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Abstract  

 

In the standard stochastic frontier model, the two-sided error term V and the one-sided 

technical inefficiency error term W are assumed to be independent. In this paper, we 

relax this assumption by modeling the dependence between V and W using copulas. 

Twelve copula families are considered, and their parameters are estimated using 

maximum simulated likelihood. The best model is then selected using the AIC and 

BIC criteria. This methodology was applied to coffee production data from Northern 

Thailand. For these data, the best model was the one based on the rotated Gumbel 

copula. The main finding of this study is that the dependence between V and W is 

significant and cannot be ignored. In particular, the standard stochastic frontier model 

with independence assumption grossly overestimated the technical efficiency of 

coffee production. In this study, about 38% of farmers were found to have low 

technical efficiency and most of them had technical efficiencies between 0.2 and 0.3. 

These results suggest that a considerable amount of productivity is lost due to 

inefficiency. 

 

Keywords: Stochastic Frontier, Copula, Technical Efficiency, Thailand. 

 

1. Introduction 

 

Stochastic frontier models (SFMs) have been proved very useful to measure technical 

efficiency of production units. The stochastic frontier production model for a 

cross-section of observations was independently proposed by Aigner et al. (1977) and 

Meeusen and Van den Broeck (1977). This is essentially a linear regression model 

with two independent error components: a two-sided one that captures random 

variation of the production frontier across firms and a one-sided one that measures 

inefficiency relative to the frontier. In recent decades, most studies about production, 

cost or profit efficiency have used the conventional stochastic frontier model (see, e.g., 

Rahman et al (2012,2009,2008), Sriboonchitta (2012), Wiboonpongse et al. (2012a, 
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2012b, 2008a, 2008b, 2005), Wiboonpongse and Sriboonchitta (2004), Sriboonchitta 

and Wiboonpongse (2006, 2005, 2004), Aigner et al. (1977), Jondrow et al. (1982), 

Coelli et al. (1998, 2002) Kombhakar and Lovel (2000)). In all these studies, it is 

assumed that the one-sided and two-sided error terms are independent, so that the 

joint distribution of these two random variables can easily be computed. Based on this 

assumption, the parameters of the SFM can be estimated using the Corrected Ordinary 

Least Squares (COLS) or Maximum Likelihood (ML) methods. However, the impact 

of the independence assumption on technical efficiency estimation has long remained 

an open issue. Fortunately, this strong assumption can be relaxed by using copula to 

fit the joint distribution of the two random error components more appropriately.  

 

Smith (2008) first proposed a SFM allowing for dependence between the two error 

components using copula functions. Copula functions can be used to capture rank 

correlation and tail dependence between the two error components, thus making the 

stochastic frontier analysis much more flexible. However, the log likelihood function 

in the copula-based stochastic frontier model generally does not have a closed form, 

which makes its maximization numerically complex. In this paper, we proposed to use 

the maximum simulated likelihood method, which has numerical and computational 

advantages over numerical integration method used by Smith (2008). Furthermore, to 

explore the dependence structure of the error components in the SFM, we consider 

several copula families including the Student-t, Clayton, Gumbel and Joe families as 

well as their relevant rotated versions. The model with the best fit/complexity 

trade-off is selected using the AIC and BIC criteria. This approach was applied to 

cross-sectional data of coffee production in Thailand. A comparison between technical 

efficiencies computed with and without the independence assumption (considering the 

best copula model) reveals that the standard approach grossly overestimates efficiency, 

which has important implication for production analysis using the SFM. 

The remainder of this paper is organized as follows. Section 2 introduces the 

necessary background on the SFM and copula. Section 3 presents the copula-based 

stochastic frontier approach. Empirical results with this model applied to coffee 

production data are reported in Section 4. Finally, Section 5 concludes the paper. 

 

2. Background and theory 

 

The SFM is a regression-like model with a disturbance function that is asymmetric 

and distinctly non-normal. This model will first be briefly in Section 2.1. Some 

background on copula will then be recalled in Section 2.2. These are the two building 

blocks of the copula-based model introduced in Section 3. 

 

2.1 Stochastic frontier model 

 

The SFM aims at representing the “ideal” relation between inputs xj and output y 

of a production process by a production function, seen as a theoretical ideal. The 

observed deviations from the production function could arise from two sources: 



  
 

1. Productive inefficiency, resulting in a non-negative error term; 

2. Firm-specific effects, which can enter the model with either signs. 

Assuming the relation between the logarithm of production log(y) and the input vector 

x to be linear, we obtain the following equation:  

log 'i i i
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for i=1, 2,…,N, where N is the number of firms, yi is the production output for firm i, 

xi is a k×1 vector of inputs for firm i (including a constant component xi1=1),  is a 

k×1 vector of unknown parameters, vi is a random error, and wi is a non-negative 

unobservable random variable representing production inefficiency. The two error 

components wi and vi are assumed to be independent. The technical efficiency TEi for 

firm i can then be defined as the ratio between actual to theoretically ideal production: 
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It is comprised between 0 and 1. The inefficiency error term w is usually assumed to 

have a gamma, exponential or half-normal distribution (defined as the distribution of 

the absolute value of a normal variable) (Cullinane and Song, 2006). In contrast, the 
symmetric error term v is usually assumed to have a normal or logistic distribution.  

 

2.2 Copula 

 

A copula connects a given number of one-dimensional marginal distributions to 

form a joint multivariate distribution. In the following, we will restrict the 

presentation to bivariate copula, which will be used later. Sklar's theorem (Sklar, 1959) 

states that any bivariate cumulative distribution function (cdf) F(x1,x2) can be 

expressed as 

1 2 1 1 2 2( , ) ( ( ), ( )),F x x C F x F x
                         

                       (3) 

where F1(.) and F2(.) and the marginal cdfs of X1 and X2, , C is a bivariate copula 

function and   is a parameter vector of the copula, commonly referred to as the 

dependence parameter vector. Bivariate copulas satisfy the following properties 

 

1. C(u1,0)=C(0,u2) for all u1 and u2 in [0,1]; 

2. C(u1,1)=u1 and C(1,u2)=u2 for all u1 and u2 in [0,1]; 

3. For all 0≤u1≤u2≤1 and 0≤v1≤v2≤1, 

2 2 2 1 1 2 1 1( , ) ( , ) ( , ) ( , ) 0.C u v C u v C u v C u v   
 

If the random vector (X1,X2) has a joint density f(x1,x2), it can be expressed as a  

function of the copula density by (Lee et al., 2009): 
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where f1(x1) and f2(x2) are the marginal densities, the small letter c represents the 

density function of the copula. 

The most common measure of dependence between random variables is Pearson‟s 

correlation coefficient, which measures only linear dependence and is not very 

informative for asymmetric distributions (Boyer et al., 1999). To measure nonlinear 

dependence, rank correlation coefficients such as Kendall‟s tau and Spearman‟s rho 

are more suitable. They can be expressed in terms of the copula as follows (see 

Nelsen, 2006): 

                                                              (5) 

 

 

                                                              (6) 

Moreover, there is the possibility that the tail dependence may divide into upper 

tail and lower tail dependences, the definitions of which are written as  

 

                                                                           (7) 

 

and  
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where F1 and F2 are the marginal cumulative distribution functions of X1 and X2, 

respectively. Some copulas, such as the Gaussian and Frank copulas, possess the 

characteristic 0U L   , while most copulas can capture upper tail and/or lower tail 

dependence. For instance, Clayton copula can measure lower tail dependence, and 

Gumbel copula can measure upper tail dependence, and Joe copula families, which 

can represent upper tail dependence as well, while student-t copula reflects symmetric 

tail dependence (Brechmann and Schepsmeier, 2013). However, these copulas can 

only capture positive dependence except Gaussian, T and Frank copulas. Fortunately, 

these copulas may then be “rotated” and applied again. A thorough review of rotated 

copulas may be found in Christian Cech (2006), Brechmann and Schepsmeier, 2013 

and Luo (2010). There are three rotated forms, rotated 90 degrees, rotated 180 degrees 

and rotated 270 degrees. When rotating them by 180 degrees, one obtains the 

corresponding survival copulas. Non-rotated Clayton copula can capture lower tail 

dependence, while survival Clayton copula can measure upper tail dependence. Also, 

rotation by 90 and 270 degrees allows for the modeling of negative dependence. The 

distribution functions of rotated copulas by 90, 180 and 270 degrees are given as 

follows: 

90 1 2 2 1 2( , ) (1 , ),C u u u C u u  
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180 1 2 1 2 1 2( , ) 1 (1 ,1 ),C u u u u C u u     
                                 (10)

 

270 1 2 1 1 2( , ) ( ,1 ).C u u u C u u  
.                                         (11)
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Fréchet-Hoeffding bounds for copula functions are crucial to select an 

appropriate copula that should cover the sample space between the lower and the 

upper bounds and that as a parameter of copula approaches the lower (upper) bound 

of its permissible range. Fréchet-Hoeffding bounds for copula functions can be 

expressed as  

1 2 1 2 1 2 1 2 1 2( , ) max( 1,0) ( , ) min( , ) ( , )W u u u u C u u u u M u u      .        (12) 

The copula approaches the Fréchet–Hoeffding lower (upper) bound. Therefore, 

we can make use of some copula families that cover a large dependence as much as 

possible, such as the (rotated) Clayton, (rotated) Gumbel and (rotated) Joe copula 

families, which can represent both negative and positive dependence. The copula 

families used in this paper are summarized below. We refer to the formulas and 

notations from Trivedi and Trivedi (2005) and Sriboonchitta et al. (2013).  

 

(1) Independence copula 

The independence copula is defined by
1 2INC u u . It connects the cdfs of two 

independent random variables.  

(2) Gaussian copula 

This copula takes the form  
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(13) 

where 1 1    is Pearson‟s correlation coefficient and   is the cdf the standard 

normal distribution function. This is the copula pertaining to a bivariate normal 

distribution with standard normal marginals and Pearson‟s linear correlation 

coefficient  . Parameter   is related to the Kendall‟s tau   and Spearman‟s rho 

S coefficients by the following equations:  

1(2 / )sin ( )    and 
1(6 / )sin ( / 2).S   . 

(3) T copula 

As Gaussian copulas, T copulas belong to the class of elliptical copula (i.e., 

they are the copulas of elliptically contoured distributions). However, T copulas can 

capture tail dependence, and it is symmetric extreme dependence. They are defined as 
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       (14) 

where   is the Pearson‟s correlation coefficient and Tv is the cdf of a Student 

distribution with v degrees of freedom. When v tends to infinity, the T copula 

converges to the Gaussian copula. The symmetric tail dependence can be calculated as 



  
 

a function of parameters   and v as follows: 

12 ( 1 (1 ) / (1 )).U L vT v        
                                  

  

(15)

 
(4) Clayton copula 

The copula 1

1 2 1 2( , ) ( ( ) ( ))C u u u u     is called Archimedean and the 

function   its generator. There are different Archimedean copulas according to 

different generators, such as Clayton, Gumbel, Frank, Joe and AMH copulas etc. 

Clayton copula family can reflect the lower tail dependence for 0  . It is 

characterized by the following formula: 

1/

Cl 1 2 1 2( , | )=( 1) .C u u u u    
.                                        (16) 

The above copula can only capture a strong lower tail and positive dependence, 

but it can be rotated and used in capture negative dependence or reflect strong upper 

tail dependence (see Cech (2006) and Luo (2010)). The corresponding Kendall‟s tau 

measure is simply given by = / ( 2)CL    . However, the relation between the 

copula parameter and the Spearman‟s rho is very complicated, and the lower tail 

dependence can be also simply calculated by 1/2L

  . 

(5) Frank copula 

Copulas in the Frank family are the only Archimedean copulas that attain both 

lower and upper bounds, thus allowing for positive and negative dependence. The 

corresponding copula function is given by: 
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where θ ∈(-∞, +∞)\{0}; positive (resp., negative) values of θ correspond to 

positive (resp., negative) dependence. The independence copula is recovered in the 

limit when θ →0. The rank correlation coefficients are given by: 

1( )4
1- +4
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(6) Gumbel copula 

The bivariate Gumbel copula is given by 

  1/ 1/
Gum 1 2 1 2

( , | ) exp ,( ln ) ( ln )C u u u u
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(18) 

where (1, )   . It is an asymmetric copula of the Archimedean family, which
 



  
 

allows for strong upper tail dependence. The rotated Gumbel copula can be applied to 

capture negative dependence as well. The Kendall‟s tau of Gumbel copula is given by

11Gum    , but the Spearman‟s rho does not have close form. Tail dependence
 

measures can be expressed as 1/2 2 .U

    

(7) Joe copula 

The Joe copula is defined as follows:  
1/

1 2 1 2 1 2( , | ) 1 [(1 ) (1 ) (1 ) (1 ) ] ,JoeC u u u u u u                              (19) 

where 1  . This copula can capture upper tail dependence, which is similar to the
 

Gumbel copula. But it can capture a the stronger upper tail dependence than Gumbel 

copula (see Bhat and Eluru, 2009), and 1/2 2U

   . The Kendall‟s tau is related to 

parameter   by  

1

2(1 )/

2
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4
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

  
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The relationship between Spearman‟s rho and parameter  does not have a closed 

form expression. The rotated Joe copula can describe negative dependence as well. 

To summarize, different copulas have different characteristics, such as upper tail 

dependence, lower dependence, positive and negative dependences, etc. Therefore, 

the above copula families and relevant rotated copula can potentially capture the 

appropriate dependence between two random variables. Other popular copula families, 

such as the Farlie–Gumbel–Morgenstern (FGM) copula and Ali-Mikhail-Haq (AMH) 

copula have been discarded because they cannot achieve Fréchet bounds and can only 

accommodate relatively weak dependence between the margins. The ranges of 

dependence of Kendall‟s tau and Spearman‟s rho for the FGM copula are [–2/9, 2/9] 

and [–1/3, 1/3], respectively; the Kendall‟s tau of the AMH copula is bounded to the 

interval [–0.1817, 0.3333], and the range of Spearman‟s rho is [–0.2711, 0.4784] (see 

Kumar, 2010; Smith, 2008).  

 

3. Copula-based stochastic frontier model 

The classical SFM makes the strong assumption that the error components v and 

w are independent. Smith (2008) proposed to relax this assumption and to model the 

dependence between v and w using copula. The classical model is recovered as a 

special case corresponding to the product copula. First, the density function of 

( , )f w v  can be transformed into ( , )f w   whose formula follows from Smith (2008). 

( , ) ( , ) ( ) ( ) ( ( ), ( ))U V W Vf w v f u u f u f w c F w F w                    (21) 

Then, the probability density function of   can be expressed as 
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f f w dw 
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or ( ) [ ( ) ( ( ), ( ))],W V W Vf E f W c F W F W     
                           

(23) 



  
 

where [ ]WE   denotes the expected value pertaining to the distribution of technical 

inefficiency W,   represents all parameters that are from marginals and copula 

function. We use the maximum likelihood method to estimate the copula-based 

stochastic frontier model. Assume that we have cross-sectional observations of n 

individuals or firms. The likelihood function is then given by 

1 1
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(24) 

where yi is the output of individual i or firm i, xi is explanatory variable vector, 
w  

and 
v  are from marginal distributions of W and V, respectively. Smith (2008) 

showed that there are very few density function of   for which the maximum 

likelihood estimate MLE has a closed form expression. Then, an alternate approach, 

maximum simulated likelihood method by Kao et al. (2001), is used to estimate the 

unknown parameters in copula-based stochastic frontier model (see Green (2010), 

Burns (2004)). The principle of maximum simulated likelihood is that computing the 

simulated log likelihood function will require R draws from the corresponding 

distribution of W for each observation. If W and V are assumed to be half-normal and 

normal distribution, then the density function of   can be transformed by using 

simulation to approximate the integration as follows: 
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where w0,ir is a sequence of R random draws from the standard half normal 

distribution. The simulated log-likelihood of the copula-based stochastic frontier 

approach can be expressed as follows: 

0, 0, 0,

1 1

1
( , , , ) log{ ( ) ( ( ), ( ))},

N R

s w v V w ir i W w ir V w ir i
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where 
i i iy x   . In addition, following Battese and Coelli (1995), the variance 

terms are parameterized by replacing the relevant parameters,  ,   and 2 , can be 



  
 

defined by /w v   , 2 2 2/ ( )w w v      and 2 2 2

w v    . The larger is  , 

the greater is the inefficiency component in the model (Greene, 2004). The values of  

  and   may reveal whether inefficiency plays an important role in the composite 

error term and postulate the choice of the stochastic frontier approach in the present 

study (Chen, 2007). Note that the standard errors of these parameters can be 

calculated by applying the invariance property.  

The most important analysis of copula-based stochastic frontier model is the 

technical efficiency that is specified with 
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Since the maximum simulated likelihood estimation method in this study is 

applied, the technical efficiency can be calculated by simulated process as well. 

 

4. Empirical results 

 

4.1 The data 

 

The data used in this study were collected by interviewing farmers in Chiang Mai 

province of Thailand. The data used in this study were from Kunnika Isarangkun na 

ayuttaya. The upland areas of Chiang Mai province in particular proved fertile areas 

for high quality coffee. The area has lower humidity, a shorter monsoon season, and a 

lower annual temperature, creating a micro-climate among the Chiang Mai mountains. 

Rain water from the mountains seeps into the soil, making it particularly rich in 

mineral content. The questionnaire was constructed to ask for details about the 

irrigated rice production at the farms. In particular, there was interest in the area 

grown, the yields obtained, the use of inputs, such as fertilizer and labor. Information 

was also obtained on social characteristics of the sample farmers. Data on a total of 

111 sample farmers were obtained in the survey. Figure 1 describes the relationships 

between output and labor, output and fertilizer, labor and fertilizer. They show that 

there exist significant linear correlations by logarithm forms. 



  
 

 

Fig. 1. The relationship between explanatory variables and explained variable. 

 

4.2 Estimating parameters of copula-based stochastic frontier model 

 

The copula-based stochastic frontier model is presented in the form of linear 

translog production model, 
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where Yi represents intercrop coffee output of the i
th

 farmer. Consider the Log-term of 

Y is normal distribution, then, we assume that the v is normal distribution and the w is 

half-normal distribution.  

We analyze the copula-based stochastic frontier model by setting R equals 111 

(the length of sample), which corresponds to 10 different copula families including 

independent copula, Gaussian copula, T copula, Frank copula, Clayton copula, 

Gumbel copula, Joe copula, rotated Clayton copula (180°) , rotated Gumbel copula 

(180°) and rotated Joe copula (180°). If there exist negative correlation between w 
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and v, the rotated copulas (90° and 270°) should be used in this model. The 

log-likelihood function in (26) was estimated by Nelder-Mead algorithm using 

starting values obtained from stochastic frontier model in R program.  

Figure 2 describes the AIC and BIC are calculated from each copula-based 

stochastic frontier model. In terms of the values of AIC and BIC, the rotated Gumbel 

copula (180°) exhibits better explanatory ability than other dependence structures, 

while the independent copula performs the worst. Therefore, relaxing the assumption 

of independent between error components is effective, and is beneficial to improve the 

explanatory ability of the models. Moreover, the likelihood ratio (LR) test is used to 

compare independent copula with other copula models. The minimum LR statistics is 

from the independent copula and Gaussian copula, which equals to 3.294, and is 

significant at the 10% level. The maximum LR statistics exists between the 

independent copula and rotated Gumbel copula (180°), the value of which equals to 

10.175 that is significant at the 1% level. Therefore, the results of LR statistics verify 

that the standard Normal-Half-Normal stochastic frontier (stochastic frontier based 

independent copula) model is inferior to the copula-based stochastic frontier models. 

We now turn to the frontier estimates of the preferred model (rotated Gumbel 

copula-based stochastic frontier model). The estimated results are shown in Table 1. It 

shows that all parameters are significant at the 5% level, and the values of parameters 

β  equal to 13.31, 1.03, -1.79, 0.09, 0.47 and -0.18 respectively. The variable labor 

has a positive and significant effect on yield, which implies a 1% increase in labor 

number allocated to coffee will increase production by 1.03%, but the impact of 

quantity of fertilizer per ha on coffee production shows a negative sign. This may be 

explained by the fact that in comparing the use of fertilizer farmers applied the high 

standard variance (433.5 kg/rai) with a range of 150 kg per acre to 2050 kg per rai. 

Using wide range of urea would show the inefficient use of fertilizer. It could be 

related to poor agronomic management which leads to nitrogen losses through NH3 

volatilization and denitrification. Both the estimates of 
w  and 

v  are significantly 

different from zero at the 1% level. The estimated parameter of rotated Gumbel 

copula equals to 9.37 that is significantly different from zero at the 1% level as well, 

which confirms that serious dependence between error components exists, thereby 

justifying the use of copula-based stochastic frontier model. The parameter γ  is 

0.9135 that indicates the technical inefficient term has significant impact on intercrop 

coffee production. We transform the estimated parameter of rotated Gumbel copula to 

Kendall‟s tau and Spearman‟s rho that equal to 0.89 and 0.98, respectively. Plus, there 

exist strong lower tail dependence that equals to 0.92 between error components, 

which implies the higher technical efficiency it is, the smaller random disturbance it 

is.  



  
 

 
Fig. 2. AIC and BIC of each copula-based stochastic frontier model. 

 

Talbe 1  

The estimated parameters of rotated Gumbel copula 

Parameters  0  1  2  3  4  5  

Estimators  13.3080*** 1.0300*** -1.7897*** 0.0871*** 0.4728*** -0.1763*** 

s.e 0.2000 0.0578 0.0425 0.0142 0.0059 0.0100 

Parameters  w
 v  

  LogL LR stats K tau 

Estimators  0.9046*** 0.2782*** 9.3726** 8.1962 10.1750** 0.8933*** 

s.e 0.0595 0.0252 3.2681 
  

0.0212 

Parameters  S rho   
2  

  U  L  

Estimators  0.9835*** 3.2515*** 0.8958*** 0.9135*** 0 0.9232 

s.e 0.0059 0.8151 0.0489 0.0396 
  

Signif. codes: 0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05. 

Source: computation. 

 

4.3 Technical efficiencies 

 

Figure 3 compares the preferred model (rotated Gumbel copula-based stochastic 
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frontier) with independent copula based model in term of technical efficiency. The 

line represents technical efficiencies rotated Gumbel copula based model, while the 

dotted line describes technical efficiencies of the independent copula-based model. 

Given the specification of the preferred model, all farmers have a range of 0.19 to 

0.83 efficiency scores with an average efficiency 0.53, while the technical efficiency 

of all farmers are from 0.45 to 0.99 according to independent copula-based stochastic 

frontier model, and the average technical efficiency is 0.74. Obviously, the traditional 

independence assumption of random error term and technical inefficiency 

overestimate the technical efficiencies in this study. Thus it can be seen that 

employing copula can appropriately relax the independence assumption, thus avoiding 

the interdependence between W and V makes influence to technical efficiency. Figure 

4 illustrates distribution of technical efficiency scores for all sample farmers based 

independent and rotated Gumbel copulas, respectively. More than half of the farmers 

have high technical efficiencies that are great than 0.7 and less than 0.99 in production 

of intercrop coffee based on traditional SFM. However, the technical efficiencies of 

the preferable model show that there are a half of farmers who have high technical 

efficiencies but they are less than 0.9. Under the present technology and the preferable 

model, there is a large proportion (38%) of the sample farmers who have lower levels 

(<0.30) of technical efficiency score. This suggests that considerable amount of 

productivity is lost due to inefficiency.  

 

 
Fig. 3. Technical efficiencies based independent and Rotated Gumbel copulas. 
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Fig. 4. Range of technical efficiencies and the percentage of sample farmers. 

 

5. Conclusions  

 

In this paper, we have summarized and extended the copula-based stochastic 

frontier model using maximum simulated likelihood estimation method that is used 

as substitute for numerical integral method thereby possibly generalizing the use of 

the copula-based SFA approach. The copula-based SFM allows the models of 

interest to capture the dependency between W and V. The information criteria, such 

as AIC and BIC, and LR test are applied to determine whether or not there exists any 

dependence between random error term and technical inefficiency. The most of 

copula families, basically, are used to combine with stochastic frontier model, such 

as Gaussian, T, Frank, Clayton, Gumbel, Joe, rotated Clayton (90°, 180° and 270°), 

rotated Gumbel (90°, 180° and 270°) and rotated Joe (90°, 180° and 270°) in this 

study. We used the copula-based stochastic frontier approach to analyze the 

intercrop coffee production associated with labor and fertilizer. The results showed 

that copula-based approaches had better performance than traditional stochastic 

frontier model which overestimate the technical efficiency in this study. This study 

found some significant results which showed that a 38% the coffee farmers had the 

production efficiencies are less than 0.3 from the maximum scale of 0.83 efficiency. 

This suggested that relatively considerable amount makers should seriously improve 

the efficiency of the intercrop coffee production. 
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 A copula-based stochastic frontier method is used to examine technical 
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efficiency. 

 The maximum simulated likelihood method is employed to estimate copula-based 

SFM. 

 The copula-based approach allows us to capture dependency between U and V. 

 We added eight candidates of the Archimedean copulas.  

 The traditional stochastic frontier model overestimated the technical efficiency. 
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