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Abstract. In the present study we perform a unified analysis of travelling wave solutions

to three different two-component systems which appear in shallow water theory. Namely,

we analyse the celebrated Green–Naghdi equations, the integrable two-component Ca-

massa–Holm equations and a new two-component system of Green–Naghdi type. In

particular, we are interested in solitary and cnoidal-type solutions, as two most important

classes of travelling waves that we encounter in applications. We provide a complete phase-

plane analysis of all possible travelling wave solutions which may arise in these models.

In particular, we show the existence of new type of solutions.
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1. Introduction

Shallow water flows occupy a central part in hydrodynamics of free surface flows since
the pioneering works of Saint-Venant [14], Boussinesq (1871 – 1877) [3, 4] and many
others. The idea consists in achieving a substantial simplification of the base model (the
full Euler equations, see, e.g. [33]) by noticing that an irrotational shallow water flow
is essentially uniform across the water column. Sometimes this motion is even referred
to as columnar. Mathematically speaking it allows to reduce the problem dimension by
averaging the equations over the depth. The complexity of Boussinesq-type equations
comparing to the full Euler equations is much lower. Numerous applications of shallow
water models in hydraulics, coastal engineering and even in natural hazards (e.g. tsunamis,
see [8, Ch. 7], [15]) keep the attention high on this research topic. Needless to say that
every year new simplified models are proposed (however, most of them are even not properly
studied deeply enough from the mathematical point of view).

In order to develop a systematic approximation procedure, one needs to characterize
the full Euler equations in terms of the sizes of various parameters. The two important
parameters that play a crucial role in the modern theory of water waves are ε, which
measures the ratio of wave amplitude to undisturbed fluid depth, and δ, which measures the
ratio of fluid depth to wavelength (see, e.g. [24]). The amplitude parameter ε is associated
with the nonlinearity of the wave, so that small ε implies a nearly-linear wave theory. The
shallowness parameter δ given by the ratio of mean water depth and wavelength, measures
the deviation of the pressure, in the water below the wave, away from the hydrostatic
pressure distribution.

Various approximate models, which have to describe the same physical regime, can be
compared from different points of view. The main principle is that they have to be as close
as possible to the corresponding solutions of the full Euler equations (closer∗ is better).
Usually, the first comparison is done at the level of linear periodic plane wave solutions.
At this level, the relationship between the wave number k and and the wave frequency ω,
known as the dispersion relation, summarizes all characteristics of the model [33]. However,
it is a very coarse filter, since different models can share the same dispersion relation. It
comes from the prior linearisation of the system. Instead of looking at the dispersion
relation, one can look, for example, at the shoaling coefficients (on a sloping beach), but
this analysis is still linear [2].

Consequently, a better basis for inter-comparison should include nonlinearities. An im-
portant class of solutions which include the full nonlinear effects are the so-called travelling

waves, i.e. the wave profiles propagating with a constant speed without changing their form.
Localized travelling waves were discovered by Russell (1845) [28] and they are called soli-

tons or solitary waves depending on how they interact with each other. If the shape is

∗We do not intentionally specify here the notion of “closeness”. The choice of the “right” functional

space can be a tricky mathematical question beyond the scope of this study.
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unaffected by the collision (we call this collision elastic), thus we deal with a soliton. Oth-
erwise it is a solitary wave. Another type of travelling waves encountered in applications
are periodic travelling waves, e.g. the cnoidal waves, derived presumably for the first time
in the celebrated work of Korteweg & de Vries (1895) [25]. Consequently, in order
to validate an approximate model, one can compare its travelling waves with correspond-
ing solutions to the full Euler equations, the efficient algorithms to compute them being
constantly improving [16, 35]. Since the most visible part of a water wave motion is the
profile of the surface, it is natural to use this as a comparison for how effective the model
is. The flow beneath the wave is very important too and we point out that the shallow
water assumption (used to derive the models) leads to substantial differences here with the
flow for the governing equations. For example, shallow water imposes for irrotational flows
with no underlying currents a unidirectionality that is not encountered in the flow beneath
the periodic travelling waves of the governing equations (see the discussions in [7, 12, 20]).

The authors have to admit that most of the studies devoted to travelling waves are
focused on a particular sub-class of solutions — the so-called solitary waves, which decay
quickly at infinity along with all their derivatives, thus justifying their name [29]. This
interest has been growing since the pioneering work of Zabusky & Kruskal (1965)
[37]. Moreover, for integrable equations such as Korteweg–de Vries (KdV), Camassa–
Holm (CH), Degasperis–Procesi (DP), etc.one can show rigorously using the inverse
scattering technique that an arbitrary initial condition will develop into a finite number of
solitary waves plus the radiation (small amplitude quasi-periodic oscillations) [9, 11, 30].
However, when one goes to the sea side, there are negligible chances to see a perfect
solitary wave climbing the sloping beach. It is much more common to observe a sequence
of quasi-periodic waves. That is why we consider in this study the full family of travelling
wave solutions, without making any simplifying assumptions. Only when the most general
equation for travelling waves is derived, we obtain the sub-family of solitary wave solutions
as a particular case of a more general situation.

The present manuscript is organized as follows. The mathematical two-component shal-
low water models considered in this study are presented in Section 2. Section 3 is devoted
to the travelling wave solutions of the models under consideration. First, we derive for each
model the most general differential equation describing the whole family of such solutions.
By appropriately choosing the constants of integration, we obtain the equations describing
the solitary wave solutions. Some of the equations can be solved analytically to obtain
the closed form explicit solutions, but we give a description of the solitary wave profiles
for all models by performing a phase-plane analysis. Then, we return to the most general
situation of the periodic solutions and we analyse all possible type of solutions by the
phase-plane method. Finally, in Section 4 we outline the main conclusions of this study.
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Figure 1. The sketch of the physical fluid domain.

2. Mathematical models

Consider a layer of an ideal incompressible homogeneous fluid with free surface. The
fluid flow is assumed to be irrotational. For two-dimensional travelling waves in the fluid,
the motion is identical in any direction parallel to the crest line. To describe these waves we
consider a cross section of the flow that is perpendicular to the crest line, with the Cartesian
coordinates (x, y), the x-axis being in the direction of the wave propagation and the y-axis
pointing vertically upwards. The flat impermeable bottom is given by y = 0. The fluid
is acted on only by the acceleration of gravity g, the effects of surface tension are ignored.
The gravity acceleration g and the mean water depth d disappear from the equations of
motion by choosing appropriate dimensionless variables. The total water depth is given
by the function y = H(x, t) := 1 + η(x, t) , where η(x, t) is the free surface elevation,
x ∈ R, t ∈ R

+, all measured in dimensionless units. For physical reasons, the function
H(x, t) is non-negative, H = 0 corresponds to the solid bottom. The sketch of the fluid
domain is shown in Figure 1. The variable u(x, t) describes the horizontal velocity of the
fluid, in dimensionless units.

The mathematical models considered in this study are listed below. First of all, for the
sake of comparison we consider the classical Green–Naghdi (GN) equations∗ rediscovered
independently in [19, 31, 32, 34]; for recent derivations of these equations we mention
[17, 21]. The Green–Naghdi equations model shallow water waves whose amplitude is
not necessarily small and can be written in the following dimensionless form:

ut + u ux + Hx =
1

3H

[

H3
(

u uxx + uxt − u2
x

)

]

x
,

Ht + (Hu ) x = 0 .

∗In the literature, these equations are referred to as the Serre equations, or the Su–Gardner equa-

tions but usually they are called the Green–Naghdi equations. Throughout this paper we will call them

the Green–Naghdi equations.
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Then, we consider an integrable two-component (CH2) generalization of the celebrated
Camassa–Holm equation [5], which was derived in the shallow water regime by [10, 22]:

ut + 3 u ux − utxx − 2 ux uxx − uuxxx + HHx = 0,

Ht + (Hu ) x = 0.

And finally, we consider also another recently derived two-component system [23], which
lies in-between the GN and CH2 models:

ut + 3 u ux + HHx =
[

H2
(

u uxx + uxt − 1
2
u2
x

)

]

x
,

Ht + (Hu ) x = 0.

This model will be referred below as the new two-component (N2C) system. The details on
mathematical derivations of these equations can be found in the corresponding references
given above. Thus, we do not repeat them here.

3. Travelling wave solutions

Consider a family of solutions of the form:

H(x, t) = H(ξ), u(x, t) = u(ξ), ξ := x − ct, c ∈ R, (3.1)

where c is the wave speed. Such solutions, if they exist, are called travelling waves. For
a given wave amplitude the wave speed will be in general different in every model. In
order to distinguish between different speeds, we shall denote them as cGN, cCH2 and
cN2C correspondingly. After substituting the Ansatz (3.1) into the systems of governing
equations, we obtain three systems of ODEs. The GN system becomes:

−cGNu′ + uu′ + H ′ =
1

3H

{

H3
[

(u − cGN) u′′ − (u′)2
]

}′
,

(

−cGNH + Hu
)′

= 0,

where the prime denotes the ordinary derivative with respect to the variable ξ. The CH2
system becomes:

−cCH2u′ + 3uu′ + cCH2u′′′ − 2u′u′′ − uu′′′ + HH ′ = 0,
(

−cCH2H + Hu
)′

= 0.

And finally, the N2C system reads:

−cN2Cu′ + 3uu′ + HH ′ =
{

H2
[

(u − cN2C) u′′ − 1
2
(u′)2

]

}′
,

(

−cN2CH + Hu
)′

= 0.

The second equation (i.e. the mass conservation) can be straightforwardly integrated
once:

u =
cH − K1

H
, K1 ∈ R, (3.2)
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where K1 ∈
{

K
GN
1 , K

CH2
1 , K

N2C
1

}

is an integration constant and c ∈
{

cGN, cCH2, cN2C
}

.
The derivatives of the velocity u can be easily obtained by differentiating (3.2):

u′ =
K1H

′

H2
, u′′ =

K1H
′′

H2
− 2K1(H

′)2

H3
.

Using the expression (3.2) for u along with its derivatives, we can integrate once the
momentum equations as well∗:

3
(KGN

1 )2

H
+

3

2
H2 = − (KGN

1 )2H ′′ +
(KGN

1 )2(H ′)2

H
+ K

GN
2 , (3.3)

−cCH2u +
3

2
u2 + cCH2u′′ = 1

2
(u′)2 + uu′′ − 1

2
H2 + K

CH2
2 , (3.4)

−cN2Cu +
3

2
u2 + 1

2
H2 = −(KN2C

1 )2H ′′

H
+

3

2

(KN2C
1 )2(H ′)2

H2
+ K

N2C
2 , (3.5)

where K2 ∈
{

K
GN
2 , K

CH2
2 , K

N2C
2

}

⊂ R is another integration constant. Every equation

above can be multiplied by 2u′ =
2K1H

′

H2
and integrated once again lead to

−3
(KGN

1 )3

H2
+ 3KGN

1 H +
(KGN

1 )3(H ′)2

H2
= 2

K
GN
2 (cGNH − K

GN
1 )

H
+ K

GN
3 , (3.6)

−cCH2u2 + u3 + cCH2(u′)2 − u(u′)2 = − K
CH2
1 H + 2KCH2

2 u + K
CH2
3 , (3.7)

−cN2Cu2 + u3 + K
N2C
1 H = −(KN2C

1 )3(H ′)2

H3
+ 2KN2C

2 u + K
N2C
3 .

(3.8)

Finally, after some simple algebra, we obtain the following first order implicit ODEs, which
describe the travelling waves, when appropriate boundary conditions are imposed. For the
GN system the right-hand side is a third order polynomial in H :

(H ′)2 = − 3

(KGN
1 )2

H3 +
K

GN
3 + 2cGN

K
GN
2

(KGN
1 )3

H2 − 2KGN
2

(KGN
1 )2

H + 3. (3.9)

In the CH2 model the right-hand side turns out to be a sixth order polynomial in H :

(H ′)2 = H2

[

− 1

(KCH2
1 )2

H4 +
K

CH2
3 + 2cCH2

K
CH2
2

(KCH2
1 )3

H3

+
(cCH2)2 − 2KCH2

2

(KCH2
1 )2

H2 − 2cCH2

KCH2
1

H + 1

]

. (3.10)

In the new two-component system N2C the right-hand side is a fourth order polynomial
in H :

(H ′)2 = − 1

(KN2C
1 )2

H4 +
K

N2C
3 + 2cN2C

K
N2C
2

(KN2C
1 )3

H3

+
(cN2C)2 − 2KN2C

2

(KN2C
1 )2

H2 − 2cN2C

KN2C
1

H + 1. (3.11)

∗In some places we keep the variable u in order to have a compact notation.
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The ODEs written above are most general equations which encompass all possible trav-
elling waves of the three models under consideration in our study. So far we did not apply
any additional simplifying assumptions.

3.1. Solitary waves

If we want to obtain solitary wave solutions, one has to impose additional conditions
that the solitary wave profile (H, u) has to tend to a constant state (1, 0) at infinity, while
all the derivatives tend to (0, 0), i.e.

H → 1, H(n) → 0, n > 1, | ξ | → ∞,

u(n) → 0, n > 0, | ξ | → ∞.

These boundary conditions allow us to compute exactly the integration constants K1,2,3.
From the integrated mass conservation equation (3.2) we obtain (for all three models):

K1 ≡ c.

From equations (3.3)–(3.5) we find the constant K2:

K
GN
2 = 3 (cGN)2 +

3

2
, K

CH2
2 =

1

2
= K

N2C
2 .

Finally, from equations (3.6)–(3.8) we find K3:

K
GN
3 = −3 (cGN)3 + 3 cGN, K

CH2
3 = cCH2, K

N2C
3 = cN2C.

By substituting the values of these constants K1,2,3 into the ODEs derived above (3.9)–
(3.11), we obtain the governing equations which describe the shapes of the solitary waves.
For the GN system we obtain the well-known result [32]:

(H ′)2 =
3

(cGN)2
(H − 1)2

[

(cGN)2 − H
]

. (3.12)

For the CH2 system the ODE reduces to:

(H ′)2 =
1

(cCH2)2
H2 (H − 1)2

[

(cCH2)2 − H2
]

. (3.13)

And finally, for the N2C system the ODE for solitary waves is

(H ′)2 =
1

(cN2C)2
(H − 1)2

[

(cN2C)2 − H2
]

. (3.14)

Notice that these equations are parametrized by a single parameter — the dimensionless
wave propagation speed c.

Since the left-hand side of the equations (3.12)-(3.14) is non-negative, the right-hand
side must be non-negative as well. It gives us the bounds on the wave height H(ξ), for
∀ξ ∈ R:

HGN(ξ) 6 (cGN)2,
[

HCH2(ξ)
]2

6 (cCH2)2,
[

HN2C(ξ)
]2

6 (cN2C)2.
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According to the asymptotic behaviour of H , it follows that solitary waves exist only if

c2 > 1, c ∈
{

cGN, cCH2, cN2C
}

.

The equation (3.12) and the equation (3.14) can be solved analytically to obtain closed
form explicit solutions. They are provided in A.1. However, to our knowledge, the equation
(3.13) has no such explicit solutions. From practical point of view, there are efficient
algorithms (such as the Petviashvili scheme [27] and many others, see, for example, [36])
which allow to compute numerically the solution of the equation (3.14).

In what follows we give a description of the solitary wave (SW) profiles by performing
a phase plane analysis for the equations (3.12)–(3.14) derived above. These equations can
be put in the following general form:

(H ′)2 = PSW(H), (3.15)

where PSW(H) is a polynomial function in H whose form depends on the model under
consideration. From (3.15) we can easily conclude some other properties of the solitary
waves. For instance, if the solitary waves exist, they are necessarily symmetric with respect
to the wave crest. This property holds for the travelling wave solutions (whether solitary
or periodic) of the full equations as well [13, 26]. If the wave crest is smooth, this point by
definition will be the local maximum∗. Consequently, the solitary wave height will be the
largest real root of the polynomial PSW(H). It can be explicitly computed:

HGN
max = (cGN)2, HCH2

max = cCH2, HN2C
max = cN2C.

The polynomials PSW(H), the corresponding phase-plane portraits and the solitary wave
profiles are represented in Figures 2–4 for GN, CH2 and N2C models, respectively. The
homoclinic orbits in the phase portrait lead to the pulse-type wave solutions and the
heteroclinic orbits correspond to the front (or kink-type) wave solutions obtained only in
the CH2 case.

3.2. Cnoidal waves

The solitary waves were analyzed above. Now we come back to a more general situation
of the periodic solutions, the so-called cnoidal waves, discovered presumably in [25]. The
equations (3.9)–(3.11) have the general form:

(H ′)2 = P(H), (3.16)

where the polynomials P(H) ∈
{

P
GN(H), P

CH2(H), P
N2C(H)

}

,

P
GN(H) := − 3

(KGN
1 )2

H3 +
K

GN
3 + 2cGN

K
GN
2

(KGN
1 )3

H2 − 2KGN
2

(KGN
1 )2

H + 3, (3.17)

∗Indeed, for a solitary wave it will be also the global maximum.
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Figure 2. The graph of the polynomial, the phase-portrait and the solitary wave
profile for the GN model.
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Figure 3. The graph of the polynomial, the phase-portrait and the solitary wave

profiles for the CH2 model.

P
CH2(H) := H2

[

− 1

(KCH2
1 )2

H4 +
K

CH2
3 + 2cCH2

K
CH2
2

(KCH2
1 )3

H3

+
(cCH2)2 − 2KCH2

2

(KCH2
1 )2

H2 − 2cCH2

KCH2
1

H + 1

]

, (3.18)
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Figure 4. The graph of the polynomial, the phase-portrait and the solitary wave

profile for the N2C model.

P
N2C(H) := − 1

(KN2C
1 )2

H4 +
K

N2C
3 + 2cN2C

K
N2C
2

(KN2C
1 )3

H3

+
(cN2C)2 − 2KN2C

2

(KN2C
1 )2

H2 − 2cN2C

KN2C
1

H + 1. (3.19)

A necessary condition for the existence of travelling waves is P(H) > 0. With this condition
fulfilled, the choice of integration constants K1, K2, K3, yields different possible types of
wave profiles in the three models under consideration.

The cubic polynomial (3.17) can have three real roots or one real root and two complex
conjugate roots. Because its leading coefficient is smaller than zero and its constant term
is greater than zero, by Viète formulas, this polynomial has at least one positive root. For
distinct roots, the only possibilities that can occur are listed below.

• If PGN(H) has three real positive roots 0 < H1 < H2 < H3, then, the graph
of the the polynomial P

GN(H), the corresponding phase-plane portrait and the
periodic wave profile look like in Figure 5. In fact, in this case, one can find the
solution of the equation (3.9) explicitly (see Appendix A.3).

• If P
GN(H) has three real roots H1 < H2 < 0 < H3, then, its graph, the

corresponding phase-portrait and the solutions look like in Figure 6.
• If PGN(H) has one real positive root H0 > 0 and two complex conjugate roots,

then, we are in the situation represented in Figure 7. In this case, one can also find
the solution of the equation (3.9) explicitly (see Appendix A.4).

The sixth order polynomial (3.18) has 0 as double root and it is written as a factorization
into H2 and a forth order polynomial with the same form as the polynomial PN2C(H) in
(3.19). The leading coefficient of PN2C(H) is smaller than zero and its constant term is
greater than zero, thus, by Viète formulas, this polynomial has at least one positive root
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Figure 5. The sketch of the graph of polynomial PGN(H) with three real positive
roots, the phase-portrait and the periodic wave profile for the GN model.
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Figure 6. The sketch of the graph of polynomial PGN(H) with two negative real
roots and one positive real root, the phase-portrait and the solutions for the GN
model.

and one negative root. For distinct roots, the only possibilities that can occur are listed
below.

• If PN2C(H) has one negative real root H1, one positive real root H2 and two complex
conjugate roots, then, its graph, the corresponding phase-portrait and the periodic
solution look like in Figure 8. For the CH2 model, we get in this case the wave
profile presented in Figure 9.
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Figure 7. The sketch of the graph of polynomial PGN(H) with one real root, the
phase-portrait and the periodic solution to the GN model.
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Figure 8. The sketch of the graph of polynomial PN2C(H) with one negative real
root, one positive real root and two complex conjugate roots, the phase-portrait

and the periodic solution for the N2C model.

• If PN2C(H) has one negative real root H1 and three positive real roots H2 < H3 <

H4, then, its graph, the corresponding phase-portrait and the periodic wave profile
look like in Figure 10. For the CH2 model, we get in this case the wave profiles
presented in Figure 11.

• If PN2C(H) has three negative real roots H1 < H2 < H3 and one positive real
root H4, then, its graph, the corresponding and the solutions look like in Figure 12.
For the CH2 model, we are in the situation represented in Figure 13.
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Figure 9. The sketch of the graph of polynomial PCH2(H) with one negative real

root, one positive real root and two complex conjugate roots, the phase-portrait
and the wave profile for the CH2 model.
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Figure 10. The sketch of the graph of polynomial PN2C(H) with one negative
real root and three positive real roots, the phase-portrait and the periodic wave

profile for the N2C model.

4. Conclusions

Above we considered three different two-component shallow water type models, some of
them being well-known and some are new. Then, we applied a unified procedure to derive
and to study analytically (whenever it was possible) the travelling wave solutions to these
systems. Once the most general differential equation (ODE) describing the whole family of
such solutions was derived, only then we considered the particular (and the simplest) case
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Figure 11. The sketch of the graph of polynomial PCH2(H) with one negative

real root and three positive real roots, the phase-portrait and the wave profiles for
the CH2 model.
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Figure 12. The sketch of the graph of polynomial PN2C(H) with three negative

real roots and one positive real root, the phase-portrait and the solutions for the
N2C model.

of solitary waves. Then, the phase-plane analysis was applied to these ODEs in order to
shed some light on the behaviour of solutions, which are sometimes difficult to understand
by analytical means solely. We analyzed all possible topologies of algebraic curves in the
phase plane, which lead to real-valued solutions. Of course, the physically admissible
solutions are those which lie above the solid bottom. In particular, we showed that the
CH2 system might possess new types of solutions: front wave solutions and solutions with
negative amplitude similar to anti-peakons previously found for the classical Camassa–
Holm equation [1].
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Figure 13. The sketch of the graph of polynomial PCH2(H) with three negative
real roots and one positive real root, the phase-portrait and the solutions for the

CH2 model.

The main particularity of our study is that we perform this analysis for three systems
in parallel, thus highlighting their differences and similarities in the same place. A similar
unified analytical and phase-plane approaches could be applied to other models as well, but
we preferred to limit our attention to only these three systems for the sake of manuscript
compactness.

A. Analytical solutions

In this Appendix we provide available analytical solutions for both types of travelling
waves which arise in the three models under consideration.

A.1. Solitary waves

For the GN model, the explicit solution of the equation (3.12) is (see [32, pp. 863–864]
and [34, p. 539])

H(ξ) = 1 + [(cGN)2 − 1] sech2

[√
3

2

√

(cGN)2 − 1

cGN
ξ

]

. (A.1)
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For the N2C model, the explicit solution of the equation (3.14) is (see [21])

H(ξ) = 1 +
(cN2C)2 − 1

1 + (cN2C )2+1
2

cosh

[√
(cN2C)2−1

cN2C ξ

]

+ (cN2C )2−1
2

sinh

[√
(cN2C)2−1

cN2C ξ

] . (A.2)

A.2. Cnoidal waves

The GN equations (3.12) have also the following periodic cnoidal wave solution [31] (see
also [6, 18]):

H(ξ) = H2 + (H3 −H2) cn2

[√
3

2

√
H3 −H1

KGN
1

ξ; k

]

(A.3)

where 0 < H1 < H2 < H3 are the roots of the cubic polynomial (3.17), cn(· , k) is the
cn-Jacobi elliptic function with the elliptic modulus k, 0 < k2 < 1 ,

k2 :=
H3 −H2

H3 −H1

.

If the cubic polynomial (3.17) has one real root, denoted H0 > 0, and two complex con-
jugate roots, PGN(H) = − (H − H0)(H

2 + pH + q), p, q ∈ R, then, the GN equations
(3.12) have the following periodic solution:

H(ξ) = H0 −
√

H2
0 + pH0 + q

1− cn

[ √
3(H2

0
+pH0+q)

1
4

KGN
1

ξ; k

]

1 + cn

[ √
3(H2

0
+pH0+q)

1
4

KGN
1

ξ; k

] (A.4)

with the elliptic modulus k, 0 < k2 < 1 ,

k2 :=
1

2

(

1 +
H0 +

p

2
√

H2
0 + pH0 + q

)

.
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