =0.
To conclude, for i # j
1 e e
———— |+ By if(i,j) e ;,1 <1<k
E;; = di*+ dlB..
Y if (1,7) € Tpm, 1 <1 #m <k
i +dy

and it is straightforward to see that
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5.3.2 Proof of Proposition 5.6

Proof.
1E o= E?
i=1 j=1

1 k 1 dA

= > > ﬁ(Bij)QJrZ A<d

1<i#m<k (i,5) €Tim (d‘ °+ d) =1 (i.5)eg; (d- c+d ) !

k

=ZZA zZZzﬂ- 2 (B
I=11ieM, (d + dz) m= 1 JEMpm, I=1ieM; (d + dl) JGMZ

On the one hand,

k k
ZZ D @%ZZ > (B
I=1ieM, (d + dl) 1’;2 JEMpm, =1 (d + dl) JE;V[Z
k 1 k
=3 > >0 D B+ Y (By)
1=1 ieM; (dZA +dl) 2;} JEMm j;ﬂéfl}z

% [ Z (Bij)2
) Ley

eUk _y M \{i}

On the other hand,

2
Sey ot (d) rr W
= 2
=1 ieM, JG;’IZ (di + dl> di =1 ieM; (d? + dl) i
using that Z 1=d
jeEM;
i
and i
1 i
> 2-_B;
A 2 d
I=1 JEM; iEM,; (di +dl>
Ji#
k 1 (df‘5>2 k 1 JAe
:_Z'Z R +> " 0 ZBU
=1 ieM, (d + dl) =1 ieM, (dz + dl> ;;1
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based on the fact that

2 )" By _ZB” —df.
JjeEMy
J#i 1751

To conclude

I E[lr= Z Yoo |2 By

=1 ieM, (d + dl) j=1

J#i
i L (a) g L (e
+ Z A 2 dl - Z Z A 2 dl
I=1 ieM; (di °+ dl) I=1 ieM; (di ° 4 dz)
b 1 de g

k n k
=>. >, 72 d (B +> Z 72 y ZBM
=1 ieM; (d + dl) =t =1 (d +d ) ! =t

zka — zn:Bij <1+dzs>

I=1ieM; (dAE + dl) J=1
J#i

because Bjj € {0,1} so BY; = By and thus Y 1 B, = Y '—1 Bij,
i i#i

7

N dy
ZZ (A l)dl

6 Test of the new algorithm on simulated data

In Section 4, we have introduced a new algorithm (called /1-spectral clustering) that
aims at detecting community structures in complex graphs. This algorithm use spectral
vector partitioning techniques to classify nodes. To illustrate the performances of the
l1-spectral clustering, we simulate random undirected graphs generated from the model
presented in Section 3 to then apply the algorithm of Subsection 4.4.

Using Matlab, we first generate random graphs with an exact group structure. We
choose different number of blocks and different sizes for the blocks. Then, we add a noise
on the associated adjacency matrices. Once the matrix is disturbed, we have no block
structure anymore. To recover this underlying block structure, we apply the [i-spectral
clustering algorithm. We refer to Figure 3 for a summary of these different steps.
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Figure 3: Recovery of the block structure

Figure 4 below gives an example of the distribution of the different eigenvectors that
are involved in spectral clustering methods for a graph with nine communities, whose
sizes have been randomly chosen between 20 and 50 and for a value of the perturbation
equal to p = 0.2. Subfigure a) represents the histogram of the community indicators, b)
the histogram of the eigenvectors as given by the Matlab eigensolver (these eigenvectors
are the ones used to cluster the data in the traditional spectral clustering method), c)
the histogram of the estimated community indicators using l1-spectral clustering, d) same
thing but applying the traditional spectral clustering method with k-means. In this specific
case, the [; estimated eigenvectors exactly fit the true ones, whereas k-means makes a few
mistakes.
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Figure 4: Histogram of a) the true community indicators, b) the eigenvectors given by
SVD b) the estimated ones by I; spectral clustering, c) the estimated ones by k-means

Then, we test the robustness to perturbations and the performance of the algorithm.
To do so, we consider different values of p. p represents the level of noise that has been
discretized between 0 and 0.5. For each fixed value of p, we simulate 100 Monte-Carlo
replicates of the random model. We apply the [1-spectral clustering algorithm to cluster the
nodes. Then, we evaluate the performances of the algorithm by computing the percentage
of misassigned nodes in average defined as 155 231‘201 | {i € V:7(i) # 75(¢)} |, where 7 is
the block membership function and 7; is the estimated membership function for the j-th
model. The obtained results have been plotted in Figure 5 and in Figure 6.
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Figure 5: Fraction of nodes correctly classified using [ spectral clustering, as the level of
noise varies in random generated graphs of the type described above. Size of the groups
between 20 and 30. Number of groups between 10 and 20.
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Figure 6: Fraction of nodes correctly classified using [ spectral clustering, as the level of
noise varies in random generated graphs of the type described above. Size of the groups
between 50 and 100. Number of groups between 20 and 30.

The results are good and the algorithm seems to work well on simulated data for
small perturbations. The rate of exact assignment is equal or very close to one for small
perturbations. In addition, thank to the I; norm this algorithm is very fast, even for a
large number of nodes, when the number of communities is small. These results should be
investigated further to better understand the advantages but also the drawbacks induced
by this method. It would be of interest to see if it could be possible to set phase transition
phenomena for this model, in the same vein as the ones stated by [DKMZ11], [MNS12,
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MNS13, MNS14],[ABH14], [AS15] for the stochastic block model when the number of
nodes tends to infinity.

7 Conclusion

We have introduced a random graph model that is closely related to a stochastic block
model. The observed graph is assumed to result from a deterministic graph with an exact
community structure, whose edges have been perturbed by Bernoulli variables. We have
characterized the indicators of the communities in the ideal graph as the ones that have
the minimal /;-norm with respect to a specific restricted space. We have presented a
variant of the spectral clustering algorithm where the vectors used to partitionned the
graph are a kind of denoised version. The main advantages of this method is that the
objective function is clear, simple and easy to implement even for very large graphs and
this procedure seems to work well on simulated data. We have investigated some of the
properties of the noise matrix and we have studied the performances of this method on
simulated data. However, the main limitation is that it requires the knowledge of one
representative for each of the communities.
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