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A branch and bound algorithm for Choquet
optimization in multicriteria problems

Lucie Galand, Patrice Perny, and Olivier Spanjaard
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Summary. This paper is devoted to the search for Choquet-optimal solutions in
multicriteria combinatorial optimization with application to spanning tree problems
and knapsack problems. After recalling basic notions concerning the use of Cho-
quet integrals for preference aggregation, we present a condition (named preference
for interior points) that characterizes preferences favouring well-balanced solutions,
a natural attitude in multicriteria optimization. When using a Choquet integral
as preference model, this condition amounts to choosing a submodular (resp. super-
modular) capacity when criteria have to be minimized (resp. maximized). Under this
assumption, we investigate the determination of Choquet-optimal solutions in the
multicriteria spanning tree problem and the multicriteria 0-1 knapsack problem. For
both problems, we introduce a linear bound for the Choquet integral, computable
in polynomial time, and propose a branch and bound procedure using this bound.
We provide numerical experiments that show the actual efficiency of the algorithms
on various instances of different sizes.

Key words: Multicriteria combinatorial optimization, Choquet integral, branch
and bound, minimal spanning tree problem, knapsack problem.

1 Introduction

In combinatorial multicriteria optimization problems, many fruitful studies concern
the determination or the approximation of the Pareto set (Ehrgott, 2005). However,
in some applications, the size of the instances as well as the combinatorial nature of
the space of feasible solutions make it impossible to generate the whole set of Pareto
solutions (the number of Pareto solutions grows, in the worst case, exponentially
with the size of the instance (Hamacher and Ruhe, 1994) and the number of criteria
(Rosinger, 1991)). Moreover many solutions in the Pareto set are not relevant for
the decision maker because they do not match his expectations on some criteria.
When a model of decision maker’s preferences is available, it is worth trying to
focus the search directly on the most preferred solutions, rather than generating
the entire Pareto set (Galand and Spanjaard, 2007; Galand and Perny, 2007; Perny
et al., 2007). Among the various preference models considered in the literature on
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multicriteria decision making, the Choquet integral is certainly one of the most
expressive aggregators (see Grabisch et al. (2000)). This model makes it possible to
take into account the interactions between criteria and to direct the search towards
the desired compromise solution. Moreover, it is able to reach supported as well as
unsupported solutions within the Pareto set.

For this reason, we assume in this work that the preferences of the decision
maker are known and represented by a Choquet integral. More precisely, to restrict
the search on well-balanced solutions we only consider the subfamily of Choquet
integral operators with a capacity of a specific shape, namely a submodular capacity
when criteria have to be minimized and a supermodular one when they have to be
maximized (see Chateauneuf and Tallon (2002)). Then we investigate the search
for Choquet-optimal solutions in the multicriteria spanning tree problem (the single
criterion version of which is polynomial) and the multicriteria 0-1 knapsack problem
(the single criterion version of which is NP-hard).

The paper is organized as follows. In Section 2, we recall basic features of Cho-
quet integral operators. Then we formulate a condition characterizing preferences
favouring well-balanced solutions and show how it leads to adopt a submodular (resp.
supermodular) capacity when criteria have to be minimized (resp. maximized). In
Section 3, we propose a branch and bound procedure based on an efficiently com-
putable bound on the value of a Choquet-optimal solution. In Section 4, we report
numerical experiments showing the efficiency of the proposed algorithms.

2 Choquet integral and well-balanced solutions

We consider alternatives that are valued according to multiple criteria functions ci,
i ∈ Q = {1, . . . , q}. Without loss of generality, we assume here that the perfor-
mances on criteria functions are integer. Every alternative is therefore characterized
by a vector of performances in Nq. A popular approach to compare vectors of per-
formance is to use an aggregation function that associates each alternative with a
single scalar value. The Choquet integral (Choquet, 1953) is an aggregation function
that generalizes the notion of average when weights are represented by a capacity.

Definition 1 A capacity is a set function v : 2Q → [0, 1] such that:

• v(∅) = 0, v(Q) = 1
• ∀A, B ∈ 2Q such that A ⊆ B, v(A) ≤ v(B)

For any subset A ⊆ Q, v(A) represents the importance of coalition A. Let us now
recall some definitions about capacities.

Definition 2 A capacity v is said to be supermodular when v(A∪B)+ v(A∩B) ≥
v(A)+ v(B) for all A, B ⊆ Q, and submodular when v(A∪B)+ v(A∩B) ≤ v(A)+
v(B) for all A, B ⊆ Q. A capacity v is said to be additive when it is supermodular
and submodular simultaneously.

Note that when v is additive, it is completely characterized by vi = v({i}), i =
1, . . . , q since v(A) =

P
i∈A vi for all A ⊆ Q.
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Definition 3 To any capacity v, we can associate a dual capacity v̄ defined by
v̄(A) = 1− v(Q \A) for all A ⊆ Q. Obviously, ¯̄v = v for any capacity v.

It is well known that v̄ is submodular if and only if v is supermodular and vice-versa.
Note that when v is supermodular, we have v(A)+v(Q\A) ≤ 1, hence v(A) ≤ v̄(A).
In this case, Shapley (1971) has shown that v has a non-empty core, the core being
defined by:

core(v) = {λ ∈ L : v(A) ≤ λ(A) ≤ v̄(A)}

where L is the set of additive capacities. Similarly, when v is submodular, then
core(v̄) = {λ ∈ L : v̄(A) ≤ λ(A) ≤ v(A)} is non-emtpy since v̄ is supermodular.
These results will be used in Section 3.

The Choquet integral of a vector x ∈ Nq with respect to a capacity v is defined
by:

Cv(x) =

qX
i=1

ˆ
v(X(i))− v(X(i+1))

˜
x(i) (1)

=

qX
i=1

ˆ
x(i) − x(i−1)

˜
v(X(i)) (2)

where (.) represents a permutation on {1, . . . , q} such that 0 = x(0) ≤ x(1) ≤ . . . ≤
x(q), X(i) = {j ∈ Q, xj ≥ x(i)} = {(i),(i + 1), . . ., (q)} for i ≤ q and X(q+1) = ∅.
Note that X(i+1) ⊆ X(i), hence v(X(i)) ≥ v(X(i+1)) for all i. The Choquet integral
generalizes the classical notion of average with the following interpretation based on
Equation (2): for a given vector x = (x1, . . . , xq), the performance is greater or equal
to x(1) on all criteria belonging to X(1), which represents a weight of v(X(1)) = 1,
then the performance is greater or equal to x(2) on all criteria belonging to X(2),
which represents an increment of x(2)−x(1) with weight v(X(2)). A similar increment
applies from x(2) to x(3) with weight v(X(3)), and so on. The overall integral is
therefore obtained by aggregation of marginal increments x(i) − x(i−1) weighted by
v(X(i)). Moreover, when v is additive, we have v(X(i))−v(X(i+1)) = v({(i)}) and Cv

as defined by Equation (1) boils down to a classical weighted sum. When it is used
with a non-additive capacity, function Cv offers additional descriptive possibilities.
In particular, the Choquet integral used with a supermodular (resp. submodular)
capacity is usually interpreted as modeling complementarities (resp. redundancies)
among criteria. It opens new ways to formalize preference for well-balanced solutions.

Preference for well-balanced solutions means intuitively that smoothing or av-
eraging a cost vector makes the decision maker better off. A useful formalization of
this idea has been proposed by Chateauneuf and Tallon (2002) through an axiom
named “preference for diversification” due to its interpretation in the context of
portofolio management. This axiom can be translated in our framework as follows:

Definition 4 (Preference for interior points) A preference % is said to favour
interior points if, for any x1, . . . , xn ∈ Nq, and for all α1, . . . , αn ≥ 0 such thatPn

i=1 αi = 1, we have:

[x1 ∼ x2 ∼ . . . ∼ xn] ⇒
nX

i=1

αi xi % xk, k = 1, . . . , n
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Graphically, this axiom can be interpreted as follows: given n indifferent points
in the space of criteria, any point inside the convex hull of the n points is preferred to
them. For example, on Figure 1 (the higher the better on each criterion), assuming
that a, b and c are on the same indifference curve (represented by a broken line on
the figure), point d is preferred to them since it is inside the grey triangle defined
by vertices a, b, c.
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Fig. 1. Graphical illustration of preference for interior points.

Interestingly enough, Chateauneuf and Tallon (2002) show that, in the context
of Choquet-expected utility theory, the above axiom on preference is equivalent to
choosing a concave utility and a supermodular capacity v. The direct translation
of this result in our framework (where utility functions are restricted to identity)
says that we should use a supermodular (resp. submodular) capacity v to exhibit
preference for interior points in maximization (resp. minimization) problems.

For example, if a teacher is indifferent between three students profiles with grade
vectors x = (18, 18, 0), y = (18, 0, 18) and z = (0, 18, 18), preference for interior
points says that he should prefer another student with profile t = (12, 12, 12) to any
of the three others. Such preferences can easily be represented by using a supermod-
ular capacity function, for example v(A) = (|A|/3)2 for all non-empty A ⊆ Q. We
get indeed: Cv(x) = Cv(y) = Cv(z) = 18 × 4

9
= 8 whereas Cv(t) = 12 which gives

the maximal overall grade for t.
If we consider now that x, y, z, t are cost vectors (instead of grades) then we

should use a submodular capacity w to minimize Cw. For instance, if we choose
w = v̄ we get w(A) = (|A|/3)(2 − |A|/3) for all non-empty A ⊆ Q. Hence we get:
Cw(x) = Cw(y) = Cw(z) = 18× 8

9
= 16 whereas Cv(t) = 12 which gives the minimal

overall cost for t.

3 Determination of Choquet-optimal solutions

Assuming the decision-maker exhibits preference for interior points, we will now in-
vestigate the determination of Cv-optimal solutions in multiobjective combinatorial
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optimization problems. On the basis of results recalled in the previous section, we
will consider the two following cases:

case 1. criteria have to be minimized and v is submodular;
case 2. criteria have to be maximized and v is supermodular.

In order to illustrate these two different cases, we will now focus on two particular
combinatorial optimization problems that can be formally stated as follows:

Choquet-optimal spanning tree problem (Cv-ST)
Input: a finite connected graph G = (V, E), q integer valuation functions ci on E
(to minimize), a submodular capacity v;
Goal: we want to determine a spanning tree T ∗ ∈ arg minT∈T Cv(c(T )), where T
is the set of spanning trees on G and c(T ) = (

P
e∈T c1(e), . . . ,

P
e∈T cq(e)).

Choquet-optimal 0-1 knapsack problem (Cv-KP)
Input: a finite collection N = {1, . . . , n} of items, where each item j has a positive
weight wj , a maximum weight capacity W , q integer valuation functions ci on N
(to maximize), a supermodular capacity v;
Goal: we want to determine a subset S∗ ∈ arg maxS∈S Cv(c(S)), where S = {S ⊆
N :

P
j∈S wj ≤ W} and c(S) = (

P
j∈S c1(j), . . . ,

P
j∈S cq(j)).

In both problems we assume that number q of criteria is bounded.

These two problems are NP-hard. For problem Cv-KP, this is obvious: since
the 0-1 knapsack problem is a special case of problem Cv-KP (when there is
only one criterion), problem Cv-KP is clearly NP-hard. No similar argument ex-
ists for Cv-ST (minimum spanning tree problem) since the single objective ver-
sion of the problem Cv-ST is polynomially solvable. However, problem Cv-ST can
easily be proved NP-hard. Indeed we remark that when using a submodular ca-
pacity defined by v(A) = 1 for all non-empty A ⊆ Q and 0 otherwise, we get
Cv(x) =

Pq
i=1

ˆ
x(i) − x(i−1)

˜
v(X(i)) = x(q) = maxi∈Q xi. Hence the determination

of a Choquet-optimal solution reduces to a minmax optimization problem, and the
minmax spanning tree problem has been proved NP-hard by Hamacher and Ruhe
(1994).

Besides their practical interest, we chose to study these two problems because
one is an extension of an easy single criterion problem (minimum spanning tree
problem), and the other one of a hard single criterion problem (0-1 knapsack prob-
lem). Moreover, one is a minimization problem (case 1) whereas the other one is a
maximization problem (case 2). Now, we are going to introduce branch and bound
procedures for these two problems.

Branch and bound procedures for Choquet-optimization. The branching
part is specific to each problem and will be briefly described at the end of the
section. The bounding part is quite similar for both problems. It is grounded on a
result of Schmeidler (1986) which offers a nice intuitive interpretation of the Choquet
expected utility as the minimum of a family of expected utilities to be maximized.
A useful by-product of this result in our context is the following inequality:

Proposition 1 If v is supermodular (resp. submodular) then for all λ ∈ core(v)
(resp. λ ∈ core(v̄)) characterized by coefficients λi = λ({i}), i = 1, . . . , q, the follow-
ing inequality holds: Cv(x) ≤

Pq
i=1 λixi (resp. Cv(x) ≥

Pq
i=1 λixi) for all x ∈ Nq.
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Proof. We only prove the result in the case of a maximization with a supermod-
ular capacity, the proof for the minimization case being essentially similar. Since
v is supermodular then core(v) is non-empty and for all λ ∈ core(v) we have
v(X(i)) ≤ λ(X(i)) for all i. Hence, noticing that x(i) − x(i−1) ≥ 0 for all i we
have

`
x(i) − x(i−1)

´
v(X(i)) ≤

`
x(i) − x(i−1)

´
λ(X(i)) for all i. Adding these inequal-

ities, we get: Cv(x) =
Pq

i=1

`
x(i) − x(i−1)

´
v(X(i)) ≤

Pq
i=1

`
x(i) − x(i−1)

´
λ(X(i)) =

=
Pq

i=1

ˆ
λ(X(i))− λ(X(i+1))

˜
x(i) =

Pq
i=1 λ({(i)})x(i) =

Pq
i=1 λixi.

Hence, any vector of weights (λ1, . . . , λq) ∈ Rq
+ with λi = λ({i}), i = 1, . . . , q

where λ is an additive capacity in core(v) (resp. core(v̄)) can be used to produce
a linear upper bound (resp. lower bound) on values of the Choquet integral. In
the sequel, the set of all such vectors (λ1, . . . , λq) ∈ Rq

+ is denoted Λ. The result
about the non-emptiness of the core (see Section 2) guarantees the existence of
at least a weighting vector (λ1, . . . , λq) in Λ. Linearity of the bound has a major
advantage. For Cv-ST, we have indeed minT∈T Cv(c(T )) ≥ minT∈T

Pq
i=1 λici(T ).

Given λ, the value minT∈T
Pq

i=1 λici(T ) can be obtained by solving a monocri-
terion version of the problem where vector valuations of type (c1(e), . . . , cq(e))
are replaced by

Pq
i=1 λici(e). Similarly, for Cv-KP, we have maxS∈S Cv(c(S)) ≤

maxS∈S
Pq

i=1 λici(S) for λ ∈ core(v̄). The two resulting monocriterion problems
will be respectively denoted λ-ST and λ-KP hereafter. The optimal solution of λ-ST
is computed in polynomial time by using Kruskal’s algorithm. For problem λ-KP,
the exact computation of the optimal solution would require too much processing
time. For this reason, we resort to an upper approximation of the optimal value of
λ-KP computed with the Martello and Toth method (Martello and Toth, 1975).

Optimizing bounds. A question naturally arises now to design an efficient branch
and bound procedure: given an instance of Cv-ST (resp. Cv-KP), which vector of
weights should we choose inside Λ at each node of the search tree? Clearly, all
vectors of weights in Λ do not provide the same value for the lower bound (resp.
upper bound), and the best choice for these weights (i.e., providing the highest lower
bound, resp. the lowest upper bound) depends on the subproblem to deal with. We
now describe a way to explore the space of possible weights in Λ at each node of the
branch and bound procedure. This exploration can be related to the subgradient
optimization algorithm used in minmax combinatorial optimization (Murthy and
Her, 1992; Punnen and Aneja, 1995). In case 1, the optimal vector of weights (i.e.,
providing the best bound) can be obtained by solving the following mathematical
program Pv:

max
λ∈Rq

f(λ) (3)

s.t.
X
i∈A

λi ≤ v(A) ∀A ⊆ Q, (4)

X
i∈Q

λi = 1, (5)

λi ≥ 0 ∀i = 1, . . . , q. (6)

where f(λ) is the value of the optimal spanning tree in λ-ST. In case 2, max is
replaced by min in the objective function, “≤” is replaced by “≥” in constraint 4,
and f(λ) is the value returned by the Martello and Toth method applied to λ-KP.

Note that, in Pv, any vector (λ1, . . . , λq) that satisfies constraints 4, 5 and 6
provides an admissible bound (the closer to optimality the better the bound). This
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point is important since the solution method we use for Pv is iterative and, in
limited time, only provides an approximation of the optimal weights. We now explain
how the iterative method operates in case 1 (case 2 is similar). Given that f is a
concave piecewise linear function (since it is the lower envelope of a set of linear
functions), we solve program Pv using Shor’s r-algorithm which is available in the
SolvOpt library (Kappel and Kuntsevich, 2000). This algorithm is indeed especially
convenient for non-differentiable optimization. For maximization (as this is the case
here), the basic principle of the algorithm is to build a sequence (λk) of points (a
point is here a vector of weights) by repeatedly making steps in the direction of
a subgradient1 5f(λk) at the current point (steepest ascent). However, unlike the
subgradient method, every step is made in a dilated space, the dilation direction
of which depends on the difference between a subgradient at the current point and
the one computed at the previous point. At each iteration of the procedure, one
solves a minimum spanning tree problem to determine f(λk) =

Pq
i=1 λiy

k
i , where

yk is the image of the minimum spanning tree computed at iteration k. Subgradient
5f(λk) at point λk is precisely yk. To take into account constraints 4 to 6, a penalty
function g is used, i.e. constraints are relaxed and one maximizes f(λ) − Rg(λ)
instead of f(λ), where R is a positive penalty coefficient and g takes a positive
value if a constraint is violated at point λ, and value 0 otherwise. For simplicity,
we omit constraints 5 and 6 in the presentation. Usually, given a point (λ1, . . . , λq),
the penalty function would be defined as the maximal residual of the set of violated
constraints at point λ, which writes max{0, maxA⊆S rA} where rA =

P
i∈A λi−v(A).

Instead, in our implementation, we use the sum of the residuals of the set of violated
constraints at point λ, which writes

P
rA>0 rA (to speed up the convergence). In

order to compute 5f(λk) − R 5 g(λk) (the subgradient of f − Rg at point λk),
we have to compute subgradient 5g(λk). Considering constraints 4, subgradient
5g(λk) is equal to (|C1| , . . . , |Cq|), where Ci denotes the set of violated constraints
involving criterion i.

Besides, at each node of the search tree, the incumbent (i.e., the current best
solution) is updated if the Choquet value of one of the solutions computed by Shor’s
r-algorithm is better. Indeed, we take advantage of the property that feasible solu-
tions are generated when computing the bound.

Branching scheme. We apply a branch and bound procedure to both problems Cv-
ST and Cv-KP. The branching scheme is very simple: at each node of the branch and
bound, the problem is separated in two subproblems depending on whether a given
edge (resp. item) is made mandatory or forbidden. The heuristic to guide the search
is static: before the beginning of the branch and bound, a preliminary run of Shor’s
r-algorithm is performed in order to find a vector of weights (λ1, . . . , λq), and edges
e (resp items j) are ranked in increasing (resp. decreasing) order of

Pq
i=1 λici(e)

(resp. (
Pq

i=1 λici(j))/wj). The next edge (resp. item) on which to branch is then
selected according to this ranking.

1 Roughly speaking, a subgradient in non-differentiable optimization plays an anal-
ogous role to the one of the gradient in differentiable optimization.
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4 Applications

The algorithms have been implemented in C++, and the experimentations were
carried out on an Intel Pentium Core 2 computer with 2.66Ghz. For Cv-ST, we
used two types of submodular capacities respectively defined, for all sets A ⊆ Q,

by v1(A) =
qP

i∈A ωi where ωi’s are randomly drawn positive weights, and

v2(A) =
P

B∩A 6=∅ m(B) where m(B), B ⊆ Q are randomly drawn positive co-
efficients (Möbius masses) adding up to 1 (Shafer, 1976). For Cv-KP, we used
two types of supermodular capacities respectively defined, for all sets A ⊆ Q, by
v′1(A) = (

P
i∈A ωi)

2 and v′2(A) =
P

B⊆A m(B) with the same notations as above.
The experimentations on the Choquet optimal spanning tree problem (Cv-ST)

were performed on complete graphs (cliques). The criteria values on each edge are
randomly drawn between 1 and 100. The number of criteria is 3, 5 or 8, and the
number of nodes ranges from 10 to 70. For each class of graphs (characterized by
the number of nodes and the number of criteria), we solve 50 different instances.
Table 1 summarizes the average execution times (in seconds) on these instances.
Symbol “–” means that the average execution times exceed 30 minutes.

The experimentations on the Choquet optimal 0-1 knapsack problem (Cv-ST)
were also performed on 50 different instances for each category. Table 2 shows com-
putation times (in sec) obtained on at least 30 different instances for each size, with
profits and weights randomly drawn between 1 and 100, and a maximum weight
capacity W equal to 50% of the total weight of the items. The number of items
ranges from 50 to 210. Here again, the number of criteria is 3, 5 or 8.

Table 1. Numerical results for Cv-ST.

v1

|V | 3 crit. 5 crit. 8 crit.

10 0.02 0.04 0.32
15 0.07 0.23 2.08
20 0.23 1.47 16.72
25 0.83 5.05 69.92
30 1.94 15.57 192.53
35 3.93 41.82 928.85
40 7.35 109.19 –
45 18.47 273.34 –
50 26.56 297.65 –
55 44.63 600.25 –
60 75.17 967.42 –
65 129.10 – –
70 209.10 – –

v2

|V | 3 crit. 5 crit. 8 crit.

10 0.02 0.10 2.55
15 0.11 1.56 47.22
20 0.51 7.95 447.79
25 1.48 33.69 –
30 2.87 196.19 –
35 9.15 452.30 –
40 24.77 1010.87 –
45 37.26 – –
50 72.41 – –
55 129.20 – –
60 290.10 – –
65 329.50 – –
70 823.40 – –

These results show the efficiency of the branch and bound procedures. For exam-
ple, when capacity v′1 is used, it takes only one minute for solving problem Cv-KP
with 150 items and 8 criteria, and only two minutes for solving problem Cv-ST with
capacity v1, 65 nodes and 3 criteria. Moreover we can observe that the execution
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Table 2. Numerical results for Cv-KP.

v′1
n 3 crit. 5 crit. 8 crit.

50 0.61 1.27 6.42
70 0.97 3.64 14.40
90 2.77 5.81 25.56
110 4.16 10.84 26.73
130 7.38 15.37 38.96
150 11.48 28.22 66.76
170 15.46 31.14 71.36
190 22.44 35.86 161.25
210 36.20 41.15 165.02

v′2
n 3 crit. 5 crit. 8 crit.

50 1.02 1.97 19.73
70 2.00 4.94 37.40
90 2.59 9.19 108.24
110 6.06 16.40 211.10
130 8.85 31.83 397.09
150 12.27 64.77 739.43
170 25.59 93.98 1021.37
190 27.33 135.15 1391.82
210 50.04 145.86 –

times depend on the capacity. In particular the times are better with capacity v1

(resp. v′1) than with capacity v2 (resp. v′2). We might explain this observation by
remarking that v2 and v′2 are monotone of infinite order, but a more thorough study
would be necessary to confirm this tentative explanation.

5 Conclusion

We have presented a general bound that can be used for the search for Choquet-
optimal solutions in combinatorial problems. This bound is valid for any multiobjec-
tive optimization problem provided we chose a submodular capacity in minization
(resp. a supermodular capacity for maximization) so as to reflect preference for
interior points. Given a set of criteria weights (ω1, . . . , ωq), a possible example of
suitable capacity is given by v(A) = ϕ(

P
i∈A ωi) for all A ⊆ Q which is supermod-

ular whenever ϕ(x) ≤ x and submodular whenever ϕ(x) ≥ x. Interestingly enough,
the Choquet integral used with such a capacity is nothing else but the weighted or-
dered weighted averaging operator (WOWA) considered by Ogryczak and Sliwinski
(2007) for compromise search in continuous multiobjective optimization problems.
WOWA operator, also known as Yaari’s model in Economics (Yaari, 1987), is there-
fore a particular case of Choquet integral. Hence, the bound we introduced in this
paper might be used as well to determine WOWA-optimal operators on combinato-
rial domains provided ϕ is compatible with preference for interior points. Conversely,
the work of Ogryczak and Sliwinski (2007) for WOWA-optimization on continuous
domains should provide alternative bounds for Cv-KP by relaxing the integrality
constraint.
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