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Introduction

Gaussian processes are widely used in statistics to model spatial data. When fitting a Gaussian field, one has to deal with the issue of the estimation of its covariance. In many cases, a model is chosen for the covariance, which turns the problem into a parametric estimation problem. Within this framework, the maximum likelihood estimator (MLE) of the covariance parameters of a Gaussian stochastic process observed in R d , d ≥ 1, has been deeply studied in the last years in the two following asymptotic frameworks.

The fixed domain asymptotic framework, sometimes called infill asymptotics [START_REF] Stein | Interpolation of Spatial Data[END_REF][START_REF] Cressie | Statistics for spatial data[END_REF], corresponds to the case where more and more data are observed in some fixed bounded sampling domain (usually a region of R d ). The increasing domain asymptotic framework corresponds to the case where the sampling domain increases with the number of observed data and the distance between any two sampling locations is bounded away from 0. The asymptotic behavior of the MLE of the covariance parameters can be quite different in these two frameworks [START_REF] Zhang | Towards reconciling two asymptotic frameworks in spatial statistics[END_REF].

Consider first increasing-domain asymptotics. Then, generally speaking, for all (identifiable) covariance parameters, the MLE is consistent and asymptotically normal under some mild regularity conditions. The asymptotic covariance matrix is equal to the inverse of the (asymptotic) Fisher information matrix. This result was first shown by [START_REF] Mardia | Maximum likelihood estimation of models for residual covariance in spatial regression[END_REF], and then extended in different directions by [START_REF] Cressie | The asymptotic distribution of REML estimators[END_REF][START_REF] Cressie | Asymptotics for REML estimation of spatial covariance parameters[END_REF][START_REF] Shaby | Tapered covariance: Bayesian estimation and asymptotics[END_REF][START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF].

The situation is significantly different under fixed domain asymptotics. Indeed, two types of covariance parameters can be distinguished: microergodic and non-microergodic parameters [START_REF] Ibragimov | Gaussian Random Processes[END_REF][START_REF] Stein | Interpolation of Spatial Data[END_REF]. A covariance parameter is microergodic if, for two different values of it, the two corresponding Gaussian measures are orthogonal, see [START_REF] Ibragimov | Gaussian Random Processes[END_REF][START_REF] Stein | Interpolation of Spatial Data[END_REF]. It is non-microergodic if, even for two different values of it, the two corresponding Gaussian measures are equivalent. Non-microergodic parameters can not be estimated consistently, but misspecifying them asymptotically results in the same statistical inference as specifying them correctly [START_REF] Stein | Asymptotically efficient prediction of a random field with a misspecified covariance function[END_REF][START_REF] Stein | Bounds on the efficiency of linear predictions using an incorrect covariance function[END_REF][START_REF] Stein | Uniform asymptotic optimality of linear predictions of a random field using an incorrect second-order structure[END_REF][START_REF] Zhang | Towards reconciling two asymptotic frameworks in spatial statistics[END_REF]. On the other hand, it is at least possible to consistently estimate microergodic covariance parameters, and misspecifying them can have a strong negative impact on inference.

Nevertheless, under fixed domain asymptotics, it has often proven to be challenging to establish the microergodicity or non-microergodicity of covariance parameters, and to provide asymptotic results for estimators of microergodic parameters. Most available results are specific to particular covariance models. When d = 1 and the covariance model is exponential, only a reparameterized quantity obtained from the variance and scale parameters is microergodic. It is shown in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF] that the MLE of this microergodic parameter is consistent and asymptotically normal. When d > 1 and for a separable exponential covariance function, all the covariance parameters are microergodic, and the asymptotic normality of the MLE is proved in [START_REF] Ying | Maximum likelihood estimation of parameters under a spatial sampling scheme[END_REF]. Other results in this case are also given in [START_REF] Van Der | Maximum likelihood estimation under a spatial sampling scheme[END_REF][START_REF] Abt | Fisher information and maximum-likelihood estimation of covariance parameters in Gaussian stochastic processes[END_REF][START_REF] Chen | Infill asymptotics for a stochastic process model with measurement error[END_REF]. Consistency of the MLE is shown as well in [START_REF] Loh | Estimating structured correlation matrices in smooth Gaussian random fields models[END_REF] for the scale covariance parameters of the Gaussian covariance function and in [START_REF] Loh | Fixed-domain asymptotics for a subclass of Matérn-type Gaussian random fields[END_REF] for all the covariance parameters of the separable Matérn 3/2 covariance function. Finally, for the entire isotropic Matérn class of covariance functions, all parameters are microergodic for d > 4 [START_REF] Anderes | On the consistent separation of scale and variance for Gaussian random fields[END_REF], and only reparameterized parameters obtained from the scale and variance are microergodic for d ≤ 3 [START_REF] Zhang | Inconsistent estimation and asymptotically equivalent interpolations in model-based geostatistics[END_REF]. In [START_REF] Kaufman | The role of the range parameter for estimation and prediction in geostatistics[END_REF], the asymptotic distribution of MLEs for these microergodic parameters is provided, generalizing previous results in [START_REF] Du | Fixed-domain asymptotic properties of tapered maximum likelihood estimators[END_REF] and [START_REF] Wang | On fixed-domain asymptotics and covariance tapering in Gaussian random field models[END_REF].

All the results discussed above have been obtained when considering a univariate stochastic process. There are few results on maximum likelihood in the multivariate setting. Under increasing-domain asymptotics [START_REF] Bevilacqua | Assessing the significance of the correlation between the components of a bivariate Gaussian random field[END_REF] extend the results of [START_REF] Mardia | Maximum likelihood estimation of models for residual covariance in spatial regression[END_REF] to the bivariate case and consider the asymptotic distribution of the MLE for a large class of bivariate covariance models in order to test the independence between two Gaussian processes. In [START_REF] Furrer | Asymptotic properties of multivariate tapering for estimation and prediction[END_REF], asymptotic consistency of the tapered MLE for multivariate processes is established, also under increasing domain asymptotics. In [START_REF] Pascual | Estimation of linear correlation coefficient of two correlated spatial processes[END_REF], some results are given on the distribution of the MLE of the correlation parameter between the two components of a bivariate stochastic process with a separable structure, when the space covariance is known, regardless of the asymptotic framework. In [START_REF] Lehrke | Large sample properties of ML estimator of the parameters of multivariate O-U random fields[END_REF], the fixed domain asymptotic results of [START_REF] Ying | Maximum likelihood estimation of parameters under a spatial sampling scheme[END_REF] are extended to the multivariate case, for d = 3 and when the correlation parameters between the different Gaussian processes are known. Finally, under fixed domain asymptotics, in the bivariate case and when considering an isotropic Matérn model, [START_REF] Zhang | When doesn't cokriging outperform Kriging?[END_REF] show which covariance parameters are microergodic.

In this paper, we will extend the results of [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF] (when d = 1 and the covariance function is exponential) to the bivariate case. First we will consider the equivalence of Gaussian measures, that is to say we will characterize which covariance parameters are microergodic. In the univariate case, [START_REF] Abt | Fisher information and maximum-likelihood estimation of covariance parameters in Gaussian stochastic processes[END_REF] characterize the equivalence of Gaussian measures with exponential covariance function using the entropy distance criteria. We extend their approach to the bivariate case. It turns out, similarly as in the univariate case, that not all covariance parameters are microergodic. Hence not all covariance parameters can be consistently estimated. Then we establish the consistency and the asymptotic normality of the MLE of the microergodic parameters. Some our proof methods are natural extensions of those of [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF] in the univariate case, while others are specific to the bivariate case.

The paper falls into the following parts. In Section 2 we characterize the equivalence of Gaussian measures, and describe which covariance parameters are microergodic. In Section 3 we establish the strong consistency of the MLE of the microergodic parameters. Section 4 is devoted to its asymptotic distribution. Some technical lemmas are needed in order to prove these results and, in particular, Lemma 4.1 is essential to prove the asymptotic normality results. The proofs of the technical lemmas are postponed to the appendix. Section 5 provides a simulation study that shows how well the given asymptotic distributions apply to finite sample cases. The final section provides a discussion and open problems for future research.

Equivalence of Gaussian measures

First we present some notations used in the whole paper. If A = (a ij ) 1≤i≤k,1≤j≤n is a k × n matrix and B = (b ij ) 1≤i≤p,1≤j≤q is a p × q matrix, then the Kronecker product of the two matrices, denoted by A ⊗ B, is the kp × nq block matrix

A ⊗ B =    a 11 B . . . a 1n B . . . . . . . . . a k1 B . . . a kn B    .
In the following, we will consider a stationary zero-mean bivariate Gaussian process observed on fixed compact subset

T of R, Z(s) = {(Z 1 (s), Z 2 (s)) ⊤ , s ∈ T } with covariance function indexed by a parameter ψ = (σ 2 1 , σ 2 2 , ρ, θ) ⊤ ∈ R 4 , given by Cov ψ (Z i (s l ), Z j (s m )) = σ i σ j (ρ + (1 -ρ)1 i=j )e -θ|s l -sm| , i, j = 1, 2. (1) 
Note that σ 2 1 , σ 2 2 > 0 are marginal variances parameters and θ > 0 is a correlation decay parameter. The quantity ρ with |ρ| < 1 is the so-called colocated correlation parameter [START_REF] Gneiting | Matérn cross-covariance functions for multivariate random fields[END_REF], that expresses the correlation between Z 1 (s) and Z 2 (s) for each s. For i = 1, 2, the covariance of the marginal process

Z i (s) is Cov ψ (Z i (s l ), Z i (s m )) = σ 2
i e -θ|s l -sm| . Such process is known as the Ornstein-Uhlenbeck process and it has been widely used to model physical, biological, social, and many other phenomena. Denote by P ψ the distribution of the bivariate process Z, under covariance parameter ψ. As we consider fixed domain asymptotic, the process Z(s) is observed at an increasing number of points on a compact set T . Without loss of generality we consider T = [0, 1] and denote by 0 ≤ s 1 < . . . < s n ≤ 1 the observation points of the process. Let us notice that the points s 1 , . . . , s n are allowed to be permuted when new points are added and that these points are assumed to be dense in T when n tends towards infinity. The observations can thus be written as

Z n = (Z ⊤ 1,n , Z ⊤ 2,n ) ⊤ with Z i,n = (Z i (s 1 ), . . . , Z i (s n )) ⊤ for i = 1, 2. Hence the observation vector Z n follows a centered Gaussian distribution Z n ∼ N(0, Σ(ψ)) with covariance matrix Σ(ψ) = A ⊗ R, given by A = σ 2 1 σ 1 σ 2 ρ σ 1 σ 2 ρ σ 2 2 , R = e -θ|sm-s l | 1≤m,l≤n , (2) 
and the associated likelihood function is given by

f n (ψ) = (2π) -n |Σ(ψ)| -1/2 e -1 2 Zn ⊺ Σ(ψ) -1 Zn . (3) 
The aim of this section is to provide a necessary and sufficient condition to warrant equivalence between two Gaussian measures P ψ 1 and P ψ 2 with

ψ i = (σ 2 i,1 , σ 2 i,2 , ρ i , θ i ) ⊤ , i = 1, 2.
Specifically let us define the symmetrized entropy

I n (P ψ 1 , P ψ 2 ) = E ψ 1 log f n (ψ 1 ) f n (ψ 2 ) + E ψ 2 log f n (ψ 2 ) f n (ψ 1 ) . ( 4 
)
We assume in this section that the observation points are the terms of a growing sequence in the sense that, at each step, new points are added to the sampling scheme but none is deleted. This assumption ensures that I n (P ψ 1 , P ψ 2 ) is an increasing sequence. Hence we may define the limit I(P 

∆ i = 0. Let R j = e -θ j |sm-s l |
1≤m,l≤n , j = 1, 2. By expanding (4) we find that

I n (P ψ 1 , P ψ 2 ) = 1 2 1 (1 -ρ 2 2 ) σ 2 1,1 σ 2 1,2 -2 σ 1,1 σ 2,1 ρ 1 ρ 2 σ 1,2 σ 2,2 + σ 2 2,1 σ 2 2,2 tr(R 1 R -1 2 ) + 1 (1 -ρ 2 1 ) σ 2 1,2 σ 2 1,1 -2 σ 1,2 σ 2,2 ρ 1 ρ 2 σ 1,1 σ 2,1 + σ 2 2,2 σ 2 2,1 tr(R 2 R -1 1 ) -2n. If σ 2 i,1 θ 1 = σ 2 i,2 θ 2 and ρ 1 = ρ 2 for i = 1, 2 we obtain I n (P ψ 1 , P ψ 2 ) = θ 2 θ 1 tr(R 1 R -1 2 ) + θ 1 θ 2 tr(R 2 R -1 1 ) -2n.
In order to compute tr(R 1 R -1 2 ) and tr(R 2 R -1 1 ), we use some results in [START_REF] Antognini | Exact optimal designs for computer experiments via Kriging metamodelling[END_REF]. The matrix R j can be written as follows,

R j =          1 e -θ j ∆ 2 • • • e -θ j n i=2 ∆ i e -θ j ∆ 2 1 • • • e -θ j n i=3 ∆ i . . . . . . . . . . . . e -θ j n i=2 ∆ i e -θ j n i=3 ∆ i • • • 1         
and R -1 j can be written as

R -1 j =           1 1-e -2θ j ∆ 2 -e -θ j ∆ 2 1-e -2θ j ∆ 2 0 • • • 0 -e -θ j ∆ 2 1-e -2θ j ∆ 2 1 
1-e -2θ j ∆ 2 + e -2θ j ∆ 3

1-e -2θ j ∆ 3 1-e -2θ j ∆n -e -θ j ∆n 1-e -2θ j ∆n

0 • • • 0 -e -θ j ∆n 1-e -2θ j ∆n 1 1-e -2θ j ∆n           . Since, tr(R j R -1 k ) = n i=1 n m=1 (R j ⊗ R -1 k ) im , j, k = 1, 2, j = k, we have tr(R j R -1 k ) = -2 n i=2 e -(θ j +θ k )∆ i 1 -e -2θ k ∆ i + n i=2 1 1 -e -2θ k ∆ i + n i=3 e -2θ k ∆ i 1 -e -2θ k ∆ i + 1 1 -e -2θ k ∆ 2 = n i=2 -2e -(θ j +θ k )∆ i + 1 + e -2θ k ∆ i 1 -e -2θ k ∆ i + 1 = n i=2 (e -θ k ∆ i -e -θ j ∆ i ) 2 1 -e -2θ k ∆ i + n i=2 1 -e -2θ j ∆ i 1 -e -2θ k ∆ i + 1.
Then, we can write I n (P ψ 1 , P ψ 2 ) as

I n (P ψ 1 , P ψ 2 ) = θ 2 θ 1 n i=2 (e -θ 1 ∆ i -e -θ 2 ∆ i ) 2 1 -e -2θ 2 ∆ i + n i=2 1 -e -2θ 1 ∆ i 1 -e -2θ 2 ∆ i + 1 + θ 1 θ 2 n i=2 (e -θ 2 ∆ i -e -θ 1 ∆ i ) 2 1 -e -2θ 1 ∆ i + n i=2 1 -e -2θ 2 ∆ i 1 -e -2θ 1 ∆ i + 1 -2n.
For j, k = 1, 2, j = k, as is obtained by Taylor expansion, since max i ∆ i tends to 0, we have

max 2≤i≤n 1 -e -2θ j ∆ i ∆ i (1 -e -2θ k ∆ i ) - θ j ∆ i θ k = O(1) and max 2≤i≤n (e -θ j ∆ i -e -θ k ∆ i ) 2 ∆ i (1 -e -2θ k ∆ i ) = O(1)
Since i ∆ i tends to 1,

I n (P ψ 1 , P ψ 2 ) = θ 2 θ 1 (1 + O(1)) + θ 1 θ 2 (1 + O(1))
and

I(P ψ 1 , P ψ 2 ) = lim n→∞ I n (P ψ 1 , P ψ 2 ) < ∞.
Then the two Gaussian measures P ψ 1 and P ψ 2 are equivalent on the σ-algebra generated by Z if and only if

σ 2 i,1 θ 1 = σ 2 i,2 θ 2 , i = 1, 2
, and ρ 1 = ρ 2 . . Note that sufficient conditions for the equivalence of Gaussian measures using a generalization of the covariance model (1) are given in [START_REF] Zhang | When doesn't cokriging outperform Kriging?[END_REF]. A consequence of the previous lemma is that it is not possible to estimate consistently all the parameters individually if the data are observed on a compact set T . However the microergodic parameters σ 2 1 θ, σ 2 2 θ and ρ are consistently estimable. The following section is devoted to their estimation.

Consistency of the Maximum Likelihood Estimator

Let ψ = ( θ, σ2

1 , σ2 2 , ρ) ⊤ be the MLE obtained by maximizing f n (ψ) with respect to ψ. In the rest of the paper, we will denote by θ 0 , σ 2 i0 , i = 1, 2 and ρ 0 the true but unknown parameters that have to be estimated. We let var = var ψ 0 , cov = cov ψ 0 and E = E ψ 0 denote the variance, covariance and expectation under P ψ 0 . In this section, we establish the strong consistency of ρ, θσ 2 1 and θσ 2 2 , that is the MLE of the microergodic parameters. We first consider an explicit expression for the negative log-likelihood function

l n (ψ) = -2 log(f n (ψ)) = 2n log(2π) + log |Σ(ψ)| + Z ⊤ n [Σ(ψ)] -1 Z n . (5) 
The explicit expression is given in the following lemma whose proof can be found in the appendix.

Lemma 3.1. The negative log-likelihood function in Equation ( 5) can be written as

l n (ψ) = n log(2π) + log(1 -ρ 2 ) + 2 k=1 log(σ 2 k ) + 2 k=1 n i=2 log σ 2 k 1 -e -2θ∆ i + 1 1 -ρ 2 2 k=1 1 σ 2 k z 2 k,1 + n i=2 z k,i -e -θ∆ i z k,i-1 2 1 -e -2θ∆ i - 2ρ σ 1 σ 2 z 1,1 z 2,1 + n i=2 z 1,i -e -θ∆ i z 1,i-1 z 2,i -e -θ∆ i z 2,i-1 1 -e -2θ∆ i , with z k,i = Z k (s i ) and ∆ i = s i -s i-1 , i = 2, . . . , n.
The following theorem uses Lemma 3.1 in order to establish strong consistency of MLE of the microergodic parameters ρ, θσ 2 1 , θσ 2 2 .

Theorem 3.2.

Let J = (a θ , b θ ) × (a σ 1 , b σ 1 ) × (a σ 2 , b σ 2 ) × (a ρ , b ρ ), with 0 < a θ ≤ θ 0 ≤ b θ < ∞, 0 < a σ 1 ≤ σ 2 01 ≤ b σ 1 < ∞, 0 < a σ 2 ≤ σ 2 02 ≤ b σ 2 < ∞ and -1 < a ρ ≤ ρ 0 ≤ b ρ < 1. Define ψ = ( θ, σ2 1 , σ2 2 , ρ) as the minimum of the negative log-likelihood estimator, solution of l n ( ψ) = min ψ∈J l n (ψ). (6) 
Then, with probability one, ψ exist for n large enough and when n → +∞

ρ a.s -→ ρ 0 , (7) θσ 2 1 a.s -→ θ 0 σ 2 01 , (8) θσ 2 2 a.s -→ θ 0 σ 2 02 . (9) 
Proof. The proof follows the guideline of the consistency of the maximum likelihood estimation given in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF]. Hence consistency results given in ( 7), ( 8) and ( 9) hold as long as we can prove that there exist 0 < d < D < ∞ such that for every ǫ > 0, ψ and ψ, with

ψ -ψ > ǫ min {ψ∈J, ψ-ψ >ǫ} l n (ψ) -l n ( ψ) → ∞ a.s. ( 10 
)
where

ψ = ( θ, ρ 2 , σ 2 1 , σ 2 
2 ) ⊤ ∈ J can be any nonrandom vector such that

ρ = ρ 0 , θ σ 2 1 = θ 0 σ 2 01 , θ σ 2 2 = θ 0 σ 2 02 .
In order to simplify our notation, let

W k,i,n = z k,i -e -θ 0 ∆ i z k,i-1 [σ 2 0k (1-e -2θ 0 ∆ i )] 1 2 
, k = 1, 2, i = 2, ..., n. By the Markovian and Gaussian properties of Z 1 and Z 2 , it follows that for each 

i ≥ 2, W k,i,n is independent of {Z k,j , j ≤ i -1} , k = 1, 2. Moreover {W k,i,n , 2 ≤ i ≤ n} , k = 1,
l n (ψ) = 2 k=1 n i=2 log σ 2 k 1 -e -2θ∆ i + 1 1 -ρ 2 2 k=1 n i=2 z k,i -e -θ∆ i z k,i-1 2 σ 2 k (1 -e -2θ∆ i ) + 2ρ (1 -ρ 2 ) n i=2 z 1,i -e -θ∆ i z 1,i-1 z 2,i -e -θ∆ i z 2,i-1 σ 1 σ 2 (1 -e -2θ∆ i ) + n log(2π) + c(ψ, n), with c(ψ, n) = 2 k=1 log σ 2 k + n log (1 -ρ 2 ) + 1 1-ρ 2 2 k=1 z 2 k,1 σ 2 k -2ρ z 1,1 z 2,1 σ 1 σ 2
and from the proof of Theorem 1 in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF], uniformly in

0 < θ ≤ d θ and σ 2 k ∈ [a σ k , b σ k ], k = 1, 2 : n i=2 z k,i -e -θ∆ i z k,i-1 2 σ 2 k (1 -e -2θ∆ i ) = n i=2 σ 2 0k (1 -e -2θ 0 ∆ i ) σ 2 k (1 -e -2θ∆ i ) W 2 k,i,n + O(n 1 2 ), k = 1, 2. (11) 
Moreover, from Cauchy-Schwarz inequality,

n i=2 z 1,i -e -θ∆ i z 1,i-1 z 2,i -e -θ∆ i z 2,i-1 σ 1 σ 2 (1 -e -2θ∆ i ) ≤ 2 k=1 n i=2 σ 2 0k (1 -e -2θ 0 ∆ i ) σ 2 k (1 -e -2θ∆ i ) W 2 k,i,n + O(n 1 2 ) 1 2 , (12) 
and from Lemma 2(ii) in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF] uniformly in θ ≤ R and

σ 2 k ∈ [a σ k , b σ k ], for every α k > 0, with k = 1, 2, n i=2 σ 2 0k (1 -e -2θ 0 ∆ i ) σ 2 k (1 -e -2θ∆ i ) W 2 k,i,n = σ 2 0k θ 0 σ 2 k θ (n -1) + 1 θ O(n 1 2 +α k ), k = 1, 2. (13) 
Combining ( 11), ( 12) and ( 13), we can write,

l n (ψ) ≥ n log(2π) + c(ψ, n) + 2 k=1 n i=2 log σ 2 k 1 -e -2θ∆ i + 1 1 -ρ 2 O(n 1 2 ) + 1 1 -ρ 2 2 k=1 n i=2 σ 2 0k (1 -e -2θ 0 ∆ i ) σ 2 k (1 -e -2θ∆ i ) W 2 k,i,n - 2ρ 1 -ρ 2 n 2 k=1 σ 2 0k θ 0 σ 2 k θ + 1 nθ O(n 1 2 +α k ) - 1 n σ 2 0k θ 0 σ 2 k θ 1 2
.

Therefore [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF], for some M k > 0 and uniformly in θ ≤ R and

l n (ψ) -l n ( ψ) ≥ p(ψ, ψ, n) + 2 k=1 n i=2 log σ 2 k (1 -e -2θ∆ i ) σ 2 k (1 -e -2 θ∆ i ) + 2 k=1 n i=2 1 1 -ρ 2 σ 2 0k (1 -e -2θ 0 ∆ i ) σ 2 k (1 -e -2θ∆ i ) - 1 1 -ρ 2 σ 2 0k (1 -e -2θ 0 ∆ i ) σ 2 k (1 -e -2 θ∆ i ) W 2 k,i,n - 2ρ 1 -ρ 2 n θ 2 k=1 σ 2 0k θ 0 σ 2 k + 1 n O(n 1 2 +α k ) - 1 n σ 2 0k θ 0 σ 2 k 1 2 + 2 ρ 1 -ρ 2 n 2 k=1 1 + 1 n θ O(n 1 2 +α k ) - 1 n 1 2 + 1 1 -ρ 2 O(n 1 2 ) + 1 1 -ρ 2 O(n 1 2 ), where p(ψ, ψ, n) = c(ψ, n) -c( ψ, n). From lemma 2 in
σ 2 k ∈ [a σ k , b σ k ], k = 1, 2 n i=2 log σ 2 k (1 -e -2θ∆ i ) σ 2 k (1 -e -2 θ∆ i ) ≥ n i=2 log θ M k = (n -1) log θ M k , k = 1, 2. (14) 
and

n i=2 1 1 -ρ 2 σ 2 0k (1 -e -2θ 0 ∆ i ) σ 2 k (1 -e -2θ∆ i ) - 1 1 -ρ 2 σ 2 0k (1 -e -2θ 0 ∆ i ) σ 2 k (1 -e -2 θ∆ i ) W 2 k,i,n (15) 
= (n -1) 1 1 -ρ 2 σ 2 0k θ 0 σ 2 k θ - 1 1 -ρ 2 + θ -1 O(n 1 2 +α k ), k = 1, 2.
Let ρ = min { ρ, ρ} and combining ( 14) and ( 15), we can write,

l n (θ, ρ, σ 2 1 , σ 2 2 ) -l n ( θ, ρ, σ 2 1 , σ 2 2 ) ≥ p(ψ, ψ, n) + 2 k=1 n θ(1 -ρ 2 0 ) σ 2 0k θ 0 σ 2 k + O(n γ k -1 ) - 2 k=1 1 1 -ρ 2 0 σ 2 0k θ 0 σ 2 k θ + 2 k=1 (n -1) log M k θ - 1 1 -ρ 2 0 - 2ρ 0 1 -ρ 2 0 n θ 2 k=1 σ 2 0k θ 0 σ 2 k + 1 n O(n 1 2 +α k ) - 1 n σ 2 0k θ 0 σ 2 k 1 2 + 2ρ 0 1 -ρ 2 0 n 2 k=1 1 + 1 n θ O(n 1 2 +α k ) - 1 n 1 2
.

for some

γ k < 1, k = 1, 2, where the O(n γ k ) term is uniform in θ ≤ R.
Since some log(θ) -1 = o(θ -1 ) as θ ↓ 0, we can choose δ θ small enough so that for all θ ≤ δ θ ,

σ 2 0 θ 0 2bσθ -1 -log( M θ ) ≥ η, which implies that with probability 1, l n (θ, ρ, σ 2 1 , σ 2 2 ) -l n ( θ, ρ, σ 2 1 , σ 2 2 ) ≥ p(ψ, ψ, n) + n (1 -ρ 2 0 ) 1 θ 2 k=1 σ 2 0k θ 0 2b σ k + O(n γ k -1 ) -2ρ 0 2 k=1 1 θ σ 2 0k θ 0 σ 2 k + O(n α k -1 2 ) - 1 n σ 2 0k θ 0 σ 2 k 1 2 - 2 k=1 1 + 1 θ O(n α k -1 2 ) - 1 n 1 2
.

Thus we get [START_REF] Stein | Asymptotically efficient prediction of a random field with a misspecified covariance function[END_REF] by letting

d θ = δ θ . Hence, since p(ψ, ψ, n) → 0, 1 θ 2 k=1 σ 2 0k θ 0 2b σ k + O(n γ k -1 ) ≤ ∞ and -2ρ 0 2 k=1 1 θ σ 2 0k θ 0 σ 2 k + O(n α k -1 2 ) - 1 n σ 2 0k θ 0 σ 2 k 1 2 - 2 k=1 1 + 1 θ O(n α k -1 2 ) - 1 n 1 2
≤ ∞, we prove that min {ψ∈J, ψ-ψ >ǫ}

l n (θ, ρ, σ 2 1 , σ 2 2 ) -l n ( θ, ρ, σ 2 1 , σ 2 2 ) → ∞
when n → ∞, uniformly in θ ≤ δ θ .

Asymptotic distribution

Before we state the main result on the MLE asymptotic distribution, we need to introduce some notation that will be used throughout this paper. Because of Theorem 3.2, there exists a compact subset S of (0, +∞) × (0, +∞) × (0, +∞) × (-1, 1) of the form Θ × V × V × R, such that a.s. ψ belongs to S for n large enough. We let O u (1) denote any real function

g n (θ, ρ, σ 2 1 , σ 2 2 ) which satisfies sup (θ,ρ,σ 2 1 ,σ 2 2 )∈S |g n (θ, ρ, σ 2 1 , σ 2 2 )| = O(1). For example θσ 1 /(1 -ρ 2 ) = O u (1). We also let O up (1) denote any real function g n (θ, ρ, σ 2 1 , σ 2 2 , Z 1,n , Z 2,n ) which satisfies sup (θ,ρ,σ 2 1 ,σ 2 2 )∈S |g n (θ, ρ, σ 2 1 , σ 2 2 , Z 1,n , Z 2,n )| = O p (1). For example z 1,1 σ 1 = O up (1).
The following lemma is essential when establishing the asymptotic distribution of the microergodic parameters. 

L(θ) = n i=2 (z 1,i -e -θ∆ i z 1,i-1 )(z 2,i -e -θ∆ i z 2,i-1 )
1e -2θ∆ i , and G = [∂/∂θ]L(θ). Let for n ∈ N and i = 2, ..., n,

Y i,n = z 1,i -e -θ 0 ∆ i z 1,i-1 z 2,i -e -θ 0 ∆ i z 2,i-1 σ 01 σ 02 1 + ρ 2 0 (1 -e -2θ 0 ∆ i ) . ( 16 
)
Then for all n ∈ N, the (Y i,n ) i=2,...,n are independent with

E(Y i,n ) = ρ 0 /(1 + ρ 2 0 ) 1/2 and var(Y i,n ) = 1. Furthermore we have G = - σ 01 σ 02 1 + ρ 2 0 θ 0 θ 2 n i=2 Y i,n + O up (1).
Using the previous lemma, the following theorem establishes the asymptotic distribution of the MLE of the microergodic parameters. Specifically we consider three cases: first when both the colocated correlation and variance parameters are known, second when only the variance parameters are known and third when all the microergodic parameters are unknown.

Theorem 4.2. With the same notation and assumptions as in

Theorem 3.2, if a σ k = b σ k = σ 2 0k = σ2 k for k = 1, 2, a ρ = b ρ = ρ 0 = ρ and a θ < θ 0 < b θ then √ n( θ -θ 0 ) D -→ N 0, θ 2 0 . ( 17 
)
If a σ k = b σ k = σ 2 0k = σ2 k for k = 1, 2, a ρ < ρ 0 < b ρ and a θ < θ 0 < b θ , then √ n θ -θ 0 ρ -ρ 0 D -→ N (0, Σ θρ ) , ( 18 
)
where

Σ θρ = θ 2 0 (1 + ρ 2 0 ) θ 0 ρ 0 (1 -ρ 2 0 ) θ 0 ρ 0 (1 -ρ 2 0 ) (ρ 2 0 -1) 2 . Finally, if a σ k < σ 2 0k < b σ k for k = 1, 2, a ρ < ρ 0 < b ρ and a θ < θ 0 < b θ , then √ n   σ2 1 θ -σ 2 01 θ 0 σ2 2 θ -σ 2 02 θ 0 ρ -ρ 0   D -→ N (0, Σ f ) , (19) 
where

Σ f =   2(θ 0 σ 2 01 ) 2 2(θ 0 ρ 0 σ 01 σ 02 ) 2 θ 0 ρ 0 σ 2 01 (1 -ρ 2 0 ) 2(θ 0 ρ 0 σ 01 σ 02 ) 2 2(θ 0 σ 2 02 ) 2 θ 0 ρ 0 σ 2 02 (1 -ρ 2 0 ) θ 0 ρ 0 σ 2 01 (1 -ρ 2 0 ) θ 0 ρ 0 σ 2 02 (1 -ρ 2 0 ) (ρ 2 0 -1) 2   . Proof. Let s x (ψ) = ∂ ∂x l n (ψ)
the derivative of the negative log-likelihood with respect to x = σ 2 1 , σ 2 2 , θ, ρ. From Lemma 4.1 and from Equation (3.11) in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF] we can write, with W k,i,n as in the proof of Theorem 3.2,

s θ (ψ) = 2n θ - 1 1 -ρ 2 2 k=1 n i=2 σ 2 0k θ 0 σ 2 k θ 2 W 2 k,i,n -2ρ(1 + ρ 2 0 ) 1 2 σ 01 σ 02 θ 0 σ 1 σ 2 θ 2 n i=2 Y i,n + O up (1). ( 20 
)
Then from [START_REF] Anderes | On the consistent separation of scale and variance for Gaussian random fields[END_REF] we have

θ 2 (1 -ρ 2 )s θ (ψ) = (n -1) 2θ(1 -ρ 2 ) -θ 0 σ 2 01 σ 2 1 -2ρρ 0 σ 01 σ 02 σ 1 σ 2 + σ 2 02 σ 2 2 (21) 
-

2 k=1 n i=2 σ 2 0k θ 0 σ 2 k ξ k,i + 2ρ(1 + ρ 2 0 ) 1 2 θ 0 σ 01 σ 02 σ 1 σ 2 n i=2 ξ 3,i + O up (1), with ξ k,i = W 2 k,i,n -1, k = 1, 2 and ξ 3,i = Y i,n -ρ 0 (1+ρ 2 0 ) 1 2 
.

Then ψ satisfies s θ ( ψ) = 0 and in view of ( 21), we get

0 = θ2 (1 -ρ2 )s θ ( ψ) = (n -1) 2 θ(1 -ρ2 ) -θ 0 σ 2 01 σ2 1 -2ρρ 0 σ 01 σ 02 σ1 σ2 + σ 2 02 σ2 2 (22) 
-

2 k=1 n i=2 σ 2 0k θ 0 σ2 k ξ k,i + 2ρ(1 + ρ 2 0 ) 1 2 θ 0 σ 01 σ 02 σ1 σ2 n i=2 ξ 3,i + O p (1). If we set a σ k = b σ k = σ 2 0k = σ2 k for k = 1, 2 and a ρ = b ρ = ρ 0 = ρ in (22), we get 0 = 2(n -1) ( θ -θ 0 )(1 -ρ 2 0 ) -θ 0 2 k=1 n i=2 ξ k,i -2ρ 0 (1 + ρ 2 0 ) 1 2 n i=2 ξ 3,i + O p (1). (23) 
Hence [START_REF] Du | Fixed-domain asymptotic properties of tapered maximum likelihood estimators[END_REF] implies

√ n( θ -θ 0 ) = θ 0 n -1 2 2(1 -ρ 2 0 ) 2 k=1 n i=2 ξ k,i -2ρ 0 (1 + ρ 2 0 ) 1 2 n i=2 ξ 3,i + O p n -1 2 .
On the other hand, from the multivariate central limit theorem we get

n -1 2 n i=2   ξ 1,i ξ 2,i ξ 3,i   D -→ N (0, Σ ξ ) , (24) 
where

Σ ξ =     2 2ρ 2 0 2ρ 0 (1+ρ 2 0 ) 1 2 2ρ 2 0 2 2ρ 0 (1+ρ 2 0 ) 1 2 2ρ 0 (1+ρ 2 0 ) 1 2 2ρ 0 (1+ρ 2 0 ) 1 2 1     , is obtained by calculating Cov(ξ m,i , ξ l,i ) for m, l = 1, 2, 3 and i = 2, . . . , n. Hence we have √ n( θ -θ 0 ) D -→ N (0, Σ θ ) ,
where

Σ θ = θ 2 0 4(1-ρ 2 0 ) 2 1 1 -2ρ 0 (1 + ρ 2 0 ) 1 2     2 2ρ 2 0 2ρ 0 (1+ρ 2 0 ) 1 2 2ρ 2 0 2 2ρ 0 (1+ρ 2 0 ) 1 2 2ρ 0 (1+ρ 2 0 ) 1 2 2ρ 0 (1+ρ 2 0 ) 1 2 1       1 1 -2ρ 0 (1 + ρ 2 0 ) 1 2   .
12 Then, computing the previous quadratic form, we get

√ n( θ -θ 0 ) D -→ N 0, θ 2 0 , so (17) 
is proved. Now, we first prove ( 18) and ( 19) for ρ 0 ∈ (-1, 1) {0} and discuss the case ρ 0 = 0 at the end of the proof. To show [START_REF] Loh | Estimating structured correlation matrices in smooth Gaussian random fields models[END_REF], take differentiation with respec to ρ.

From the proof of Theorem 2 given in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF], and from arguments similar to those of the proof of Lemma 4.1, we get

s ρ (ψ) = -2nρ (1 -ρ 2 ) + 2ρ (1 -ρ 2 ) 2 2 k=1 n i=2 σ 2 0k θ 0 σ 2 k θ W 2 k,i,n - (1 + ρ 2 )(1 + ρ 2 0 ) 1 2 σ 01 σ 02 θ 0 ρσ 1 σ 2 θ n i=2 Y i,n +O up (1). (25) 
Then [START_REF] Bevilacqua | Assessing the significance of the correlation between the components of a bivariate Gaussian random field[END_REF] implies

- (1 -ρ 2 ) 2 θ 2ρ s ρ (ψ) = (n -1) θ(1 -ρ 2 ) -θ 0 σ 2 01 σ 2 1 - (1 + ρ 2 )ρ 0 ρ σ 01 σ 02 σ 1 σ 2 + σ 2 02 σ 2 2 (26) - 2 k=1 n i=2 σ 2 0k θ 0 σ 2 k ξ k,i - (1 + ρ 2 )(1 + ρ 2 0 ) 1 2 θ 0 ρ σ 01 σ 02 σ 1 σ 2 n i=2 ξ 3,i +O up (1),
Then ψ satisfies s ρ ( ψ) = 0 and in view of (26), we get

0 = - (1 -ρ2 ) 2 θ 2ρ s ρ ( ψ) = (n -1) θ(1 -ρ2 ) -θ 0 σ 2 01 σ2 1 - (1 + ρ2 )ρ 0 ρ σ 01 σ 02 σ1 σ2 + σ 2 02 σ2 2 - 2 k=1 n i=2 σ 2 0k θ 0 σ2 k ξ k,i - (1 + ρ2 )(1 + ρ 2 0 ) 1 2 θ 0 ρ σ 01 σ 02 σ1 σ2 n i=2 ξ 3,i +O p (1). (27) 
Then we can write, from ( 22) and ( 27)

0 0 = (n -1)   2 θ(1 -ρ2 ) -θ 0 σ 2 01 σ2 1 -2ρρ 0 σ 01 σ 02 σ1 σ2 + σ 2 02 σ2 2 θ(1 -ρ2 ) -θ 0 σ 2 01 σ2 1 -(1+ρ 2 )ρ 0 ρ σ 01 σ 02 σ1 σ2 + σ 2 02 σ2 2   -   σ 2 01 θ 0 σ2 1 σ 2 02 θ 0 σ2 2 -2ρ(1 + ρ 2 0 ) 1 2 θ 0 σ 01 σ 02 σ1 σ2 σ 2 01 θ 0 σ2 1 σ 2 02 θ 0 σ2 2 - (1+ρ 2 )(1+ρ 2 0 ) 1 2 θ 0 ρ σ 01 σ 02 σ1 σ2     n i=2 ξ 1,i n i=2 ξ 2,i n i=2 ξ 3,i   + O p (1). (28) 
If we set a σ k = b σ k = σ 2 0k = σ2 k for k = 1, 2 in (28), we get

0 0 = (n -1) 2 θ(1 -ρ2 ) -2θ 0 (1 -ρρ 0 ) θ(1 -ρ2 ) -θ 0 2 -(1+ρ 2 )ρ 0 ρ -θ 0 1 1 -2ρ(1 + ρ 2 0 ) 1 2 1 1 - (1+ρ 2 )(1+ρ 2 0 ) 1 2 ρ   n i=2 ξ 1,i n i=2 ξ 2,i n i=2 ξ 3,i   + O p (1) = (n -1)   2( θ -θ 0 ) -2ρ θ ρ -θ 0 ρ 0 ( θ -θ 0 ) -ρ θ ρ -θ 0 ρ 0 -θ 0 ρ (ρ -ρ 0 )   -θ 0 1 1 -2ρ 0 (1 + ρ 2 0 ) 1 2 1 1 - (1+ρ 2 0 ) 3 2 ρ 0 + o p (1)   n i=2 ξ 1,i n i=2 ξ 2,i n i=2 ξ 3,i   + O p (1). (29) 
Furthermore,

  2( θ -θ 0 ) -2 ρ θ ρ -θ 0 ρ 0 ( θ -θ 0 ) -ρ θ ρ -θ 0 ρ 0 -θ0 ρ (ρ -ρ 0 )   = 2 -2 ρ 0 1 -ρ -θ0 ρ   θ -θ 0 θ ρ -θ 0 ρ 0 ρ -ρ 0   = 2 -2ρ 0 0 1 -ρ 0 -θ0 ρ0 + o p (1)   θ -θ 0 ρ 0 ( θ -θ 0 ) + θ(ρ -ρ 0 ) ρ -ρ 0   = 2 -2ρ 0 0 1 -ρ 0 -θ0 ρ0 + o p (1)     1 0 ρ 0 θ 0 1   θ -θ 0 ρ -ρ 0   =   2 -2ρ 0 0 1 -ρ 0 -θ0 ρ0   1 0 ρ 0 θ 0 0 1   + o p (1)   θ -θ 0 ρ -ρ 0 = 2 -2ρ 2 0 -2ρ 0 θ 0 1 -ρ 2 0 -θ 0 ρ 0 -θ0 ρ0 + o p (1) θ -θ 0 ρ -ρ 0 . ( 30 
)
By taking the inverse of the 2 × 2 matrix in (30), we get from ( 29):

√ n θ -θ 0 ρ -ρ 0 = θ 0 n -1 2 1 2 1 2 0 -ρ 0 2θ 0 -ρ 0 2θ 0 √ 1+ρ 2 0 θ 0   n i=2 ξ 1,i n i=2 ξ 2,i n i=2 ξ 3,i   + o p (1).
From [START_REF] Wang | On fixed-domain asymptotics and covariance tapering in Gaussian random field models[END_REF] we can get

√ n θ -θ 0 ρ -ρ 0 D -→ N (0, Σ θρ ) ,
where

Σ θρ = θ 2 0 1 2 1 2 0 -ρ 0 2θ 0 -ρ 0 2θ 0 √ 1+ρ 2 0 θ 0     2 2ρ 2 0 2ρ 0 (1+ρ 2 0 ) 1 2 2ρ 2 0 2 2ρ 0 (1+ρ 2 0 ) 1 2 2ρ 0 (1+ρ 2 0 ) 1 2 2ρ 0 (1+ρ 2 0 ) 1 2 1     1 2 1 2 0 -ρ 0 2θ 0 -ρ 0 2θ 0 √ 1+ρ 2 0 θ 0 ⊤ .
Then, we get that

√ n θ -θ 0 ρ -ρ 0 -→ D N 0, θ 2 0 (1 + ρ 2 0 ) θ 0 ρ 0 (1 -ρ 2 0 ) θ 0 ρ 0 (1 -ρ 2 0 ) (-1 + ρ 2 0 ) 2 . ( 31 
)
Let us now show [START_REF] Loh | Fixed-domain asymptotics for a subclass of Matérn-type Gaussian random fields[END_REF]. Similarly as for [START_REF] Bevilacqua | Assessing the significance of the correlation between the components of a bivariate Gaussian random field[END_REF], we can show

s σ 2 1 (ψ) = n σ 2 1 - σ 2 01 θ 0 (1 -ρ 2 )σ 4 1 θ n i=2 W 2 1,i,n + ρ(1 + ρ 2 0 ) 1 2 σ 01 σ 02 θ 0 (1 -ρ 2 )σ 3 1 σ 2 θ n i=2 Y i,n + O up (1). ( 32 
)
Then (32) implies

σ 2 1 (1 -ρ 2 )θs σ 2 1 (ψ) = (n -1) θ(1 -ρ 2 ) -θ 0 σ 2 01 σ 2 1 -ρρ 0 σ 01 σ 02 σ 1 σ 2 (33) 
- σ 2 01 θ 0 σ 2 1 n i=2 ξ 1,i + ρ(1 + ρ 2 0 ) 1 2 θ 0 σ 01 σ 02 σ 1 σ 2 n i=2 ξ 3,i + O up (1).
Then ψ satisfies s σ 2 1 ( ψ) = 0 and in view of (33), we get

0 = σ2 1 (1 -ρ2 ) θs σ 2 1 ( ψ) = (n -1) θ(1 -ρ2 ) -θ 0 σ 2 01 σ2 1 -ρρ 0 σ 01 σ 02 σ1 σ2 - σ 2 01 θ 0 σ2 1 n i=2 ξ 1,i + ρ(1 + ρ 2 0 ) 1 2 θ 0 σ 01 σ 02 σ1 σ2 n i=2 ξ 3,i + O p (1). ( 34 
)
Then we can write, from ( 22), ( 27) and ( 34)

  0 0 0   = (n -1)      2 θ(1 -ρ2 ) -θ 0 σ 2 01 σ2 1 -2ρρ 0 σ 01 σ 02 σ1 σ2 + σ 2 02 σ2 2 θ(1 -ρ2 ) -θ 0 σ 2 01 σ2 1 -(1+ρ 2 )ρ 0 ρ σ 01 σ 02 σ1 σ2 + σ 2 02 σ2 2 θ(1 -ρ2 ) -θ 0 σ 2 01 σ2 1 -ρρ 0 σ 01 σ 02 σ1 σ2      -     σ 2 01 θ 0 σ2 1 σ 2 02 θ 0 σ2 2 -2ρ(1 + ρ 2 0 ) 1 2 θ 0 σ 01 σ 02 σ1 σ2 σ 2 01 θ 0 σ2 1 σ 2 02 θ 0 σ2 2 - (1+ρ 2 )(1+ρ 2 0 ) 1 2 θ 0 ρ σ 01 σ 02 σ1 σ2 σ 2 01 θ 0 σ2 1 0 -ρ(1 + ρ 2 0 ) 1 2 θ 0 σ 01 σ 02 σ1 σ2       n i=2 ξ 1,i n i=2 ξ 2,i n i=2 ξ 3,i   + O p (1). ( 35 
)
If all parameters are uknown, we get after some tedious algebra:

  0 0 0   = (n -1)    1 σ2 1 1 σ2 2 -2ρ σ1 σ2 1 σ2 1 1 σ2 2 -(ρ 2 +1) ρσ 1 σ2 1 σ2 1 0 -ρ σ1 σ2      θσ 2 1 -θ 0 σ 2 01 θσ 2 2 -θ 0 σ 2 02 θ ρσ 1 σ2 -θ 0 ρ 0 σ 01 σ 02   -     σ 2 01 θ 0 σ2 1 σ 2 02 θ 0 σ2 2 -2ρ(1 + ρ 2 0 ) 1 2 θ 0 σ 01 σ 02 σ1 σ2 σ 2 01 θ 0 σ2 1 σ 2 02 θ 0 σ2 2 - (1+ρ 2 )(1+ρ 2 0 ) 1 2 θ 0 ρ σ 01 σ 02 σ1 σ2 σ 2 01 θ 0 σ2 1 0 -ρ(1 + ρ 2 0 ) 1 2 θ 0 σ 01 σ 02 σ1 σ2       n i=2 ξ 1,i n i=2 ξ 2,i n i=2 ξ 3,i   + O p (1).
Applying LU matrix factorization we get

  0 0 0   = (n -1)   1 σ1 σ2 0 0 1 σ1 σ2 1 σ1 σ2 0 1 σ1 σ2 0 1 σ1 σ2      σ2 σ1 σ1 σ2 -2ρ 0 0 ρ2 -1 ρ 0 -σ1 σ2 ρ      θσ 2 1 -θ 0 σ 2 01 θσ 2 2 -θ 0 σ 2 02 θ ρσ 1 σ2 -θ 0 ρ 0 σ 01 σ 02   -θ 0   1 σ1 σ2 0 0 1 σ1 σ2 1 σ1 σ2 0 1 σ1 σ2 0 1 σ1 σ2      σ 2 01 σ2 σ1 σ 2 02 σ1 σ2 -2(1 + ρ 2 0 ) 1 2 σ 01 σ 02 ρ 0 0 (1 + ρ 2 0 ) 1 2 σ 01 σ 02 ρ2 -1 ρ 0 -σ 2 02 σ1 σ2 (1 + ρ 2 0 ) 1 2 σ 01 σ 02 ρ      n i=2 ξ 1,i n i=2 ξ 2,i n i=2 ξ 3,i   +O p (1). 
Hence we get

  0 0 0   = (n -1)       σ 02 σ 01 σ 01 σ 02 -2ρ 0 0 0 ρ 2 0 -1 ρ 0 0 -σ 01 σ 02 ρ 0    + o p (1)      θσ 2 1 -θ 0 σ 2 01 θσ 2 2 -θ 0 σ 2 02 θ ρσ 1 σ2 -θ 0 ρ 0 σ 01 σ 02   -θ 0       σ 01 σ 02 σ 01 σ 02 -2ρ 0 (1 + ρ 2 0 ) 1 2 σ 01 σ 02 0 0 (ρ 2 0 -1)(1+ρ 2 0 ) 1 2 ρ 0 σ 01 σ 02 0 -σ 01 σ 02 ρ 0 (1 + ρ 2 0 ) 1 2 σ 01 σ 02    + o p (1)      n i=2 ξ 1,i n i=2 ξ 2,i n i=2 ξ 3,i   +O p (1). (36) 
Furthermore, we have

   σ 02 σ 01 σ 01 σ 02 -2ρ 0 0 0 ρ 2 0 -1 ρ 0 0 -σ 01 σ 02 ρ 0    -1    σ 01 σ 02 σ 01 σ 02 -2ρ 0 (1 + ρ 2 0 ) 1 2 σ 01 σ 02 0 0 (ρ 2 0 -1)(1+ρ 2 0 ) 1 2 ρ 0 σ 01 σ 02 0 -σ 01 σ 02 ρ 0 (1 + ρ 2 0 ) 1 2 σ 01 σ 02    =   σ 2 01 0 0 0 σ 2 02 0 0 0 ρ 2 0 + 1σ 01 σ 02   . (37) 
Hence, from (37) and (36), we obtain

√ n   θσ 2 1 -θ 0 σ 2 01 θσ 2 2 -θ 0 σ 2 02 θ ρσ 1 σ2 -θ 0 ρ 0 σ 01 σ 02   = θ 0 n -1 2   σ 2 01 0 0 0 σ 2 02 0 0 0 ρ 2 0 + 1σ 01 σ 02     n i=2 ξ 1,i n i=2 ξ 2,i n i=2 ξ 3,i   + o p (1).
Hence from [START_REF] Wang | On fixed-domain asymptotics and covariance tapering in Gaussian random field models[END_REF] we can get

√ n   θσ 2 1 -θ 0 σ 2 01 θσ 2 2 -θ 0 σ 2 02 θ ρσ 1 σ2 -θ 0 ρ 0 σ 01 σ 02   D -→ N (0, Σ θρσ 1 σ 2 ) ,
where

Σ θρσ 1 σ 2 = θ 2 0   σ 2 01 0 0 0 σ 2 02 0 0 0 ρ 2 0 + 1σ 01 σ 02       2 2ρ 2 0 2ρ 0 (1+ρ 2 0 ) 1 2 2ρ 2 0 2 2ρ 0 (1+ρ 2 0 ) 1 2 2ρ 0 (1+ρ 2 0 ) 1 2 2ρ 0 (1+ρ 2 0 ) 1 2 1       σ 2 01 0 0 0 σ 2 02 0 0 0 ρ 2 0 + 1σ 01 σ 02   ⊤ .
Then, we get:

Σ θρσ 1 σ 2 =   2(θ 0 σ 2 01 ) 2 2(θ 0 ρ 0 σ 01 σ 02 ) 2 2θ 2 0 ρ 0 σ 3 01 σ 02 2(θ 0 ρ 0 σ 01 σ 02 ) 2 2(θ 0 σ 2 02 ) 2 2θ 2 0 ρ 0 σ 3 02 σ 01 2θ 2 0 ρ 0 σ 3 01 σ 02 2θ 2 0 ρ 0 σ 3 02 σ 01 θ 2 0 (ρ 2 0 + 1) 2 σ 2 01 σ 2 02   . Let f   θσ 2 1 θσ 2 2 θ ρσ 1 σ2   =    θσ 2 1 θσ 2 2 θ ρσ 1 σ2 √ θσ 2 1 √ θσ 2 2    .
Then, using the multivariate Delta Method we get

√ n   θσ 2 1 -θ 0 σ 2 01 θσ 2 2 -θ 0 σ 2 02 ρ -ρ 0   D -→ N (0, Σ f ) ,
where

Σ f = H f Σ θρσ 1 σ 2 H ⊤ f and H f =   1 0 0 0 1 0 -ρ 0 2σ 2 01 θ 0 -ρ 0 2σ 2 02 θ 0 1 σ 01 σ 02 θ 0   .
Finally, we get

√ n   σ2 1 θ -σ 2 01 θ 0 σ2 2 θ -σ 2 02 θ 0 ρ -ρ 0   D -→ N   0,   2(θ 0 σ 2 01 ) 2 2(θ 0 ρ 0 σ 01 σ 02 ) 2 θ 0 ρ 0 σ 2 01 (1 -ρ 2 0 ) 2(θ 0 ρ 0 σ 01 σ 02 ) 2 2(θ 0 σ 2 02 ) 2 θ 0 ρ 0 σ 2 02 (1 -ρ 2 0 ) θ 0 ρ 0 σ 2 01 (1 -ρ 2 0 ) θ 0 ρ 0 σ 2 02 (1 -ρ 2 0 ) (ρ 2 0 -1) 2     . (38) 
In the case ρ 0 = 0, we can show that ( 31) and (38) are still true with the same proof. The only difference is that we multiply the second line of ( 28) and (35) by ρ. We skip the technical details.

Numerical experiments

The main goal of this section is to compare the finite sample behavior of the MLE of the covariance parameters of model ( 1) with the asymptotic distribution given in Section 4. We consider two possible scenarios for our simulation study:

1. The variances parameters are known and we estimate jointly ρ 0 and θ 0 . 2. We estimate jointly all the parameters σ 2 01 , σ 2 02 , ρ 0 and θ 0 . Under the first scenario we simulate, using the Cholesky decomposition, 1000 realizations from a bivariate zero mean stochastic process with covariance model (1) observed on n = 200, 500 points uniformly distributed in [0, 1]. We simulate fixing σ 2 01 = σ 2 02 = 1 and increasing values for the colocated correlation parameter and the scale parameter, that is ρ 0 = 0, 0.2, 0.5 and θ 0 = 3/x with x = 0.2, 0.4, 0.6. Note that θ 0 is is parametrized in terms of practical range that is the correlation is lower than 0.05 when the distance between the points is greater than x. For each simulated realization, we compute ρi and θi , i = 1, . . . , 1000, i.e. the MLE of the colocated correlation and scale parameters. Using the asymptotic distribution given in Equation ( 18), Tables 1, 2 compare the empirical quantiles of order 0.05, 0.25, 0.5, 0.75, 0.95 of [ √ n( θiθ 0 )/ θ 2 0 (1 + ρ 2 0 )] 1000 i=1 and [ √ n(ρ iρ 0 )/ (ρ 2 0 -1) 2 ] 1000 i=1 respectively, with the theoretical quantiles of the standard Gaussian distribution when n = 200, 500. The simulated variances of ρi and θi for i = 1, . . . , 1000 are also reported.

As a general comment, it can be noted that the asymptotic approximation given in Equation [START_REF] Loh | Estimating structured correlation matrices in smooth Gaussian random fields models[END_REF] improves and the variances of the MLE of ρ 0 and θ 0 decrease when increasing n from 200 to 500. When n = 500 the asymptotic approximation works very well.

Under the second scenario we set σ 2 01 = σ 2 02 = 0.5 and the other parameters as in Scenario 1. In this case we simulate, using Cholesky decomposition, 1000 realizations from a bivariate zero mean stochastic process with covariance model (1) observed on n = 500, 1000 points uniformly distributed in [0, 1]. For each simulated realization, we obtain σ2

1i , σ2 2i ρi and θi , i = 1, . . . , 1000 the MLE of the two variances, the colocated correlation and scale parameters. Using the asymptotic distribution given in Equation [START_REF] Loh | Fixed-domain asymptotics for a subclass of Matérn-type Gaussian random fields[END_REF], Tables 3,4, 5 compare the empirical quantiles of order 0.05, 0.25, 0.5, 0.75, 0.95

of [ √ n(σ 2 1i θi -σ 2 01 θ 0 )/ 2(σ 2 01 θ 0 ) 2 ] 1000 i=1 , [ √ n(σ 2 2i θi -σ 2 02 θ 0 )/ 2(σ 2 02 /θ 0 ) 2 ] 1000 i=1 and [ √ n(ρ i - ρ 0 )/ (ρ 2 0 -1) 2 ] 1000
i=1 respectively, for n = 500, 1000 with the theoretical quantiles of the standard Gaussian distribution. The simulated variances of σ2 1i θi , σ2 2i θi and ρi and for i = 1, . . . , 1000 are also reported. As in the previous Scenario, the asymptotic approximation given in Equation [START_REF] Loh | Fixed-domain asymptotics for a subclass of Matérn-type Gaussian random fields[END_REF] improves and the variances of the MLE of ρ 0 and σ 2 0i θ 0 , i = 1, 2 reduce when increasing n from 500 to 1000. When n = 1000 the asymptotic approximation is quite satisfactory, with the exception of the case ρ 0 = 0.5 where some problems of convergence on the tails of the distributions can be noted, in particular when θ 0 = 3/0.4, 3/0.6.

Concluding remarks

In this paper we considered the fixed domain asymptotic properties of the MLE for a bivariate zero mean Gaussian process with a separable exponential covariance model. We characterized the equivalence of Gaussian measures under this model and we established the consistency and the asymptotic distribution of the MLE of the microergodic parameters. Analogue results under increasing domain asymptotics are obtained by [START_REF] Bevilacqua | Assessing the significance of the correlation between the components of a bivariate Gaussian random field[END_REF]. It is interesting to note that the asymptotic distribution of the MLE of the colocated correlation parameter, between the two processes, does not depend on the asymptotic framework.

Our results can be extended in different directions. Let M(h, ν, θ)

= 2 1-ν Γ(ν) (||h||θ) ν K ν (||h||θ), h ∈ R d ,
ν, θ > 0, be the Matérn correlation model. A generalization of the bivariate covariance model ( 1) is then the following model:

Cov(Z i (s), Z j (s + h); ψ) = σ i σ j (ρ + (1 -ρ)1 i=j )M(h, ν, θ ij ), i, j = 1, 2,
with θ 12 = θ 21 , σ 1 > 0, σ 2 > 0, where in this case ψ = (σ 2 1 , σ 2 2 , θ 11 , θ 12 , θ 22 , ν, ρ) ⊤ . This is a special case of the bivariate Matérn model proposed in [START_REF] Gneiting | Matérn cross-covariance functions for multivariate random fields[END_REF]. The authors give necessary and sufficient conditions in terms of ψ for the validity of this kind of model. Studying the asymptotic properties of the MLE of ψ would then be interesting. The main challenges in this case are the number of parameters involved and the fact that the covariance matrix cannot be factorized as a kronecker product. Moreover for ν = 0.5 the markovian property of the process cannot be exploited.

Another interesting extension is to consider the fixed domain asymptotic properties of the tapered maximum likelihood estimator in bivariate covariance models. This method of estimation has been proposed as a possible surrogate for the MLE when working with large data sets, see [START_REF] Furrer | Covariance tapering for interpolation of large spatial datasets[END_REF][START_REF] Kaufman | Covariance Tapering for Likelihood-Based Estimation in Large Spatial Data Sets[END_REF]. Asymptotic properties of this estimator, under fixed domain asymptotics and in the univariate case, can be found in [START_REF] Kaufman | Covariance tapering for likelihood-based estimation in large spatial data sets[END_REF], [START_REF] Wang | On fixed-domain asymptotics and covariance tapering in Gaussian random field models[END_REF] and [START_REF] Du | Fixed-domain asymptotic properties of tapered maximum likelihood estimators[END_REF]. Extensions of these results to the bivariate case would be interesting. Both topics are to be investigated in future research.

Combining ( 5), (39) and (40), we obtain

l n (ψ) = n log(2π) + log(1 -ρ 2 ) + 2 k=1 log(σ 2 k ) + 2 k=1 n i=2 log σ 2 k 1 -e -2θ∆ i + 1 1 -ρ 2 2 k=1 1 σ 2 k z 2 k,1 + n i=2 z k,i -e -θ∆ i z k,i-1 2 1 -e -2θ∆ i - 2ρ σ 1 σ 2 z 1,1 z 2,1 + n i=2 z 1,i -e -θ∆ i z 1,i-1 z 2,i -e -θ∆ i z 2,i-1 1 -e -2θ∆ i .
Proof of lemma 4.1.

By differentiation of L(θ) with respect to θ we obtain

G = n i=2 ∆ i e -θ∆ i z 1,i-1 (z 2,i -e -θ∆ i z 2,i-1 ) + (z 1,i -e -θ∆ i z 1,i-1 )∆ i e -θ∆ i z 2,i-1 1 -e -2θ∆ i - n i=2 (z 1,i -e -θ∆ i z 1,i-1 )(z 2,i -e -θ∆ i z 2,i-1 )2∆ i e -2θ∆ i (1 -e -2θ∆ i ) 2 . = G 1 -G 2 , say. Let us first show that G 1 = O up (1). Let for i = 2, ..., n, A θ,i = ∆ i e -θ∆ i /(1 -e -2θ∆ i ). By symmetry of Z 1,n and Z 2,n , in order to show G 1 = O up (1), it is sufficient to show that n i=2 A θ,i z 1,i-1 (z 2,i -e -θ∆ i z 2,i-1 ) = O up (1). (41) 
We have

n i=2 A θ,i z 1,i-1 (z 2,i -e -θ∆ i z 2,i-1 ) = n i=2 A θ,i z 1,i-1 (z 2,i -e -θ 0 ∆ i z 2,i-1 ) + n i=2 A θ,i z 1,i-1 z 2,i-1 (e -θ 0 ∆ i -e -θ∆ i ) = T 1 + T 2 ,
say. Now, one can see from Taylor expansions, and since θ ∈ Θ with Θ compact in (0, ∞), that

S := sup θ∈Θ sup n∈N,i=2,...,n A θ,i (e -θ 0 ∆ i -e -θ∆ i ) ∆ i < ∞. Hence |T 2 | ≤ sup t∈[0,1] |Z 1 (t)Z 2 (t)|S n i=1 ∆ i = O up (1).
Let us now consider T 1 . We have, for any k < i

E {z 1,i-1 (z 2,i -e -θ 0 ∆ i z 2,i-1 )z 1,k-1 (z 2,k -e -θ 0 ∆ k z 2,k-1 ) = E E z 1,i-1 (z 2,i -e -θ 0 ∆ i z 2,i-1 )z 1,k-1 (z 2,k -e -θ 0 ∆ k z 2,k-1 )|z 1,1 , ..., z 1,i-1 , z 2,1 , ..., z 2,i-1 = E z 1,i-1 z 1,k-1 (z 2,k -e -θ 0 ∆ k z 2,k-1 )E (z 2,i -e -θ 0 ∆ i z 2,i-1 )|z 1,1 , ..., z 1,i-1 , z 2,1 , ..., z 2,i-1 . ( 42 
) Let us show that E [z 2,i |z 1,1 , ..., z 1,i-1 , z 2,1 , ..., z 2,i-1 ] = e -θ 0 ∆ i z 2,i-1 . Let r be the 1 × (i - 1) vector (e -(s i -s 1 )θ 0 , e -(s i -s 2 )θ 0 , ..., e -(s i -s i-1 )θ 0 ) ⊤ , let R = [e -|sa-s b |θ 0 )] i-1 a,b=1 and let V k = (z k,1 , ..., z k,i-1 ) ⊤ for k = 1, 2. Then E [z 2,i |z 1,1 , ..., z 1,i-1 , z 2,1 , ..., z 2,i-1 ] = E [z 2,i |z 1,1 /σ 01 , ..., z 1,i-1 /σ 01 , z 2,1 /σ 02 , ..., z 2,i-1 /σ 02 ] = [ρ 0 σ 02 r ⊤ , σ 02 r ⊤ ] 1 ρ 0 ρ 0 1 -1 ⊗ R -1 (1/σ 01 )V 1 (1/σ 02 )V 2 = [ρ 0 σ 02 r ⊤ , σ 02 r ⊤ ] 1 1-ρ 2 0 R -1 -ρ 0 1-ρ 2 0 R -1 -ρ 0 1-ρ 2 0 R -1 1 1-ρ 2 0 R -1 (1/σ 01 )V 1 (1/σ 02 )V 2 = 1 1 -ρ 2 0 ρ 0 σ 02 r ⊤ R -1 V 1 /σ 01 -ρ 2 0 σ 02 r ⊤ R -1 V 2 /σ 02 -ρ 0 σ 02 r ⊤ R -1 V 1 /σ 01 + σ 02 r ⊤ R -1 V 2 /σ 02 = r ⊤ R -1 V 2 .
Now, it is well known from the Markovian property of Z 2 that r ⊤ R -1 V 2 = e -θ 0 ∆ i z 2,i-1 . Hence, we have E [z 2,i |z 1,1 , ..., z 1,i-1 , z 2,1 , ..., z 2,i-1 ] = e -θ 0 ∆ i z 2,i-1 , which together with (42) gives

E {z 1,i-1 (z 2,i -e -θ 0 ∆ i z 2,i-1 )z 1,k-1 (z 2,k -e -θ 0 ∆ k z 2,k-1 ) = 0 for k < i. Hence E T 2 1 = E   n i=2
A θ,i z 1,i-1 (z 2,ie -θ 0 ∆ i z 2,i-1 ) (1e -2θ 0 ∆ i ) ∆ i < ∞.

2   = n i=2 E A 2 θ,i z 2 1,i-1 (z 2,i -e -θ 0 ∆ i z 2,i-1 ) 2 . ( 43 
Hence, 

E T 2 1 ≤ S ′ S ′′
Hence T 1 = 0 up (1) and ( 41) is proved. Hence, we have, with

B θ,i = 2∆ i e -2θ∆ i (1 -e -2θ∆ i ) 2 , G = O up (1) - n i=2
(z 1,ie -θ∆ i z 1,i-1 )(z 2,ie -θ∆ i z 2,i-1 )B θ,i . (z 1,ie -θ∆ i z 1,i-1 )(z 2,ie -θ∆ i z 2,i-1 )B θ,i

= n i=2
(z 1,ie -θ 0 ∆ i z 1,i-1 )(z 2,ie -θ 0 ∆ i z 2,i-1 )B θ,i

+ n i=2
(z 1,ie -θ 0 ∆ i z 1,i-1 )(e -θ 0 ∆ i z 2,i-1e -θ∆ i z 2,i-1 )B θ,i

+ n i=2
(e -θ 0 ∆ i z 1,i-1e -θ∆ i z 1,i-1 )(z 2,ie -θ∆ i z 2,i-1 )B θ,i

= n i=2
(z 1,ie -θ 0 ∆ i z 1,i-1 )(z 2,ie -θ 0 ∆ i z 2,i-1

)B θ,i + R 1 + R 2 , (46) 
say. We now show that R 1 , R 2 = O up (1). For R 1 , we have

R 1 = n i=2
(z 1,ie -θ 0 ∆ i z 1,i-1 )(e -θ 0 ∆ i z 2,i-1e -θ∆ i z 2,i-1 )B θ,i = n i=2 z 2,i-1 (z 1,ie -θ 0 ∆ i z 1,i-1 )(e -θ 0 ∆ ie -θ∆ i )B θ,i .

As for T 1 in (43),

E(R 2 1 ) = n i=2
E z 2 2,i-1 (z 1,ie -θ 0 ∆ i z 1,i-1 ) 2 (e -θ 0 ∆ ie -θ∆ i ) 2 B 2 θ,i .

One can show using Taylor expansions that S (3) := sup θ∈Θ sup n∈N,i=2,...,n B 2 θ,i (e -θ 0 ∆ ie -θ∆ i ) 2 < ∞.

Hence E(R 2 1 ) ≤ S (3) n i=2 E z 2 2,i-1 (z 1,ie -θ 0 ∆ i z 1,i-1 ) 2 = O u (1)

as for (44). Hence R 1 = O up [START_REF] Stein | Interpolation of Spatial Data[END_REF]. For R 2 , we have

R 2 = n i=2
(e -θ 0 ∆ i z 1,i-1e -θ∆ i z 1,i-1 )(z 2,ie -θ∆ i z 2,i-1 )B θ,i

= n i=2
B θ,i (e -θ 0 ∆ ie -θ∆ i )z 1,i-1 (z 2,ie -θ∆ i z 2,i-1 )

= n i=2
C θ,i z 1,i-1 (z 2,ie -θ∆ i z 2,i-1 ),

say. We can thus show that R 2 = O up (1) as for (41). Indeed, the only difference between (47) and ( 41) is that A θ,i is replaced by C θ,i . To show (41) we only used that Hence, as for (41), we can show that R 2 = O up (1). Hence, from (45) and (46), we have,

G = O up (1) - n i=2
(z 1,ie -θ 0 ∆ i z 1,i-1 )(z 2,ie -θ 0 ∆ i z 2,i-1 )B θ,i .

Let, for i = 2, ..., n, X i = (z 1,ie -θ 0 ∆ i z 1,i-1 )(z 2,ie -θ 0 ∆ i z 2,i-1 )B θ,i .

For k < i we have E (z 1,ie -θ 0 ∆ i z 1,i-1 )(z 2,ke -θ 0 ∆ k z 2,k-1 ) = ρ 0 σ 01 σ 02 e -(s i -s k )θ 0e -θ 0 ∆ i e -(s i-1 -s k )θ 0e -θ 0 ∆ k e -(s i -s k-1 )θ 0 + e -θ 0 (∆ i +∆ k ) e -(s i-1 -s k-1 )θ 0 = 0.

Hence, for k < i (and for k = i by symmetry), the random variables (z 1,i -e -θ 0 ∆ i z 1,i-1 ) and (z 2,ke -θ 0 ∆ k z 2,k-1 ) are independent. In addition, the random variables (z j,ie -θ 0 ∆ i z j,i-1 )

as is obtained by using Isserlis' theorem for correlated Gaussian random variables. Furtermore

V ar(Y i,n ) = E(Y 2 i,n ) -[E(Y i,n )] 2 = 1 + 2ρ 2 0 1 + ρ 2 0 - ρ 0 (1 + ρ 2 0 ) 1/2 2 = 1.
Hence E(|Y i,n | ≤ √ 2) and so

E(T ) ≤ √ 2 n i=2 D θ,i - σ 01 σ 02 1 + ρ 2 0 θ 0 θ 2 = √ 2σ 01 σ 02 1 + ρ 2 0 n i=2 (1 -e -2θ 0 ∆ i )2∆ i e -2θ∆ i (1 -e -2θ∆ i ) 2 - θ 0 θ 2 .
One can show, from a Taylor expansion and since θ ∈ Θ with Θ compact in (0, +∞), that sup n∈N,i=2,...,n 

sup θ∈Θ 1 ∆ i (1 -e -2θ 0 ∆ i )2∆ i e -2θ∆ i (1 -e -2θ∆ i ) 2 - θ 0 θ 2 < ∞.

Lemma 4 . 1 .

 41 With the same notations and assumptions as inTheorem 3.2, let 

Table 1 :

 1 For scenario 1: empirical quantiles, and variances of simulated MLE of ρ 0 for different values of ρ 0 and θ 0 , when n = 200, 500.
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 141 )Now, one can see from Taylor expansions thatS ′ := sup θ∈Θ sup n∈N,i=2,...,n |A θ,i | < ∞. ((z 2,ie -θ 0 ∆ i z 2,i-1 )e -2θ 0 ∆ i ).One can see that S ′′ := sup θ∈Θ sup n∈N,i=2,...,n

∆

  i = O p (1).

  a θ b θ c θ = a θ 0 b θ 0 c θa θ 0 b θ 0 c θ + a θ 0 b θ c θa θ 0 b θ c θ + a θ b θ c θ , we have n i=2

  ,...,n |A θ,i | < ∞. We can see from Taylor expansions that sup θ∈Θ sup n∈N,i=2,...,n |C θ,i | < ∞.

  Hence E(T ) = O u (1) and T = 0 up[START_REF] Stein | Interpolation of Spatial Data[END_REF]. Hence, finallyG = -σ 01 σ 02 1 + ρ 2 0 θ 0 θ 2 n i=2 Y i,n + O up[START_REF] Stein | Interpolation of Spatial Data[END_REF].

  ψ 1 , P ψ 2 ) = lim n→∞ I n (P ψ 1 , P ψ 2 ), possibly infinite. Then P ψ 1 and P ψ 2 are either equivalent or orthogonal if and only if I(P ψ 1 , P ψ 2 ) < ∞ or I(P ψ 1 , P ψ 2 ) = ∞ respectively (see Lemma 3 in page 77 of[START_REF] Ibragimov | Gaussian Random Processes[END_REF] whose arguments can be immeditaly extended to the multivariate case). Using this criterion, the following lemma characterizes the equivalence of the Gaussian measures P ψ 1 and P ψ 2 .

	Lemma 2.1. The two measures P ψ 1 and P ψ 2 are equivalent on the σ-algebra generated by
	{Z(s), s ∈ T }, if and only if σ 2 i,1 θ 1 = σ 2 i,2 θ 2 , i = 1, 2 and ρ 1 = ρ 2 and orthogonal otherwise.
	Proof. Let us introduce ∆ i = s i -s i-1 for i = 2, . . . , n and note that
	n	
	i=2	∆ i ≤ 1 and lim

n→∞ max 2≤i≤n

  2 are an i.i.d. sequences of standard Gaussian random variables. Using Lemma 3.1 we write,

Appendix

Proof of lemma 3.1.

Let Σ(ψ) = A ⊗ R, where the matrices A and R are defined in (2). First, using properties of the determinant of the Kroneker product, we have:

From lemma 1 in [START_REF] Ying | Maximum likelihood estimation of parameters under a spatial sampling scheme[END_REF], |R| = n i=2 1e -2θ∆ i . Then, we have

On the other hand, since Σ(ψ) -1 = A -1 ⊗ R -1 , we obtain

Then using Lemma 1 in [START_REF] Ying | Maximum likelihood estimation of parameters under a spatial sampling scheme[END_REF] (Eq. 4.2) we obtain:

and (z j,ke -θ 0 ∆ k z j,k-1 ) are also independent for j = 1, 2 and k = i. Hence, the n -1 Gaussian vectors (z 1,ie -θ 0 ∆ i z 1,i-1 ), (z 2,ie -θ 0 ∆ i z 2,i-1 ) i=2,...,n are mutually independent. Thus, the {X i } i=2,...,n are independent random variables. We also have n i=2

and let Y i,n be as in [START_REF] Abt | Fisher information and maximum-likelihood estimation of covariance parameters in Gaussian stochastic processes[END_REF]. Then, let

On the other hand

Furthermore,

[σ 01 σ 02 (1 + ρ 2 0 ) 1/2 (1e -2θ 0 ∆ i )] 2 = σ 2 01 σ 2 02 1 + 2ρ 2 0 + e -2θ 0 ∆ i (e -2θ 0 ∆ i -2) + 2ρ 2 0 e -2θ 0 ∆ i (e -2θ 0 ∆ i -2) [σ 01 σ 02 (1 + ρ 2 0 ) 1/2 (1e -2θ 0 ∆ i )]