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ABSTRACT. For non destructive stress evaluation in prestressed concrete, we describe in this
paper a promising ultrasonic method. In “ordinary” isotropic homogeneous materials such
as steel, ultrasonic determination of third order elastic constants provides means for stress
evaluation since half a century. In case of concrete, example of a class of materials that
exhibit strong multiple scattering as well as significant elastic nonlinear response, accurate
velocity monitoring is challenging. In this paper, we purpose a novel method originally from
geophysics. So called “coda wave interferometry” (CWI), this technique is transposed to
concrete. We show that intense scattering can be applied to robustly determine velocity
changes and so, nonlinear elastic constants. In addition, we show how this method could be
transposed in case of in situ measurements in concrete structures and outline future possible
applications.

RESUME. Nous présentons dans cet article une méthode prometteuse d’évaluation de la
précontrainte dans les structures en béton. Pour les milieux homogenes isotropes, les
constantes élastiques du troisieme ordre sont connues et étudiées depuis une cinquantaine
d’années. Le béton est un milieu tres fortement diffusant et dont le comportement mécanique
est fortement non linéaire. Les mesures de vitesses sont souvent obtenues avec une résolution
inférieure a 1 %. Dans cet article, nous proposons une méthode, « Coda Wave
Interferometry » (CWI), issue de la géophysique et transposée ici au cas du béton. Nous
montrons que la diffusion multiple peut étre mise a profit pour déterminer de tres faibles
variations relatives de vitesses et donc, les constantes élastiques non linéaires. Nous
montrons de plus que cette méthode peut étre transposée in situ dans le cadre du suivi de
[’état de santé des ouvrages d’arts en béton précontraint.
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1. Introduction

Acoustoelastic-derived nonlinear properties of isotropic, homogeneous materials
have been intensely studied for at least half a century. For instance, Hughes and
Kelly (1953) derived expressions for the speeds of elastic waves in a stressed solid
using Murnaghan’s theory of finite deformations and third-order terms in the strain-
energy expression (Murnaghan, 1951). In complex materials, determining the third
order constants accurately can be challenging, due to significant intrinsic dissipation,
as well as heterogeneity leading to strong wave scattering. Most Earth materials fall
into this class, and an extreme example is concrete. It is highly complex both
chemically and mechanically, is both porous and permeable, heterogeneous and
highly elastically nonlinear. In typical laboratory acoustic measurements,
frequencies range from 200 kHz to 1 MHz in concrete. Associated wavelengths and
typical aggregate sizes are equivalent, leading to strong multiple scattering
(Anugonda et al., 2001) into the stochastic regime. In this paper, we make use of the
information carried by the waveform coda generated by multiple scattering, to
obtain velocity. Applying successively larger stresses in combination with coda
interferometry provides the means to evaluate velocity as a function of pressure and
thereby extract the third order nonlinear coefficients.

The study of multiple scattering in the earth (termed “coda” originally by Aki
(1956)), has been of interest to the geoscience community for at least 50 years (Aki,
1969), for applications ranging from earthquake source localization, to location of
petroleum reservoirs and to monitoring volcanic activity. The first method developed
for monitoring velocity variations employing coda, termed “doublets” (referring to
successive, nearly identical signals from the same Earthquake source) was proposed
by Poupinet (Poupinet et al., 1984). The method was refined in laboratory studies by
development of the addition of monitoring changes in attenuation and applying an
active source by Roberts et al. (1992), where it was termed the “active doublet
method”. More recently developments have been aimed at detecting small changes in
scattering locations due to modifications in Earth’s crust, including velocity changes
induced by thermal stress or stress accumulation in the crust, and source location
(earthquake localization). This more recent version of the method has been broadly
termed “coda wave interferometry” (Snieder et al., 2002).

The purpose of this paper is to describe the development of coda wave
interferometry in conjunction with incremental changes in applied stress to a
specimen for determining the third order elastic constants of concrete, a method that
can be applied to any solid, but is particularly appropriate for complex solids. This is
accomplished by applying the coda interferometry as applied stress is step-wise
increased. The essence of the method is to extract velocity and/or attenuation change
between two time signals by analyzing waveform coda changes. This is
accomplished by time-window, cross-correlation between signals. By inverting
results from all pressure steps the Murnahagan coefficients are calculated. Recently
a similar approach was applied to monitor thermally induced velocity variations in a



solid (Larose et al., 2006), as well as observations of velocity changes in a sample of
Berea sandstone (Grét et al., 2006). In the following section we define the
Murnaghan coefficients. We then describe details of how the coda interferometry
method is implemented. This is followed by a description of the experimental
procedure, analysis and results.

2. Acousto-elasticity theory

In case of uniaxial loading, the strain-induced velocity variations in an initially
1sotropic medium provides quantitative values of the Murnaghan constants /, m, & n.
Considering the loading direction as 1 (see Figure 2), the Murnaghan’s third order
elastic constants are obtained by a first order approximation assuming small changes
in velocities (Egle and Bray, 1976),
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where A and u are the second order Lame constants, v is Poisson’s ratio, ¢ the strain
in the 1 direction, V; the speed of a wave propagating in the i direction polarized in
the j direction and the 0 indicies designate the wave speed in unstrained state. By
measuring the Lame elastic constants, Equation [1] gives us five equations for three
unknowns (/, m, n). Using V,;, V5, V,; one may invert for the full set of third order
elastic constants, by solving the linear system of equations (Equations [1]-[5]) re-
written (Egle and Bray, 1976),
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where the acoustoelastic constants Z; are defined as dV;/V;’= L,de. We will use
these relations after describing the coda interferometry method.

3. Coda wave interferometry

In the coda interferometry method, velocity changes are determined by cross-
correlating piecewise two waveforms, following a change in the material, creating
the correlation function. If no change has occurred the correlation produces a
sequence of autocorrelation functions. In experiment, stress is applied sequentially
stepwise, O, Oy ..., 0,. The waveform corresponding to o; is w;(?). The time
windowed intercorrelation function is defined as:
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where 27 is the length of the time window and #,, is the centre position. The position
of the maximum indicates the mean of the time lag <dt,(t,,T)> between s, and s; and
in each time window (Figure 1).

The time ¢ spent by the wave into the multiple scattering medium following the
path P in the unstressed state can be written:

t:ILdS [10]
PV

The stress induced perturbation time d#; and velocity dV; are linked to the first
order in the velocity perturbation by,
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Following Equation [1]-[5], the relative velocity variation is a constant for each
stress step s;. Using Equation [9],
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Assuming the time window 1is centred at ¢,>>7, we can write
7;= <dtj4wp > =dt;. The velocity variation in each time window of the ith
waveform is obtained then by:

dVv, T,
=——L [13]

Figure 1. Typical analysis of coda waves. (a) recorded signal. (b) First arrival
(ballistic wave) and (c) portion of coda. Solid line unstressed state. Dashed line:
stressed state. (d) Cross-correlation function and extraction of the time lag



This expression is valid for any direction considered while the wave path is not
modified. An advantage of this approach is that we do not require a velocity
reference in the unstrained state. In addition, we do not need any distance
measurement.

4. Experiments

Our study is performed on a cylindrical concrete sample 160 mm long by 75 mm
in diameter. The composition is given in Table 1. Strain gages were attached to the
sample in order to monitor the strain in the / direction. Study of identical samples
yielded a Young’s modulus of 42.39 GPa, an ultimate strength of 76.6 MPa and a
Poisson’s ratio of 0.21. The loading protocol is determined so as to not exceed 30%
of the ultimate strength in order to remain in the elastic regime (Hsu, 1984).

Table 1. Concrete sample’s composition

Composition Proportion (kg.m™)
Cement CPA CEM1 52.5 415
Water 187
Adjuvant 4,1
Sand 0/4 mm 865
Aggregates 4/10 mm 355
Aggregates 10/16 mm 710
(a) | Load (b)
Sprin
ikl iz (MpR]
__________ — ‘ ]
Specimen ——» r“ #1.]
-12.7
il 160 mm
-6.13
3 _ :
AN LN
Receiver — BE | ¥

Figure 2. (a) Sample configuration. (b) Stress field (o;;) in the sample obtained
by finite element analysis



A hydraulic press (MTS 318.25) was programmed applying six stress steps from
0 to 13 MPa. Ultrasonic transducers 25 mm in diameter (Sonaxis CMP36, and
Panametrics V151 central frequency 500 kHz) were attached to the sample center at
each end using ultrasonic coupling gel, and maintained in position applying constant
force, using springs located in holders as shown in Figure 2a. The transducers were
driven by a high voltage system (Panametrics 5058PR). The load cell forms an
annulus around the transducers (Figure 3a). As a result the stress field in the /
direction is not homogeneous along the / axis of the sample (Figure 3b). Using V;,
V3, V>3 in the region where stress is homogeneous (sample center) one may invert
for the full set of third order elastic constants (Egle and Bray, 1976), by solving the
linear system of equations (Equation [1]-[5]). Measurements of V;;, and V;, were
also performed. In order to illustrate the method we present the results of the
compressional wave velocity change V. The method is identical for the other
directions.
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Figure 3. Result of coda wave interferometry. Solid lines are the mean values
Odegg/ Vgg

Much empirical evidence (Snieder et al., 2002; Grét, Snieder and Scales, 2006)
suggests that computing the cross-correlation function (Equation [9]) using 10 signal
periods is optimal. In order to satisfy the assumption ¢ >> 7, we begin the coda
analysis at t = 10 T (¢ = 0.1 ms while compressional-mode time of flight is 14 ps)
and continue to the end of the signal (r = 0.26 ms). In this manner the relative



velocity variation is computed for 8 non-overlapping windows for each stress step.
Example from the six stress steps are shown in Figure 3.

We observe that the relative velocity variation dV,,/V>, is a constant for each
stress step but increases with stress as it should. The relative uncertainty decreases
with increasing stress (from 9% to 2.3). The data scatter is the same for each stress
state. That implies that the waves follow the same path for each stress state.

Note that the analysis is limited to 0.26 ms. Data scatter increases in the later
coda due to the fact that in late time, the high stress regions at the sample ends
become important contributors (see Figure 3).
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Figure 4. The velocity derivative versus quasisatic strain used for inversion of the third
order constant (see Table 1). R’ is the determination coefficient

The fits of dV/V>; as a function of the measured strain for each applied stress for
the 2 direction are given in Figure 4. The slopes of the fits are the acoustoelastic
constants L; used for calculation of /, m & n from Equation [6]-[8]. The associated
third order constants are shown in Table 2. Values for granite and sandstone samples
obtained from the literature are shown for comparison. As in less complex materials
such as steel or aluminium, we observe that the most sensitive waves to stress are
those which have particle displacement in the 1 direction, i.e. V,; and V;;. But, in
contrast to these materials, the velocity increases in all directions with stress.

The local phase velocity of a sinusoidal compressional wave propagating in a
one-dimensional nonlinear medium can be written to first order as



Vie) = V(0)(I + Pe), where f is the nonlinear acoustic parameter (Hamilton, 1986).
can be written as a combination of Murnaghan’s and Lame’s elastics coefficients,
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Thus the nonlinear behaviour is not characterized by the absolute values of /, m
and n, but by the ratio of second and third order elastic constants. The extension to
beta is known in the literature (Hamilton, 1986 or Johnson, 1996). In addition, the
fact that the velocities increase with this kind of loading, make 1, m, and n negative,
so beta negative too. The large, negatives values are similar to those found in rock
(Johnson and Rasolofosaon, 1996) and are more than two orders of magnitude
greater than an ordinary nonlinear material such as steel (Egle and Bray, 1976). Note
the sign of § means that as wave amplitude increases, local phase velocity decreases.

Table 2. Concrete sample’s third order elastic constants and nonlinear acoustic

parameter in comparison with some values from rocks found in literature (Johnson
et al., 1996)

[ (Gpa) m (Gpa) n (Gpa) p
Granite -3371 -6742 -6600 -441
Sandstone -97800 -99400 -84900 -9600
Concrete sample -3007+ 2.8% -2283+1.2% -1813+3.4% -157£1.9%

There are very few measurements of the third order constants of complex
materials in the literature (Johnson and Rasolofosaon, 1996; Rasolofosaon et al.,
1997; Winkler and Liu, 1997), and none to our knowledge, in concrete and cement
based materials, meaning these values are the first reported for these materials.

We note that the reported values come from a combination of both static and
dynamic measurements. The third order constants are computed from the relative
velocities variations (dynamic) while the second order Lame constants are obtained
from quasi-static measurements. It is well known that static and dynamic values of
elastic constants of concrete differ significantly from each other, but this study show
the potentialities of applying CWI for third order elastic constants evalutation.

5. Discussion

The fact that the velocity is constant over the entire signal duration at a given
step indicates that compressional wave coda dominates the measurement for dV,,
(Figure 3). If it did not, the relative velocity variation would evolve to a different
value associated with the shear waves. We benefit from the geometry of the sample



in this regard. The measurements of P waves are performed by using P transducers
as emitter and receiver. In this case we have a geometry such that the P-waves are
reflected at normal incidence back and forth across the sample multiple times.
During this process, energy leaks away to the rest of the sample and is eventually
converted to shear. Had we used the full coda, eventually one sees a change in the
quantity, due to the mode conversion. For dV,; and dV,; shear waves are inputted
into the sample, and shear wave coda dominates. The large difference between these
two polarized shear waves implies that coda waves carry polarization information
due to stress-induced birefringence. They carry it for the full coda used in the study.

6. Prospects

In addition, there is potential of scattering constants of concrete to be sensitive to
stress state. Based on a one dimensional energy diffusion process, the diffuse
ultrasound energy can be expressed as a function of time (Anugonda et al., 2001):

2

In((£(x,7))-0.51n(s) = C, —4x—m-01 [15]

where x is the distance between transducers, Cy a constant that represents the initial
energy deposited, D is the diffusivity and o the absorption. A rough estimate of
these constants is achieved on a concrete sample of similar composition (Figure 5)
following the fitting procedure suggested by (Anugonda et al., 2001) at a working
frequency of 500 kHz by evaluating the energy in the 450-550 kHz range. The
constants are given on Table 2.
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Figure 5. Evolution of the diffuse ultrasound energy as a function of time. The solid
line is the fit of experiment
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Table 3. Concrete sample’s scattering constants

Diffusivity Absorption

Concrete sample 14 m?%/s 2.1510%s™

Experiments reported in Section 4 were aimed at studying the stress induced
velocity change. However, the recorded signals allow us to qualitatively evaluate the
influence of stress level on the absorption. The diffusivity can not be evaluated
because the recorded signals were saturated in amplitude (at the beginning of the
signal) in order to increase the signal to noise ration in the late coda. The evolution
of the absorption as a function of strain is given Figure 6. We can observe a large
decrease of the absorption with increasing compressive stress. At this stage, we are
only able to give qualitative information because the experiments were dedicated to
study the influence of stress on the velocities. However, these results show a great
potential of diffuse ultrasound to monitoring stress state of concrete structures.
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Figure 6. Absorption as a function of micro-strain for the 3 polarization employed

7. Conclusion

Here we present a robust and accurate method by which to extract the nonlinear
properties of concrete, or any complex material. Relative velocity changes < 1%o
have been monitored. However, in situ absolute stress measurements seems to be
difficult at present time because of variability of concrete used in civil engineering
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structures exposed to atmospheric conditions. In addition, the potential of diffusion
parameters is shown for this topic. Thus, in the future, we intend to study the
influence of concrete structural parameters such as composition, porosity,
permeability and water saturation state on the third order elastic constants and the
diffusion parameters.

8. In situ stress monitoring

In the actual context of increasing security and sustainability of concrete
structures, an accurate and non destructive method sensitive to stress variations
should be useful. The simplicity with which the CWI method (or diffusion) can be
implemented, its high sensitivity, and the limited quantity of instrumentation
needed, favour its use for the in situ monitoring of civil engineering structures. In
addition, a network of suitably placed receivers could be used to localise zones of
change in stress. The presented method has possible applications for stress
monitoring or any phenomena which induces stress variation such as temperature.
These can be applied on piles, dams, prestressed concrete...
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