
HAL Id: hal-01294548
https://hal.science/hal-01294548v1

Submitted on 31 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of a one-way carsharing system with
relocation operations

Aurélien Carlier, Alix Munier-Kordon, Witold Klaudel

To cite this version:
Aurélien Carlier, Alix Munier-Kordon, Witold Klaudel. Optimization of a one-way carsharing system
with relocation operations. 10th International Conference on Modeling, Optimization and SIMulation
MOSIM 2014, Nov 2014, Nancy, France. �hal-01294548�

https://hal.science/hal-01294548v1
https://hal.archives-ouvertes.fr

Optimization of a one-way carsharing system
with relocation operations

Aurélien CARLIER
Renault SAS, Technocentre,1

Technological Research Institute SystemX,2
1 Guyancourt, 2 Palaiseau, France

Email: aurelien.carlier@renault.com
aurelien.carlier@irt-systemx.fr

Alix MUNIER KORDON
Sorbonne Universités,
UPMC Univ Paris 6,

UMR 7606, LIP6,
F-75005, France

Email: alix.munier@lip6.fr

Witold KLAUDEL
Renault SAS,

Guyancourt, France
Email: witold.klaudel@renault.com

Abstract—Carsharing systems have gathered increasing atten-
tion and are now recognised as innovative and ecological solutions
to transportation issues. Especially, one-way carsharing systems
offer a high level of service because they exempt users from
the obligation to return the vehicle at the same station where it
was borrowed. Unfortunately, this flexibility comes with design
complexity. This paper addresses a part of those design issues
and deals with fleet dimensioning including vehicle relocation
operations.

We propose mathematical programming oriented approach
and we introduce a simple linear model based on integer flow
variables. This model is organized around three optimization
criteria: maximizing satisfied carsharing demands while mini-
mizing the fleet of vehicles and the relocation operations. From
random generated benchmarks, we study the scalability of our
method and we show that computation times remain acceptable
for representative problem complexities.

Index Terms—one-way carsharing, operational research, car-
sharing demand generation, transport optimization, mathemati-
cal modelling.

I. INTRODUCTION

In the last decade, the importance of adapting the way
we move in our societies has been highlighted by a lot
of researches. The greater accessibility to private car has
more particularly resulted in serious negative externalities,
although it significantly improved people mobility in urban
areas. Pollution, excessive energy consumption and wasted
time evolve largely from the road network congestion. In many
situations, current public transport does not offer a valuable
alternative to the private car and a lot of efforts are made to
find a different and acceptable solution [1]. One of them is
carsharing.

A carsharing system involves a small to medium fleet
of vehicles, available at several stations, to be used by a
relatively large group of members [2]. This service constitutes
a real alternative to private car because it releases the user
from constraints related to individual property like insurance,
maintenance, fuel (or electricity), taxes, vehicle depreciation,
etc. Such systems became popular in the last couple of decades
and nowadays it is not unusual to find one in most of the
world’s major cities in industrialized countries. Their nu-
merous benefits fostered several researches on environmental
impacts, social characterization of the users, understanding

of urban trip patterns, demand modelling, vehicle imbalance
problem, operator relocation operations policy, optimal system
dimensioning, etc. Jorge and Correia [3] give a review of these
topics.

Initially, in the so called round-trip carsharing systems,
the users have to pick up and return the vehicles at the
same place. From an operational point of view, this limitation
simplifies greatly the dimensioning and the management of
the vehicles fleet. In this paper, we will focus on one-way
carsharing systems which allows users to pick up a vehicle
from a station and return it at a different one. The greater
flexibility of these systems helps capture more requested trips
(referred further as demands) [4] but comes also with serious
operational issues, especially those from unbalanced vehicle
distribution. As a consequence, the dimensioning of a one-way
carsharing system must include vehicle relocations to capture
and meet real demand as much as possible. Relocation is often
not considered in car rental services [5], [6] since the price of
one-way trips is usually fully supported by the customers.

Some studies have been conducted to find optimal vehicle
relocations when a system already exists (e.g. [7], [8], [9],
[10]), while others searched for optimal dimensioning of the
vehicle fleet taking into account those relocation operations.
In most cases, mathematical programming is considered as
a good and pertinent approach to describe and solve those
problems. Fan et al. [11] proposed for example a multi-
stage stochastic linear integer model accounting for demand
variations and indicating operator profit improvement. More
recently, Correia and Antunes [12] developed three mathe-
matical programming models to balance vehicle stocks while
dimensioning the whole system in terms of location, number
and size of stations. The objective was again maximizing the
profit for the operator considering all the revenues and costs
involved.

Although mathematical programming is an effective and
suitable approach to deal with the optimization of carsharing
systems, the studies mentioned above often underline limi-
tations due to computation time and solver capability. This
frequently led to model simplifications which makes results
unrealistic. Thus, our first aim is to develop a simple realistic
and scalable flow based model taking into account relocation

operations. The scalability is confirmed by the acceptable
computation times for the large instances we analysed.

Three optimization criteria are considered: maximizing the
total number of satisfied demands and minimizing the total
number of vehicles and relocation operations. We experimen-
tally proved that the two last criteria are in opposite and that
there exists a tradeoff area between them.

To the best of our knowledge, there is no available bench-
mark for testing our model. Most authors use real data
given by a carsharing operator or extrapolated from real life
observations. Hence, we developed a random data generator
taking into account the demand variation over the course of a
day.

This paper is organised as follow. Section II formulates
on the one hand the problem in mathematical terms, and
proves on the other hand that the number of vehicles can
be inferred from any solution. Section III is dedicated to
numerical experiments based on randomly generated data.
Results specifically focus on computation times, 3-dimensional
Pareto frontiers and scalability. Finally, section IV concludes
the paper with directions for further research.

II. PROBLEM MODELING

This section aims at modelling our optimization problem
using an integer linear program. The inputs and the outputs of
the problem are first described. Second subsection is dedicated
to the building of an oriented valued graph, namely the Timed
Extended Graph. This graph, previously introduced by Ahuja
et al. [13], allows to express all the constraints of the problem
following the time and the space dimensions. The third sub-
section introduces the decision variables of our optimization
problem. More precisely, it is shown that vehicles can be
equivalently aggregated into flows to express all the constraints
and the criteria of our optimization problem. Last subsection
presents its formulation using integer linear programming.

A. Inputs and outputs of the problem

In order to describe the mathematical problem, let us define
first the required inputs. As discussed later, those data can be
extracted from various sources such as simulation tools or real
operating carsharing system data for example.

First of all, let H = {1, · · · , T} be the set of time-steps
considered in the study. For relevance issues, it has to cover
a representative period of time, as an average weekday or an
average week for instance.

The set of carsharing stations is defined asN = {1, · · · , N}
and comes with Z(i) the maximum size (i.e. maximum
capacity, in terms of number of vehicles) of station i ∈ N .
Then, the demand D(i, j, t) contains the number of passengers
wishing to borrow a car from station i ∈ N at time t ∈ H
to station j ∈ N . Note here that there is no condition on
the station themselves, thus allowing the travel to be a “round
trip” or a “one-way” travel. In this case, i is simply equal to
j.

Finally, δ(i, j, t) represents the travel time it takes for a
car-user from station i ∈ N to station j ∈ N , when departure

time from i is t ∈ H. We suppose that for any triple (i, j, t) ∈
N ×N ×H, δ(i, j, t) < T . This assumption comes from the
fact that the highest distance from different stations is quite
low (usually less than 150 or 200 kilometres) and that the
time-steps are covering at least a day.

A feasible solution of our problem consists on a set of
vehicle tours, each of them modelling the situation of a car
at each time step. The three criteria (the demand, the number
of vehicles and the number of relocation operations) can be
polynomially computed from any feasible solution.

B. Time Extended Graph

To deal with discrete-time dynamic networks, Ahuja et al.
[13] suggested the use of time-space network, also known
as Time Extended Graphs (TEG). It is a static network
constructed by expanding the original network in the time
dimension, considering a separate copy of every node i ∈ N
at every discrete time-step t ∈ H. Thus, from the data listed
above, let us consider G = (X ,A, u) as a TEG defined as
follows:

1) Set of nodes: Nodes are couples (i, t) with i ∈ N and
t ∈ H associated with station i at time t. Formally, X =
N ×H.

Let η and θ the functions which reciprocally return the
station and the time-step associated with every element of X .
More formally,

η : X → N with x = (i, t) 7→ η(x) = i

θ : X → H with x = (i, t) 7→ θ(x) = t

2) Set of arcs: Edges are partitioned into 3 sets A1, A2

and A3 defined as follows:

• A1 is the set of arcs representing the possibility for the
vehicles to stay at a station between two consecutive
time-steps. Formally, A1 = {(x, y) ∈ X × X | η(x) =
η(y) and θ(y) = θ(x) + 1 mod T}.

• A2 are the arcs associated with a demand: each demand
D(i, j, t) > 0 corresponds to an arc (x, y) with x = (i, t)
and y = (j, t+δ(i, j, t)). Set A2 is then formally defined
as A2 = {(x, y) ∈ X × X | D(η(x), η(y), θ(x)) 6=
0 and θ(x) + δ(η(x), η(y), θ(x)) = θ(y) mod T}.

• A3 represents all the possible relocation operations over
time. Any triple (i, j, t) ∈ N × N × H with i 6= j
is associated to an arc from x = (i, t) to y = (j, t +
δ(i, j, t) mod T). Thus, A3 = {(x, y) ∈ X ×X | η(x) 6=
η(y) and θ(x) + δ(η(x), η(y), θ(x)) = θ(y) mod T}.

The total number of arcs is given by:

|A| = |A1|+ |A2|+ |A3| = N ×T +M + (N ×T) · (N − 1)

where M is the number of requested demands. As M � N2,
|A| = Θ(N2 · T).

3) Arcs Capacity: Associated with each arc a = (x, y) ∈
A, is given a capacity function u : A → N corresponding to
a maximum number of vehicles allowed on a. It is defined as
follows for any arc a ∈ A:

u(a = (x, y)) =

Z(η(x)) if a ∈ A1

D(η(x), η(y), θ(x)) if a ∈ A2

+∞ if a ∈ A3

For any arc a = (x, y) ∈ A1, the maximum number of cars
is the capacity of the station η(x) = η(y). It corresponds to
the demand for any arc a ∈ A2, and it is not bounded for
relocation arcs a ∈ A3.

4) Additional notations: We denote by Γ−(x) and Γ+(x)
respectively the set of immediate predecessors and successors
of a node x ∈ X , i.e.

Γ−(x) = {y ∈ X | (y, x) ∈ A}

Γ+(x) = {y ∈ X | (x, y) ∈ A}

For any couple of time instants ∀(t, t′) ∈ H2, the number
of time-steps between those two instants is defined through
the following function

ϑ : H2 → N
(t, t′) 7→ ϑ(t, t′)

with ϑ(t, t′) =

{
t′ − t if t ≤ t′

T + t′ − t otherwise.

For each arc a = (x, y) ∈ A, let us define the boolean value
εa as:

εa =

{
0 if θ(x) ≤ θ(y)

1 otherwise
The time required for a movement from x to y is then given
by the function

` : A → N
a = (x, y) 7→ `(a) = θ(y)− θ(x) + εa · T

By extension, if µ = (a1, · · · , ap) ∈ Ap is a path of the
TEG from x to y, the value `(µ) =

∑p
i=1 `(ai) is the total

time required for a vehicle going from x to y following µ.
For any time value t ∈ H, let us define the set Ct(µ) as the

arcs a = (x, y) from µ starting at time t or earlier but ending
after t. Formally, Ct(µ) = {a = (x, y) ∈ µ | ϑ(θ(x), t) <
`(a)}.

C. Decision variables

The aim of our study is to compute the planning of each
vehicles during the period. At any time, each vehicle is either
parked in a station or in transit between two stations. Its
position over the period can be modelled as a vehicle tour
i.e. a circuit c = (a1, · · · , ap) in the TEG.

The size of any feasible solution may be highly reduced if
we only consider the number of vehicles passing through each
arc. For each arc a = (x, y) ∈ A, we call ϕ(a) the flow of
vehicles transiting through the arc a. It can be interpreted as:

• the number of vehicle staying in station η(x) between
two consecutive time-steps θ(x) and θ(y), if a ∈ A1;

• the number of vehicle picked by users from station η(x)
at time θ(x) to station η(y), if a ∈ A2;

• the number of vehicle relocated between stations η(x)
and η(y) at time θ(x), if a ∈ A3.

The total number of vehicles transiting to any node x ∈ X
is clearly constant, thus∑

y∈Γ−(x)

ϕ((y, x)) =
∑

y∈Γ+(x)

ϕ((x, y)).

It is immediate that a feasible flow may be obtained from
any feasible set of vehicle tours. We prove in the following
that vehicle tours may be easily computed from a feasible flow.

Next lemmas characterize the total time of any circuit c and
the exact number of vehicles required for a unitary flow on c.

Lemma 1: The total time of any circuit c = (a1, · · · , ap) is
`(c) = T ×

∑p
i=1 εai

.
Proof. Let xi, i ∈ {1, · · · , p+1} be the sequence of elements
from X such that, xp+1 = x1 and ∀i ∈ {1, · · · , p}, ai =
(xi, xi+1). The total time of c is then

`(c) =
∑p

i=1 `(ai)
=
∑p

i=1(θ(xi+1)− θ(xi) + εai
· T)

= T ×
∑p

i=1 εai
.

the result.
Lemma 2: Let c be a circuit and ϕc a feasible flow such

that

ϕc(a) =

{
1 if a belongs to c
0 otherwise

The minimum number of vehicles to insure ϕc is `(c)
T .

Proof. The total number of vehicles needed at time t ∈ H for
c is clearly |Ct(c)|.

We first show that |CT (c)| =
∑

a∈c εa. For that purpose,
setting B(c) = {a = (x, y) ∈ c | εa = 1}, we prove that
B(c) = CT (c).
• B(c) ⊆ CT (c): If a = (x, y) ∈ B(c), then as θ(x) ≤ T ,
ϑ(θ(x), T) = T − θ(x). Now, since εa = 1, `(a) =
θ(y)− θ(x) + T ≥ ϑ(θ(x), T) and a ∈ CT (c).

• CT (c) ⊆ B(c): Let consider now an arc a = (x, y) ∈
CT (c). Since ϑ(θ(x), T) = T − θ(x) < `(a), we get
θ(y) + εa · T > T . As θ(y) ≤ T , we necessarily have
εa = 1 and thus a ∈ B(c).

Now, by Lemma 1, |CT (c)| =
∑

a∈c εa = `(c)
T . Lastly, the

minimum number of vehicles to insure ϕc is constant over H
and thus ∀t ∈ H, the lemma.

Theorem 1: Any feasible solution ϕ can be decomposed
into a set of circuits S such that, for any arc a ∈ G, ϕ(a) =∑

c∈S ϕc(a).
Proof. The proof is by recurrence on n(ϕ) =

∑
a∈A ϕ(a).

The theorem is trivially true if n(ϕ) = 0.
Let suppose now that n(ϕ) > 0, thus there exists at least

one arc a = (x, y) with ϕ(a) > 0. Set µ0 = (x, y) and let
consider the sequence of paths µi built as follows:

1) Stop the sequence as soon as µi contains a circuit c;
2) Otherwise, let ã = (x̃, ỹ) the last arc of µi. Since ϕ(ã) >

0, following the conservation low of ϕ over nodes of G,
there exists an arc a starting at ỹ with ϕ(a) > 0. We
then set µi+1 = µi · a.

As G has a finite number of nodes, the algorithm stops and a
non empty circuit is then returned. Let now define the flow ϕ̂
as follows

ϕ̂(a) =

{
ϕ(a)− 1 if a ∈ c
ϕ(a) otherwise

ϕ̂ is feasible with n(ϕ̂) < n(ϕ), thus the theorem.
Note that the number of flow variables is a polynomial

function on the size of the problem. It is not the case for
the vehicle tours, which number can be of exponential size.
The consequence is that the determination of a flow is in NP ,
which is not the case for the determination of vehicle tours.

D. Modelling of the optimization problem

Three objectives are to be considered for our optimization
problem: the main objective is to maximize the number of
demands. The two other ones are to minimize both the number
of relocations and the total number of vehicles.

As we shall see later, the number of demands and relo-
cations are easily linearly expressed using the flows. Next
theorem shows that it is also the case for the total number
of vehicles:

Theorem 2: The minimum total number of cars required for
a feasible flow ϕ equals

∑
a∈A ϕ(a) · εa.

Proof. Let S be a set of circuits obtained from the decompo-
sition of ϕ following Theorem 1 and let V be the minimum
number of cars associated with ϕ. By Lemmas 1 and 2, the
total number of car of any circuit c ∈ S is∑

a∈c
εa =

∑
a∈A

εa · ϕc(a)

and thus

V ≤
∑
c∈S

∑
a∈A

εa · ϕc(a).

Now, from Theorem 1, ϕ(a) =
∑

c∈S ϕc(a). Thus,∑
c∈S

∑
a∈A

εa · ϕc(a) =
∑
a∈A

εa ·
∑
c∈S

ϕc(a) =
∑
a∈A

ϕ(a) · εa.

Lastly, the total number of vehicles required at time T to reach
ϕ is exactly

∑
a∈A ϕ(a) · εa, the theorem.

The modelling of our optimization problem follows. R
and C are fixed bounds for respectively the total number
of relocation operations and vehicles. Equation (1) is the
maximization of the total demand. Equation (2) expresses
the bound on the total number of relocation. Equation (3)
expresses these on the total number of vehicles. Equations
(4), (5) and (6) are lastly flow constraints.

max
∑
a∈A2

ϕ(a) (1)

s.t.

∑
a∈A3

ϕ(a) ≤ R (2)∑
a∈A

ϕ(a) · εa ≤ C (3)

ϕ(a) ≤ u(a) ∀a ∈ A (4)∑
y∈Γ−(x)

ϕ((y, x)) =
∑

y∈Γ+(x)

ϕ((x, y)) ∀x ∈ X (5)

ϕ(a) ∈ N ∀a ∈ A (6)
The total number of equations is around 2|A| + N × T =
Θ(N2 · T).

III. EXPERIMENTATIONS / RESULTS

In order to test the linear mathematical model, we first need
data. Unfortunately, we do not yet have enough relevant and
actual data that could be used for study purposes. To cope with
that, we propose to generate data using a random generator
described in the first subsection. Then, the second subsection
gives some discussion about computation times and solutions
analysis of small instances, based on generated data. Three-
dimensional Pareto frontier is especially presented. Finally,
third subsection is dedicated to scalability experimentations,
particularly the solver’s performance when the problem in-
creases in size.

A. Random data generator

A generator has been then implemented to emulate real
demand data over time. We decided to focus our study on
representing an average weekday demand. As a consequence,
all the data depending on time are generated over a 24 hours
period, segmented into T time-steps. The total number of
time-steps is user-settable and can vary from 24 to 1440
(representing respectively a 60 and 1 min time-step).

Basically, the generator is based on two phases: station and
demand generation. The first phase positions N carsharing
stations within a given territory. Maximum size for each station
is randomly generated using a discrete uniform distribution
over an integer interval [Zmin, Zmax] given by the user as a
parameter. The station positioning is made over two distinct
zones: a central area (in general representing the center of the
city) included in a larger one (representing the suburbs area),
both defined as a square. The generation algorithm takes two
additional parameters: the percentage of total area the center
must represent and the probability that a station is contained in
the center. Once the geographic division is made, every station
is then positioned randomly in the area where it belongs.

Then, the second phase generates randomly M demands
over time between stations. First of all, the generator has to
schedule and position randomly each request over time, which
means defining a probability distribution. In order to do so, the
generator allows to specify the distribution profile the demand
will follow. In other words, it consists on defining, for every
couple of hours (thus 12 values), the relative level of demand

Fig. 1. Classical average demand profile in dense areas over the course of a
weekday

TABLE I
COMPUTATION TIMES IN SECONDS

µ σ min max

LP 0, 56 0, 25 < 0, 01 1, 17

ILP 1, 93 1, 86 < 0, 01 16, 77

Dem(t) at this time t. Then, the probability distribution P
is obtained normalizing all the values i.e. P(t) = Dem(t)/∑

tDem(t). Typically, most profile distributions are very
similar to the one presented in Figure 1. Now, the next step
is to identify the two stations concerned by this demand at
that time: where it starts and where it goes. Usually, in dense
urban area, there are two rush hour slots, also called traffic
peaks (generally the morning between 7 and 10 o’clock; the
evening between 16 and 19 o’clock) for which the demand
goes globally in the same direction: from the suburbs to
the center during the morning and from the center to the
suburbs the evening. The generator allows to define such rush
time slots as well as the proportion of total demand during
those rushes. Finally, it’s also possible to specify an average
car speed and a penalty coefficient during rush time for the
calculation of travel-time between stations.

B. Experimentations

1) Experimental context: All experimental results ad-
dressed bellow were made using an Intel(R) Core(TM) i3-
3227U CPU running at 1.9GHz. The linear programs were
expressed using the AMPL format [14] and numerical results
were obtained using GLPK v4.52 [15].

2) Experimentation of small instances: First of all, we start
our experimentations considering N = 10 stations, T = 144
time-steps and M = 500 demands. The upper bound of
relocation operations and the number of vehicles belong to the
set {0, 10, · · · , 80}. For those fixed values, 30 instances were
generated using the random generator previously described for
studding the computation time of the optimal solutions and the
impact of model’s building time.

Table I presents the average computation time µ and the
standard deviation σ for both integer linear program ILP
and its relaxation to linear program LP. The minimal and
maximal values are also specified. The first observation is
that computation times remains quite low, in the order of a
half-second for LPs and two seconds for ILPs. The major
part is taken by the building of the mathematical program
which takes 34s (mostly by the conservation law) regardless
of which model is built. Secondly, when the solver runs the
LP model, almost 8 problems (exactly 7, 66 on average) under
81 admit a non-integer value of the objective function, over
the 30 generated instances. This result represents almost 10%
of all instances. However, every time we get a non-integer
optimal value, the integer one has always the same integer
part. Hence it comes that we conjecture the existence of an
integer optimal solution for LP and that the difference between
the two criteria values comes from rounding errors.

Figure 2 shows a 3-dimensional Pareto frontier for a
particular instance. When all the demands are satisfied, the
minimal number of vehicles equals 50. In this case, at least
70 relocation operations are necessary. If the number of vehicle
increases to 70, 50 relocations are needed. This confirms that
the two criteria are in opposition and that there exists a tradeoff
area between them.

3) Scalability experimentations: The aim of this second
experimentation is to measure the overall computation times
following the size of the problem. We observed previously
that its most important part comes from the linear program
generation.

Table II presents the generation times depending on the
number of stations and time-steps. Each measure was obtained
from one instance since the time needed for generating the
model only depends on the size of the time extended graph.
Note that when N = 50, T = 288 and R = C = 80,
GLPK founds an optimal solution within 1′20 minute and an

Fig. 2. 3-dimensional Pareto frontier

TABLE II
GENERATION TIME DEPENDING ON THE SIZE OF THE GRAPH (IN SECONDS)

H
HHHT

N
10 20 30 40 50

72 14 59
138 147 310

≈ 2′30 ≈ 3′ ≈ 5′

144 53
234 343 632 1437

≈ 4′ ≈ 5′30 ≈ 10′30 ≈ 24′

288
211 997 1417 2481 4735

≈ 2′30 ≈ 16′30 ≈ 23′30 ≈ 41′30 ≈ 1h20′

integer optimal solution within 1′30 minute. We observe that
the generation time grows linearly following the number of
arcs of the time extended graph, which is around 700 000 for
this instance. Moreover, this is confirmed by the correlation
coefficient between generation time and the number of arcs in
the graph standing at 95, 9%. This result is coherent since the
size of the linear model and the number of variables are both
in Θ(|A|).

For the biggest instance (N = 50, T = 288), the relocation
arcs represent 98% of the total number of arcs. Therefore, we
suggest to increase the scalability of the method by considering
for example only short distance relocation arcs or defining
them at fixed time-steps.

IV. CONCLUSION

In this paper, we investigated the optimization of a car-
sharing one-way system which can be integrated in a mul-
timodal transportation system. Specifically, in dense urban
context, the demand of those systems may originate from
any other modes of transportation such as trains, subways,
bikes, etc. The optimization focus on fleet dimensioning when
station locations and accurate demand are given. We proposed
an integer linear program based on flows and we suggested
three optimization criteria: maximizing the overall demand the
system can absorbed, and minimizing the number of vehicles
and relocation operations needed. We also described how to
extract the total number of vehicles from any optimal flow.

Two numerical experiments were made using an open-
source solver (GLPK). The fist one investigated computation
times over small instances generated by a random generator.
It turns out that the latter is negligible compared to the model
building time. Furthermore, we observed that for each non-
integer optimal value we get solving the LP model, its integer
part is always equal to the optimal value of the corresponding
ILP model. This let us think that the LP solution must contain
rounding errors and might be integer. We intend to clarify this
point in further research. A graphical representation of a 3-
dimensional Pareto frontier served to underline and to confirm
that the optimizations criteria are in opposition.

The second experiment aims at specifying the time needed
for building the mathematical model when the problem grows.
As it is shown in the paper, the number of constraints of

the mathematical model as well as the number of decision
variables are both in the range of the number of arcs present in
the time extended graph. We suggested to reduce this number
in order to improve model generation time selecting only
those at fixed time-step representing short distance relocation
operations.

The choice of GLPK instead of a commercial solver is
mainly motivated by our industrial context. The good quality
and the scalability of the solutions we obtained using this
open-source solver allow us to transfer easily our methodology
in an industrial environment.

ACKNOWLEDGMENT

This research work has been carried out in the framework of
the Technological Research Institute SystemX, and therefore
granted with public funds within the scope of the French
Program “Investissements d’Avenir”.

REFERENCES

[1] W. J. Mitchell, Reinventing the automobile: Personal urban mobility for
the 21st century. MIT Press, 2010.

[2] S. A. Shaheen, D. Sperling, and C. Wagner, “A short history of
carsharing in the 90’s,” 1999.

[3] D. Jorge and G. Correia, “Carsharing systems demand estimation and
defined operations: a literature review,” EJTIR, vol. 13, no. 3, p. 201220,
2013.

[4] J. Firnkorn and M. Mller, “What will be the environmental effects of new
free-floating car-sharing systems? the case of car2go in ulm,” Ecological
Economics, vol. 70, no. 8, p. 15191528, 2011.

[5] A. Fink and T. Reiners, “Modeling and solving the short-term car
rental logistics problem,” Transportation Research Part E: Logistics and
Transportation Review, vol. 42, no. 4, pp. 272–292, Jul. 2006.

[6] Y. Yang, W. Jin, and X. Hao, “Car rental logistics problem: A review of
literature,” in Service Operations and Logistics, and Informatics, 2008.
IEEE/SOLI 2008. IEEE International Conference on, vol. 2. IEEE,
2008, pp. 2815–2819.

[7] H. Wang, R. Cheu, and D.-H. Lee, “Dynamic relocating vehicle re-
sources using a microscopic traffic simulation model for carsharing
services,” in Computational Science and Optimization (CSO), 2010
Third International Joint Conference on, vol. 1, 2010, p. 108111.

[8] T. Cucu, L. Ion, Y. Ducq, and J. Boussier, “Management of a public
transportation service: Car-sharing service,” 2009.

[9] R. Nair and E. Miller-Hooks, “Fleet management for vehicle sharing
operations,” Transportation Science, vol. 45, no. 4, p. 524540, 2011.

[10] S. L. Smith, M. Pavone, M. Schwager, E. Frazzoli, and D. Rus,
“Rebalancing the rebalancers: Optimally routing vehicles and drivers in
mobility-on-demand systems,” arXiv preprint arXiv:1303.3522, 2013.

[11] W. D. Fan, R. B. Machemehl, and N. E. Lownes, “Carsharing: Dy-
namic decision-making problem for vehicle allocation,” Transportation
Research Record: Journal of the Transportation Research Board, vol.
2063, no. 1, p. 97104, 2008.

[12] G. H. d. A. Correia and A. P. Antunes, “Optimization approach to depot
location and trip selection in one-way carsharing systems,” Transporta-
tion Research Part E: Logistics and Transportation Review, vol. 48,
no. 1, pp. 233–247, Jan. 2012.

[13] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows: theory,
algorithms, and applications. Englewood Cliffs, N.J.: Prentice Hall,
1993.

[14] “AMPL.” [Online]. Available: http://ampl.com/
[15] “GLPK - GNU linear programming kit.” [Online]. Available:

http://www.gnu.org/software/glpk/

