
HAL Id: hal-01294431
https://hal.science/hal-01294431v1

Submitted on 31 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy-Aware Task Allocation onto Unrelated
Heterogeneous Multicore Platform for Mixed Criticality

Systems
Muhammad Ali Awan, Damien Masson, Eduardo Tovar

To cite this version:
Muhammad Ali Awan, Damien Masson, Eduardo Tovar. Energy-Aware Task Allocation onto Unre-
lated Heterogeneous Multicore Platform for Mixed Criticality Systems. Proceedings of the Work-in-
Progress Session of the Real-Time Systems Symposium, Dec 2015, San Antonio, TX, United States.
�10.1109/RTSS.2015.46�. �hal-01294431�

https://hal.science/hal-01294431v1
https://hal.archives-ouvertes.fr

Energy-aware Task Allocation onto Unrelated
Heterogeneous Multicore Platform for Mixed

Criticality Systems
M. Ali Awan∗, Damien Masson†, Eduardo Tovar∗

∗CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Portugal
{muaan, emt}@isep.ipp.pt

†LIGM - Laboratoire d’Informatique Gaspard-Monge
damien.masson@univ-paris-est.fr

Abstract—Heterogeneous multicore platforms have become an
attractive choice to deploy mixed criticality systems demanding
diverse computational requirements. One of the major challenges
is to efficiently harness the computational power of these mul-
ticore platforms while deploying mixed criticality applications.
The problem is acerbated with an additional demand of energy
efficiency. It is particularly relevant for the battery powered
embedded systems. We propose a partitioning algorithm for
unrelated heterogeneous multicore platforms to map mixed
criticality applications that ensures the timeliness property and
reduces the energy consumption.

I. INTRODUCTION

Modern real-time (RT) applications are becoming increas-
ingly complex everyday. These applications may have different
criticality levels. A criticality level corresponds to a level of
assurance against failure. The highest-criticality functions are
vital for the operations of the system and any violation of
temporal constraint (fault) may lead to a disastrous conse-
quences. However, fault of lower criticality functions may
cause a tolerable decrease in the quality of service.

In the past, applications of different criticality were hosted
on separate components. A recent trend in RT and embed-
ded system domain to integrate the functionalities belonging
to different criticality levels on a single hardware platform
has paved a way towards mixed criticality systems. Mixed
criticality systems are common in many domains such as
avionics and automotive industry. For example, an unmanned
aerial vehicle may have functionalities corresponding to flight
critical (concerning the safety of flight) and mission critical
(reconnaissance and surveillance) operations. It is vital for the
integrity of the aerial vehicle to ensure the safe operation of a
flight in all conditions while reconnaissance and surveillance
are secondary functionalities.

In order to increase the level of assurance against failure
for the high criticality functions, pessimistic estimates of the
worst-case-execution time (WCET) are determined using static

This work was partially supported by National Funds through FCT/MEC (Portuguese
Foundation for Science and Technology) and co-financed by ERDF (European Regional
Development Fund) under the PT2020 Partnership, within project UID/CEC/04234/2013
(CISTER Research Centre); also by FCT/MEC and the EU ARTEMIS JU within
project(s) ARTEMIS/0001/2013 - JU grant nr.621429 (EMC2) and ARTEMIS/0003/2012
- JU grant nr.333053 (CONCERTO).

analysis. However, a mixed criticality system designed with
the pessimistic estimates of WCET for the high criticality
functions (tasks) will lead to inefficient utilisation of the
resources and unnecessary over-provisioning of the system.
This is driven by the fact that high criticality WCET estimates
are rarely achieved in real execution. To efficiently exploit
the available resources Steve Vestal [1] proposed a mixed
criticality system model. In this model, tasks have differ-
ent estimates of WCET corresponding to different criticality
levels. A system starts in a low criticality mode and the
schedulability of the system is ensured assuming a WCET
estimate corresponding to current low criticality mode. If any
task exceeds its execution beyond the WCET estimate defined
for the given criticality mode of operation, a system transitions
to high criticality mode.

Modern multicore platforms provide sufficient computing
capabilities to deploy mixed criticality systems on a single
chip. Among different kinds of multicore architectures, het-
erogeneous multicore platforms composed of more than one
heterogeneous processing units (cores) has gained popularity
to perform specific tasks well and cheap. Various components
(applications) in a mixed criticality system have diverse com-
puting requirements that makes heterogeneous multicore plat-
forms an attractive choice to opt. Despite all benefits, efficient
mapping of mixed criticality applications on heterogeneous
multicore platform is one of the major challenges faced by
system designers.

The problem is acerbated with an additional limitation of
energy supply. This is particularly relevant in battery powered
and nomadic embedded systems. Even when the application is
technically feasible upon the targeted platform in the sense that
the platform can provide a sufficient computing capacity for
the execution of the application, it has become unreasonable
to expect to implement such a system without addressing
the issue of reducing its energy consumption. The energy
consumption of a heterogeneous platform can be reduced
in two different ways. Firstly, a task should be mapped to
a processor where it dissipates minimum dynamic power.
Secondly, the energy-aware scheduling mechanism can be
employed to further reduce the energy consumption on each

core. This work explores the former technique.
We use partitioned scheduling to map the given set of tasks

belonging to different criticality levels on a heterogeneous
multicore platform such that available computational capacity
of the hardware platform is efficiently exploited, and energy
consumption is minimised while ensuring the timeliness prop-
erties of the system. This is an NP-hard problem in a strong
sense as it is a special case of bin packing and hence, heuristics
are the way forward.

There has been some efforts in the state-of-the-art [2]–[5] to
propose new techniques and evaluate the potential of existing
bin packing heuristic to perform the allocation with an ob-
jective to optimise the utilisation of the system. However, the
state-of-the-art on the energy minimisation of mixed criticality
systems is very limited. Broekaet et al. [6] proposed system
level power management approach that allocates energy bud-
gets to virtual machines. In this techniques an overrunning
virtual machine deducts its additional budget from budget of
low priority virtual machine to be scheduled in future. Legout
et al. [7] proposed a technique that provides trade-off between
energy reduction and the number of deadline misses of low
criticality tasks. Finally, Zhang et al. [8] allocates energy
budgets to different cores and perform allocation through
genetic algorithm to extend the battery life time of the system.
They assume that the energy consumption of a task is only a
function of its execution time. We consider a realistic power
model in which the energy consumption of a task depends on
the characteristics of the core type.

II. SYSTEM MODEL

This work considers a partitioned unrelated heterogeneous
multicore platform π

def
= [π1, π2, . . . , πM] composed of M

distant cores. We adopt a common mixed criticality task
model, initially proposed by Steve Vestal [1] and later ex-
tended by other researchers in the RT research community [9].
We consider a dual criticality system in which a system
executes in either low criticality mode (L-mode) or high
criticality mode (H-mode) of operation. We assume a set
of n independent sporadic tasks τ def

= {τ1, τ2, . . . , τn}. Each

task τi
def
= 〈Ti, Di, κi,

→
Ci(H),

→
Ci(L),

→
Ei〉 is characterised by

its minimum inter-arrival time Ti, deadline Di, criticality

level κi, a vector of WCET profile
→

Ci(H) in H-mode of

operation, a vector of WCET profile
→

Ci(L) in L-mode of
operation and a vector of energy consumption profile

→
Ei.

Each task τi belongs to either high criticality level (H-task)
or low criticality level (L-task), i.e., κi ∈ {L,H}. The

WCET profiles
→

Ci(H)
def
= (C1

i (H), C2
i (H), . . . , CMi (H)) and

→
Ci(L)

def
= (C1

i (L), C
2
m(L), . . . , CMi (L)) are the WCET esti-

mates in the H-mode and L-mode of operation, respectively,
on different cores indexed from 1 to M . Similarly, energy
consumption profile

→
Ei

def
= (E1

i , E
2
m, . . . , E

M
i) represents the

energy consumption of task τi on different cores in L-mode.
It is very common to assume in state-of-the-art that energy

consumption of a task is a function of its execution time.

However, in reality, energy consumption on a certain processor
depends also on the set of instructions it has to execute
to perform the desired functionality. Various instructions use
different parts of CPU, and hence may result in a different
estimate of energy consumption. Therefore, two applications
with identical execution time may consume different energy
depending on the characteristics of the instructions used, and
the number of cache misses involved. In this work, we consider
a realistic power model in which the energy consumption
of a task depends on the characteristics of the core type
and hence, computed on each core using existing energy
measurement technique [10]. This approach has the flexibility
to incorporate the effect of other system resource usage on
energy consumption such as memory and caches etc.

We assume that τ(L)
def
= {τi ∈ τ |κi ∈ L} and

τ(H)
def
= {τi ∈ τ |κi ∈ H} represent the subsets of low-

and high-criticality tasks in τ , respectively. It is assumed that
∀τi ∈ τ(H) ∧ ∀m ∈ [1, 2, . . . ,M], Cmi (L) ≤ Cmi (H) and
∀τi ∈ τ(L) ∧ ∀m ∈ [1, 2, . . . ,M], Cmi (H) = 0. Tasks
are not allowed to migrate after assignment as we assume
partitioned scheduling. The schedulability analysis proposed
by Ekberg and Yi [11] is used to test the feasibility of the
system in both low and high criticality mode. This analy-
sis shortens the deadlines of τ(H) in the L-mode to keep
the schedule ahead of time which allows a safe transition
from L to H-mode. The utilisation of task τi in low and
high criticality mode on processor πm are represented as

Umi (L)
def
=

Cmi (L)

Ti
and Umi (H)

def
=

Cmi (H)

Ti
, respectively.

A subset of task assigned to a core πm is represented as
τ(πm). The overall utilisation of tasks assigned to core πm in
L and H-mode is defined as Um(L)

def
=

∑
∀τi∈τ(πm)

Cmi (L) and

Um(H)
def
=

∑
∀τi∈τ(πm)

Cmi (H), respectively. We assume an

arbitrary deadline model in our system in which task deadline
has not relation with its minimum inter-arrival time.

III. PRELIMINARIES

Initially, we define the following concepts needed to explain
the proposed allocation heuristics.

Definition 1 (Energy density EDm
i): The energy density of

a task τi on a core πm is defined as EDm
i

def
=

Emi
Ti

, where

Emi corresponds to the energy consumption of task in the
low criticality mode. This is a measure of the average power
dissipation in the low criticality mode.

Definition 2 (Energy density difference EDDm
i): The en-

ergy density difference of a task τi on a core πm is defined
as EDDm

i
def
= min{EDh

i : h 6= m∧EDh
i ≥ EDm

i }−EDm
i .

This value corresponds to the difference between the next
higher energy density of τi on any other core and the energy
density on the current core.

Definition 3 (Low criticality utilisation difference LUDm
i):

The low criticality utilisation difference of a task τi on a core
πm is defined as LUDm

i
def
= min{Uhi (L) : h 6= m∧Uhi (L) ≥

2

Umi (L)} − Umi (L). This value is the difference between the
next higher low criticality utilisation of τi on any other core
and the low criticality utilisation on the current core.

Definition 4 (High criticality utilisation difference HUDm
i):

The high criticality utilisation difference of a task τi ∈ τ(H)

on a core πm is defined as HUDm
i

def
= min{Uhi (H) : h 6=

m ∧ Uhi (H) ≥ Umi (H)} − Umi (H). This measure represents
the difference of next higher high criticality utilisation of τi ∈
τ(H) on any other core and the high criticality utilisation on
the current core.

Initially, we compute EDm
i and LUDm

i for all tasks, and
HUDm

i for high criticality tasks (i.e., ∀τi ∈ τ(H)) on each
core. Afterwards, we generate the following three lists out of
these values.

1) Assume a set LUD such that LUD
def
={

LUDmin
1 , LUDmin

2 , LUDmin
3 , . . . , LUDmin

|τ |

}
,

where LUDmin
i

def
= min

∀m
{LUDm

i }. SLUD is a list that
contains a sequence of numbers of LUD sorted in a
non-increasing order.

2) Assume a set HT
def
={

HUDmin
j1

, HUDmin
j2

, . . . ,HUDmin
j|τ(H)|

}
,

where HUDmin
jx

def
= min

∀m
{HUDm

jx} and
τjx ∈ τ(H). Similarly, assume another set
LT

def
=

{
LUDmin

k1
, LUDmin

k2
, . . . , LUDmin

k|τ(H)|

}
,

where τkx ∈ τ(L). Let SHT and SLT represent the
sequence of elements of set HT and LT , respectively,
sorted in non-increasing order, then, SHUD is a list that
concatenates SHT and SLT , i.e., SHUD def

= SHT ||SLT ,
where || represents the concatenation sign.

3) Assume that EDD is a set defined as EDD
def
={

EDDmin
1 , EDDmin

2 , EDDmin
3 , . . . , EDDmin

|τ |

}
,

where EDDmin
i

def
= min

∀m
{EDDm

i }. SEDD is a list
that contains all the elements of EDD sorted in
non-increasing order.

IV. PROPOSED APPROACH

In our proposed approach, we compute a set of feasible
allocations and select the one that minimises the overall energy
consumption of the system. Each feasible allocation ensures
the schedulability of assigned tasks on each core both in LOW
and HIGH criticality modes. The following method is used to
collect the feasible allocations. A suffrage based task-to-core
allocation scheme ILLED (proposed by Awan et al. [?] for
single criticality systems) ranks the tasks based on a metric
called density difference1 while performing allocation to their
preferred core. The density difference of a task shows how
much a system will lose in term of given criteria (utilisation
or energy) if a task is not allocated to its preferred core.
The ILLED algorithm ranks tasks based on density difference

1The density difference is a generic term used to indicate any of the
following quantities, i) low criticality utilisation difference, ii) high criticality
utilsation difference or iii) energy density difference.

metric and performs the allocation to optimise the given
criteria (utilisation or energy). This ranking plays an important
role in the allocation process. The tasks ranked higher have the
higher probability of getting mapped to their preferred core.
The proposed allocation heuristics manipulates SLUD, SHUD

and SEDD density difference lists to obtain a set of feasible
task-to-core mappings. The ILLED algorithm signals a failure
if the mapping is not schedulable2 in either high criticality or
low criticality mode.

The pseudocode of the proposed approach is given in
Algorithm 1. First of all, we perform the task-to-core mapping
based on a list SEDD through ILLED algorithm. If the task-
to-core mapping is successful, meaning it ensures the schedu-
lability in both high criticality and low criticality modes, we
are done. As the ordering of the tasks in SEDD is based on
the energy density difference, therefore, ILLED generates a
mapping to minimise the energy consumption. However, if a
system is not schedulable in either of high or low criticality
mode, we need to determine an order of a list that leads to a
feasible task-to-core mapping ensuring schedulability in both
modes.

In mixed criticality systems, it is very important to ensure
the schedulability of the high criticality tasks in both low
and high criticality modes. A conservative allocation approach
gives preference to the high criticality tasks in the assignment
process to ensures their schedulability in both modes. Such an
allocation can be achieved through SHUD list. Assume, we
divide the list SHUD into two parts SH and SL corresponding
to high and low criticality tasks respectively, and apply the
ILLED algorithm on SH followed by SL.

It is also desirable to ensure the schedulability of the low
criticality tasks in a low criticality mode. In practice, mixed
criticality system mostly stays in low criticality mode and oc-
casionally transitions into a high criticality mode triggered due
to an overrun or other external/internal events. Therefore, it is
more beneficial to optimise the energy efficiency in the low
criticality mode. An allocation based on a list SLUD ordering
maximises the schedulability in the low criticality mode as it is
sorted with respect to low criticality utilisation. However, there
may be a possibility that system may not be feasible in high
criticality mode when an allocation is performed with such an
ordering (SLUD). Therefore, we start with a list SLUD in our
allocation process and gradually promote the high criticality
tasks in our SLUD list corresponding to the ordering given in
SHUD to generate all feasible allocations.

The reordering mechanism is explained as follows. We
perform the allocation with respect to the given list and
compute its energy consumption if the allocation is successful
(schedulable both in low and high mode). Afterwards, we
modify SLUD list, by promoting the entry of high criticality
task by one position to get a new list. As modification in SLUD

list is performed with respect to the list SHUD, therefore, we
select the high criticality task corresponding to the entry on

2The ILLED algorithm is initially designed for single criticality system. To
make it compatible with mixed criticality systems, we replaced the feasibility
test of the ILLED algorithm with Ekberg and Yi’s schedulability analysis [11].

3

Algorithm 1 Pseudocode of the proposed algorithm

Input: τ, π
Output: Assignment

1: Compute SEDD, SLUD and SHUD

2: Assume A[i] represent the ith assignment
3: A[0] := Perform the ILLED allocation with SEDD

4: if (A[0] is feasible) then return A[0]
5: end if
6: i := 0
7: while (true) do
8: A[i] := Perform the ILLED allocation with SLUD

9: if (A[i] is feasible) then
10: E[i] := Compute energy consumption of A[i]
11: i := i+ 1
12: end if
13: Promote high criticality task’s entry in SLUD

14: if (Promotion fails) then
15: break
16: end if
17: end while
18: A[i] := Perform the ILLED allocation with SHT followed

by SLT ,
19: if (A[i] is feasible) then
20: E[i] := Compute energy consumption of A[i]
21: end if
22: index := Find index that gives min

∀i
(E[i])

23: return A[index]

top of the SHUD list and promote its corresponding entry in
SLUD by one position. If the task corresponding to the top
most element in SHUD is also at the same level as in SLUD,
we need to select the task corresponding to the second element
of SHUD in SLUD and promote it by one position in SLUD

unless it reaches the same position as in SHUD. As mentioned
previously, after every modification we have to compute the
energy consumption, if the allocation is successful. After all
these promotions of high criticality tasks, SLUD will have
the same ordering as given in SHUD. However, SLUD does
not represent the same list as SHUD as high criticality tasks
are ordered with respect to HUDm

i in SHUD. Therefore, as a
final step, we perform the allocation based on a list SHUD and
compute the energy consumption on successful allocation. The
allocation with a list SHUD is performed in a slightly different
manner. We first divide the list SHUD into two lists SHT and
SLT representing high and low criticality tasks. All elements
in SHT and SLT are sorted in non-increasing order with
respect to HUDm

i and LUDm
i respectively. First, we perform

the allocation of SHT and then on top of this we perform the
allocation of low criticality task from a list SLT . The energy
consumption is computed on successful allocation and stored
in a variable EHUD. Let ELUD be the minimum of the energy
consumptions computed for all the iteration performed on a
list SLUD. A minimum of EHUD and ELUD will give us our
desired allocation that ensures the schedulability and reduces
the total energy consumption.

Finally, we explain an adapted ILLED algorithm [?]. This
algorithm assigns the tasks to their favourite core in the
specified order of the provided list. If a task cannot be assigned
to its preferred core, the current entry of the task in the
provided list is updated with the value on next preferred core in
the order. The entry corresponding to this task is added again
in the provided list on its appropriate location based on its
new updated value. On a successful assignment the task from
the provided list is removed. This allocation scheme should
continue unless the provided list is empty or a task cannot be
assigned to any core. We used Ekberg and Yi’s [11] test to
check the schedulability of a core after mapping any task.

V. CONCLUSION AND FUTURE DIRECTIONS

This work presents the energy-aware task-to-core alloca-
tion for mixed criticality systems deployed on heterogeneous
multicore platform considering a realistic power model. Initial
assessment of this algorithm predicted upto 8.9% gains over
the traditional first-fit bin packing heuristics in terms of
energy consumption and scheduled task-set. In the future, it is
intended to evaluate the performance of the proposed approach
for different types of applications and hardware platforms.
Another possible extension is to integrate the effect of leakage
power dissipation in the proposed approach.

REFERENCES

[1] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Real-Time Systems
Symposium, 2007. RTSS 2007. 28th IEEE International, Dec 2007, pp.
239–243.

[2] K. Lakshmanan, D. de Niz, R. Rajkumar, and G. Moreno, “Resource
allocation in distributed mixed-criticality cyber-physical systems,” in
Distributed Computing Systems (ICDCS), 2010 IEEE 30th International
Conference on, June 2010, pp. 169–178.

[3] D. TamasSelicean and P. Pop, “Design optimization of mixed-criticality
real-time applications on cost-constrained partitioned architectures,” in
Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd, Nov 2011,
pp. 24–33.

[4] O. Kelly, H. Aydin, and B. Zhao, “On partitioned scheduling of fixed-
priority mixed-criticality task sets,” in Trust, Security and Privacy
in Computing and Communications (TrustCom), 2011 IEEE 10th
International Conference on, Nov 2011, pp. 1051–1059.

[5] P. Rodriguez, L. George, Y. Abdeddaı̈m, and J. Goossens, “Multi-
criteria evaluation of partitioned edf-vd for mixed-criticality systems
upon identical processors,” in Workshop on Mixed Criticality Systems,
2013.

[6] L. s. Florian Broekaert, Agnes Fritsch and S. Tverdyshev, “Towards
power-efficient mixed critical systems,” OSPERT, vol. 2013, pp. 30–35,
2013.

[7] V. Legout, M. Jan, and L. Pautet, “Mixed-Criticality Multiprocessor
Real-Time Systems: Energy Consumption vs Deadline Misses,” in
First Workshop on Real-Time Mixed Criticality Systems (ReTiMiCS),
Taipei, Taiwan, Aug. 2013, pp. 1–6.

[8] X. Zhang, J. Zhan, W. Jiang, Y. Ma, and K. Jiang, “Design optimization
of security-sensitive mixed-criticality real-time embedded systems,” in
1st workshop on Real-Time Mixed Criticality Systems (ReTiMiCS),
2013.

[9] A. Burns and R. Davis, “Mixed criticality systems-a review,” Department
of Computer Science, University of York, Tech. Rep, 2013.

[10] D. C. Snowdon, E. Le Sueur, S. M. Petters, and G. Heiser, “Koala:
A platform for os-level power management,” in Proceedings of the 4th
ACM European Conference on Computer Systems, ser. EuroSys ’09.
New York, NY, USA: ACM, 2009, pp. 289–302.

[11] P. Ekberg and W. Yi, “Bounding and shaping the demand of generalized
mixed-criticality sporadic task systems,” Real-Time Systems, vol. 50,
no. 1, pp. 48–86, 2014.

4

