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Abstract

In this paper, we extend the critical approach of Boyer-Kassem et al. (Boyer-Kassem,

Thomas, Duchêne, Sbastien, Guerci Eric (2016), “Testing quantum-like models of

judgment for question order effect”, Mathematical Social Sciences 80: 33-46.) to

degenerate quantum models.
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1 Introduction

Question order experiments (as reported in [1–3] for example) have called for non-classical

probabilistic interpretative models. Many quantum-like models have appeared to account

for such experiments and other paradoxical cognitive behavior such as conjunction falla-

cies, violation of the sure-thing principle, asymmetries in similarity, (see [4,5] for two re-

cent reviews). However, in a recent convincing study, Boyer-Kassem et al. [6] have shown

how question order experiments provide constraints that rule out all non-degenerate

quantum-like models of judgement. In this paper, we extend this critical approach to

degenerate quantum models.

2 Quantum formalism for cognitive studies on human judgement

The mathematical formalism of traditional quantum mechanics has been advocated as

an effective phenomenological model of human judgement. In this context, the Hilbert

space of quantum mechanics represents the set of an individual’s states of belief. The

algebra of observables is the set of questions that can be asked, and the outcome of a

measurement is the answer given to such a question.

Let us consider a finite Hilbert space, H, of dimension N , as large as necessary, and call

it the “belief space”. Let A and B be two “yes and no” questions, that is to say, they

are Hermitian operators acting on H, having at most two eigenspaces corresponding

to distinct eigenvalues. Let us denote by EA, (respectively EB), the eigenspace of A,

(respectively B), corresponding to the answer “yes” for example, and nA, (respectively

nB), its dimension, (both dimensions are supposed to be non zero: nA, nB > 0). We

have H = EA ⊕ E⊥A = EB ⊕ E⊥B , where E⊥I denotes the orthogonal complement of EI ,

of dimension (N − nI). Let us assume without loss of generality that nA ≥ nB. It is

well-known that one can find by bi-orthogonalization, an orthonormal basis set of EA,
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(ai)i∈{1,···,nA} and an orthonormal basis set of EB, (bi)i∈{1,···,nB} such that,

∀i ∈ {1, · · · , nA}, ∀j ∈ {1, · · · , nB} 〈ai|bj〉 = δi,jcosθj (1)

where δi,j is the Krönecker symbol, and the θj’s are the Araki’s angles [7,8]. These

two basis sets can be completed by basis sets of their ortho-complements denoted by

(ai)i∈{nA+1,···,N} and (bi)i∈{nB+1,···,N} to build two basis sets of the whole belief space.

3 Reciprocity constraints

Let |ψ〉 ∈ H be a state of belief. It can be expressed in two different manners according

to the chosen basis set:

|ψ〉 =
∑

i∈{1,···,N}
αi|ai〉 =

∑
i∈{1,···,N}

βi|bi〉 (2)

the coefficients αi’s and βi’s being complex numbers. We will assume that the belief state

is normalized,

〈ψ|ψ〉 =
∑

i∈{1,···,N}
|αi|2 =

∑
i∈{1,···,N}

|βi|2 = 1. (3)

According to the rules of traditional quantum theory and the measurement postulate,

the probability to obtain the answer “yes” to question A will be, in self-explanatory

notation,

p(Ay) =
∑

i∈{1,···,nA}
〈ψ|ai〉〈ai|ψ〉 =

∑
i∈{1,···,nA}

|αi|2, (4)

the belief state being projected onto

|ψAy〉 =
1√ ∑

k∈{1,···,nA}
|αk|2

∑
i∈{1,···,nA}

αi|ai〉, (5)
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(where the prefactor in front of the sum is just a normalization factor), and the proba-

bility to obtain “no” to A is,

p(An) =
∑

i∈{nA+1,···,N}
〈ψ|ai〉〈ai|ψ〉 =

∑
i∈{nA+1,···,N}

|αi|2, (6)

the state of belief becoming

|ψAn〉 =
1√ ∑

k∈{nA+1,···,N}
|αk|2

∑
i∈{nA+1,···,N}

αi|ai〉, (7)

after the answer is given.

Similarly for question B we have,

p(By) =
∑

i∈{1,···,nB}
〈ψ|bi〉〈bi|ψ〉 =

∑
i∈{1,···,nB}

|βi|2, (8)

|ψBy〉 =
1√ ∑

k∈{1,···,nB}
|βk|2

∑
i∈{1,···,nB}

βi|bi〉, (9)

p(Bn) =
∑

i∈{nB+1,···,N}
〈ψ|bi〉〈bi|ψ〉 =

∑
i∈{nB+1,···,N}

|βi|2, (10)

|ψBn〉 =
1√ ∑

k∈{nB+1,···,N}
|βk|2

∑
i∈{nB+1,···,N}

βi|bi〉. (11)

Now, the probability of obtaining the answer “yes” to B knowing that the answer to A

was “yes” can be easily derived by substituting |ψAy〉 to |ψ〉 into Eq.(8):

p(By|Ay) =
1∑

k∈{1,···,nA}
|αk|2

∑
j∈{1,···,nB}

∑
i∈{1,···,nA}

|αi|2〈ai|bj〉〈bj|ai〉

=
1∑

k∈{1,···,nA}
|αk|2

∑
j∈{1,···,nB}

∑
i∈{1,···,nA}

|αi|2δi,jcos2θj

=
1∑

k∈{1,···,nA}
|αk|2

∑
j∈{1,···,nB}

|αj|2cos2θj. (12)

Similarly, the probability of obtaining the answer “yes” to A knowing that the answer

to B was “yes” is
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p(By|Ay) =
1∑

k∈{1,···,nB}
|βk|2

∑
j∈{1,···,nB}

|βj|2cos2θj. (13)

When nA = nB = 1 as in the non degenrate case investigated in [6], the latter two expres-

sions reduce to p(By|Ay) = 1
|α1|2 |α1|2cos2θ1 = cos2θ1 and p(Ay|By) = 1

|β1|2 |β1|
2cos2θ1 =

cos2θ1, so we retrieve the reciprocity relation,

p(Ay|By) = p(By|Ay), (14)

the three other reciprocity relations of [6], could be obtained in a analogous fashion by

permuting the parts played by A and B on the one hand, and “yes” and “no” on the

other hand, provided that N −nA = N −nB = 1. Note, however, that, Eq.(14) does not

depend upon N to hold.

To extend the reciprocity relations to the degenerate case, there is no loss of generality

in limiting the study to Eqs.(12) and (13), because here A and B, and “yes” and “no”

are just pairs of interchangeable abstract symbols. Unfortunately, it is clear that as soon

as nA > 1 with nB = 1, or as soon as nB > 1, the reciprocity relation (14) does not

have to be satisfied. Except for very particular cases, it is easy to find a belief state,

|ψ〉, such that relation (14) is not verified. In the case nA > 1, nB = 1 and θ1 6= 0,

one can just take α2 6= 0, and when nB > 1 it suffices to choose two questions A

and B such that all the Araki’s angles except θ1 are equal to π
2

to be in the same

situation as in the previous case. However, there is a particular case of degenerate model

where the reciprocity relation (14) is true. This is when all Araki’s angles are zero,

∀i, θi = 0, which means that the belief subspaces EA and EB are orthogonal. In such a

case, answering “yes” to A implies answering “no” to B, so p(By|Ay) = p(By|Bn) = 0,

and symmetrically p(Ay|By) = p(Ay|An) = 0. This particular case is not relevant to the

experiments reported in [1–3] and re-analysed in [6].
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4 More constraints

Other constraints can easily rule out all degenerate and non-degenerate quantum mod-

els alike. It is arguably not worth performing a real experiment to convince oneself that

asking again question A or question B to a reasonable human being immediately after

both questions have been asked in whatever order A then B or B than A, will produce

the answer already given the first time (unless question A or B is something like: tell

me randomly either ”yes“ or ”no”?). So one expects for example that p(By|(Ay|By)) =

p(By|(By|Ay)) = 1, or equivalently, p(Bn|(Ay|By)) = p(Bn|(By|Ay)) = 1. However, some

of these equalities will be wrong in general in the quantum formalism we have intro-

duced. We will have p(By|(By|Ay)) = 1 but not p(By|(Ay|By)) = 1 if A and B are

non-commuting operators.

For a quantum-like formalism to make sense, this sort of chain of questions has to be

avoided. In the similar way as only a Jordan subalgebra of the algebra of observables is

relevant in quantum physics, only question products made of all-distinct factors should

be considered as relevant in the modelling of human judgement, i.e. the “algebra of ques-

tions” should be restricted to a set of “words” (in the mathematical sense) that can be

written with letters occuring at most once in their expression. The product law should

be modified to cancel any word with repeated letters i.e. it should associate the “null

question” to it.

The most challenging task in our opinion, is not to choose between degenerate or non-

degenerate eigenspaces for question operators, but to define a meaningful structure for a

subset of the “algebra of questions”, which should be compatible with logical operations

in some broaden sense. “Broaden” because for example the logical “and” cannot be

related to successive question-answer events, since it is symmetrical in its arguments,

whereas A then B and B then A are not, as found in question order experiments. What

meaning could be granted to the product and the sum of two non-commuting question
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operators or to the multiplication of one such operator by a scalar, are still a priori open

problems.
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[8] P. Cassam-Chenäı, G.S. Chandler, “Spin-unrestricted calculations in quantum chemistry,

International Journal of Quantum Chemistry”, Int. J. Quantum Chem. 46, 593-607 (1993).

7


