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Dissimilarity Metric Learning in the Belief Function
Framework

Chunfeng Lian, Su Ruan*, and Thierry Denceux

Abstract—The Evidential K-Nearest-Neighbor (EK-NN)
method provided a global treatment of imperfect knowledge
regarding the class membership of training patterns. It has
outperformed traditional K-NN rules in many applications,
but still shares some of their basic limitations, e.g., 1)
classification accuracy depends heavily on how to quantify the
dissimilarity between different patterns and 2) no guarantee
for satisfactory performance when training patterns contain
unreliable (imprecise and/or uncertain) input features. In this
paper, we propose to address these issues by learning a suitable
metric, using a low-dimensional transformation of the input
space, so as to maximize both the accuracy and efficiency of
the EK-NN classification. To this end, a novel loss function to
learn the dissimilarity metric is constructed. It consists of two
terms: the first one quantifies the imprecision regarding the
class membership of each training pattern; while, by means
of feature selection, the second one controls the influence of
unreliable input features on the output linear transformation.
The proposed method has been compared with some other
metric learning methods on several synthetic and real data sets.
It consistently led to comparable performance with regard to
testing accuracy and class structure visualization.

Index Terms—Dempster-Shafer Theory, Dissimilarity Metric
Learning, Evidential K-NN, Feature Transformation, Feature
Selection, Pattern Classification, Dimensionality Reduction.

I. INTRODUCTION

HE K-nearest neighbor (K-NN) rule [1] is one of the

most well-known pattern classification algorithms. As
a case-based learning method without need of any prior
assumptions [2], the K-NN classifier has been widely used in
practice thanks to its simplicity. The original voting K-NN [1]
assigns an object into the class represented by its majority
nearest neighbors in the training set, while the information
concerning the dissimilarity (distance) between the object and
its neighbors is neglected. Then, the weighted K-NN [3] has
been proposed, in which this dissimilarity is imported into
the classification procedure. However, in the case of uncertain
and imprecise data, many samples may be corrupted with
noise or located in highly overlapping areas; consequently, it
becomes difficult for these classical K-NN classifiers to obtain
satisfactory classification results.
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The Dempster-Shafer theory (DST), also known as the the-
ory of belief functions or Evidence theory, is an extension of
both probability theory and the set-membership approach [4].
As a powerful framework for modeling and reasoning with
uncertain and/or imprecise information [5]-[7], DST has
shown remarkable applications in divers fields, such as model
parameter estimation [8]-[10], unsupervised learning [11]-
[13], supervised learning [14]-[22], ensemble learning [23],
[24], information fusion [25]-[29], etc. To endow the K-NN
method with the capability to handle uncertain information,
Denceux has extended it in the belief function framework. An
Evidential K-NN (EK-NN) rule has been proposed in [14], and
further optimized in [15]. The EK-NN rule provides a global
treatment of partial knowledge regarding the class membership
of training patterns. Ambiguity and distance reject options are
also taken into account based on the concepts of lower and
upper expected losses [30].

The EK-NN method has outperformed other traditional K-
NN methods in many situations when using the same informa-
tion [15], whereas they still have some identical features: 1)
the performances of the K-NN rules are strongly influenced by
the chosen dissimilarity between different patterns. Better than
directly using the simple Euclidean distance measure (such
as in the original EK-NN), an adaptive dissimilarity metric
tailored for the application should ensure better classification
performance; 2) the efficiency of the K-NN rules substantially
decrease when the dimensionality of the input data increases.

We propose a solution based on dissimilarity metric learning
to deal with these inherent drawbacks of the K-NN classifi-
cations. Given an input space X, the metric learning problem
can be formulated as finding a transformation matrix A, such
that the dissimilarity between any two patterns can be defined
in the transformed space Z = AX [31]. Various studies
have demonstrated that a properly learnt dissimilarity measure
can dramatically boost the performance of the distance-based
learning methods [32]-[37]. Even with a linear transformation
of the input space [38]-[40], the K-NN classification can reach
significant improvement. In [38], Goldberger et al. proposed
a metric learning method called Neighborhood Component
Analysis (NCA), which maximizes the expected leave-one-
out classification accuracy from a stochastic version of the K-
NN classification. Based on a softmax probability distribution
defined in the transformed space, NCA labels each query
instance by the majority vote of all training samples. As a
main advantage of NCA, a continuous and differentiable cost
function in respect of the linear transformation matrix A is
deduced. This cost function can be minimized by gradient
descent. The learnt matrix A can also be forced to be low-rank,



thus accelerating K-NN test and facilitating class structure
visualization. Though the cost used in NCA is differentiable,
it seems to be sensitive to the initialization. Inspired by NCA,
Weinberger et al. proposed a Large Margin Nearest Neighbor
(LMNN) method to learn a Mahalanobis distance metric for
K-NN classification [40]. LMNN attempts to classify the K
nearest neighbors as the same class label, under the constraint
that different classes should be separated by a large margin.
The learning problem is formulated as a semi-definite pro-
gramming problem. The corresponding cost function consists
of two terms; the first term penalizes large dissimilarities
between instances with the same class label in a predefined
neighborhood; while as a hinge loss, the second term penalizes
small dissimilarities between instances with different class
labels in the whole training pool. As a convex function in
respect of the matrix A, the cost function of LMNN can be
optimized efficiently.

Different from the global learning methods such as Lin-
ear Discriminant Analysis (LDA) and Principal Component
Analysis (PCA), both NCA and LMNN can adapt to the
local structure of the application at hand. By learning a
local dissimilarity metric, they effectively improved the K-NN
classification accuracy in many situations. However, since they
were not designed specifically for tackling data that contains
unreliable input features, their performance may severely
decline with this kind of imperfect information.

In this paper, our goal is to maximize the accuracy and effi-
ciency of the EK-NN classifier on data that contains unreliable
input features. To this end, we propose to learn an adaptive
dissimilarity metric from this kind of imperfect data in the
belief function framework. By using samples in the training
pool as independent items of evidence, the belief regarding
the class membership of each instance is modeled and refined
using DST. A specific cost function consisting of two terms
is constructed for learning a low-dimensional transformation
matrix A. The first term attempts to minimize the imprecision
regarding the class membership of each instance. The ¢ ;-
norm regularization of A acts as the second term, considering
its good property for feature selection as already shown in
muti-task learning [41], multiclass classification [42], semi-
supervised learning [43], etc. By means of feature selection,
it aims to manage the influence of unreliable input features
on the output transformation. The proposed cost function is
solved efficiently by a first order method (namely the proximal
forward-backward splitting algorithm [44]). The influence of
the sparsity regularization is tuned according to the application
at hand. Finally, a low-dimensional transformation of the input
space is realized to widely separate instances from different
classes, therefore increasing the classification accuracy and
reducing the searching time of the EK-NN classifier simul-
taneously.

The rest of this paper is organized as follows. The back-
ground on DST and the EK-NN classification rule is recalled
in Section II. The proposed metric learning method based
on DST is then introduced in Section III. In Section IV, the
proposed method is tested on both synthetic and real data sets,
and some comparison with other methods is presented. Finally,
we conclude paper in Section V.

II. BACKGROUND

The necessary background on DST and the EK-NN clas-
sification rule are briefly reviewed in Sections II-A and II-B,
respectively.

A. Dempster-Shafer Theory

DST is also known as the theory of belief functions or
evidence theory. As a generalization of both probability the-
ory and the set-membership approaches, DST has two main
components, i.e., quantification of a piece of evidence and
combination of different items of evidence.

1) Evidence Quantification: DST is a formal framework
for reasoning under uncertainty based on the modeling of
evidence [4]. Let w be a variable taking values in a finite
domain Q = {wy, - ,w.}, called the frame of discernment.
An item of evidence regarding the actual value of w can be
represented by a mass function m on §), defined from the
powerset 2* to the interval [0, 1], such that

> m(4) =1. (1)
ACQ
Each number m(A) denotes a degree of belief attached to the
hypothesis that “w € A”. Function m is said to be normalized
if m(0) = 0, which is assumed in this paper. Any subset A
with m(A) > 0 is called a focal element of mass function m.
If all focal elements are singletons, m is said to be Bayesian; it
is then equivalent to a probability distribution. A mass function
m with only one focal element is said to be categorical and
is equivalent to a set.
Corresponding to a normalized mass function m, we can
associate belief and plausibility functions from 29 to [0,1]
defined as:

Bel(A) =Y m(B); )
BCA

Pl(A)= Y m(B). 3)
BNA#0D

Quantity Bel(A) (also known as credibility) can be interpreted
as the degree to which the evidence supports A, while PI(A)
can be interpreted as the degree to which the evidence is
not contradictory to A. Functions Bel and Pl are linked by
the relation PI(A) = 1 — Bel(A). They are in one-to-one
correspondence with mass function m.

2) Evidence Combination: In DST, beliefs are elaborat-
ed by aggregating different items of evidence. The basic
mechanism for evidence combination is Dempster’s rule of
combination [4]. Since Dempster’s rule cannot well manage
high conflicts between different pieces of evidence, various
alternatives to it have been developed to tackle this problem
under different situations, e.g., the TBM conjunctive and
disjunctive combination rules [45], Yager’s rule [5], Dubois-
Prade’s rule [6], the weighted average [46], [47], and the
cautious and bold disjunctive rules [48] etc. In addition, the
discounting strategy has been used in some other methods
to deal with the conflicts, and a new dissimilarity measure
consisting of both the conflict and distance has been introduced
in [47] to determine the discounting factor of each source of



evidence to be combined. The conflicts have also been used for
detecting the change occurrences in the fusion of multi-temple
information [49], like in the change detection of remote sens-
ing. Nevertheless, these alternative methods usually increase
the complexity for applications, Dempster’s rule still remains
the most popular one for combining independent evidence.

Let m; and mo be two mass functions derived from inde-
pendent items of evidence. They can be fused via Dempster’s
rule to induce a new mass function my @ mso defined as

1
(m1 @ my)(A) = s > mi(B)yma(C), 4
BNC=A
where Q = )5 -_pmi(B)ma(C) measures the degree of
conflict between evidence my and ms.

B. Evidential K-NN Classification Rule

An EK-NN classifier was proposed in [14] based on DST.
Depending on the informativeness of the training samples with
respect to the class membership of the query pattern, the
EK-NN classifier computes a mass function over the whole
frame of classes, and provides a global treatment of imperfect
training knowledge with uncertainty.

Let {(X;,Y;)[i=1,---,N} be a collection of N training
pairs, in which X; = [z1,--- ,xy]7T is the ith training sample
with V features and Y; € {wq,- - ,w.} is the corresponding
class label. Given a query instance X, its class membership
can be determined through the following steps:

« Each neighbor of X! is considered as an item of evidence
that supports certain hypotheses regarding the class mem-
bership of X*. Let X be one of its K nearest neighbors
with class label Y; = w,. The mass function induced by
X;, which supports the assertion that X* also belongs to
wq is

®)

mii({wg}) =« eXp(_’qug,j)y
my,; (§2) =1- ozexp(—’yqdf’j)7

where d; ; is the distance between X; and X ¢, while o
and ~ are two tuning parameters that can be optimized
via the method proposed in [15].

o Dempster’s rule (4) is then executed to combine all
neighbors’ knowledge and obtain a global mass function
for X*. The lower and upper bounds for the belief of any
specific hypothesis are then quantified via the credibility
(2) and plausibility (3) values, respectively. In the case
of {0,1} losses, the final decision on the class label of
X! can be made alternatively through maximizing the
credibility, the plausibility, or the pignistic probability, as
defined by Smets [7].

As an adaptive version of the EK-NN classifier, a neural
network classifier based on DST has been proposed in [16].
Some other alternatives to the EK-NN method have also
been developed. For instance, the credal classification method-
s [18]-[20] have been proposed by Liu et al. to deal with the
overlapping classes in different cases. These methods permit
the objects to be associated with not only the single classes
but also meta-classes (i.e., disjunction of several classes) with
different masses of belief, thus endowing the ability to specify
the imprecision of classification.

III. EVIDENTIAL DISSIMILARITY METRIC LEARNING

A new approach, called evidential dissimilarity metric
learning (EDML), is proposed in this section. By learning
an adaptive dissimilarity measure on training samples that
contain unreliable input features, EDML aims to maximize
the performance of the EK-NN classifier.

A. Criterion of EDML

Let {(X;,Y;)[i=1,---,N} be a collection of N training
pairs, in which X; = [x1,---,2y|7 is the ith observation with
V input features, and Y; is the corresponding class label taking
values in a frame of discernment Q = {wy, -+ ,w.}. Assume
the dissimilarity between instances X; and X; is quantified
by a squared distance measure:

(X, X;) = (X, — X;)TATA(X; — X;). (6)

Then, EDML attempts to find an optimal matrix A € R"*"
under the constraint v < V. Such a linear transformation
of the input space can boost the performance of the EK-NN
classifier, since important features will have a strong impact
when calculating the distance; classification is also faster in
the low-dimensional transformed space.

To learn such a matrix A, we regard each X; as a query
instance. Then, the squared distance between X; and X; (i.e.,
d?(X;,X;)) is used in (5), so as to represent the partial
knowledge concerning the class membership of X; that offered
by training sample (X;,Y; = w,). Parameters « and +y used
in (5) are restricted to be one for simplification.

LetI'y (g =1,...,c) be the set of training samples (except
X;) belonging to the same class w,. Since the corresponding
mass functions point to the same hypothesis (i.e., Y; = wy),
they can be combined via Dempster’s rule (namely (4)) to
deduce a global mass function for all training samples in I'y:

{mf “({wg}) =1-Tljer, [1 - exp{-d(X;, X;)}]
m Q) =Tljer, 1 —exp{—d(X;, X;)}]

K2

For ¢ = 1,...,c, the global mass function qu quantifies
the evidence refined from the training pool that support the
assertion Y; = w,. The mass of belief qu (©2) measures the
imprecision of this evidence. In other words, it can be re-
garded as the calculation of the unreliability of the hypothesis
Y; = wq. If the actual value of Y; is wgy, the corresponding
imprecision should then close to zero, i.e., mf" (Q) =~ 0; in
contrast, imprecision pertaining to other hypotheses should
close to one, i.e., mfr (Q) =~ 1, for ¥r # q. According to this
assumption, we propose to represent the prediction loss for
training sample (X;,Y;) as

. (D

2

loss;(A) = Zti@ 1-— qu({wq}) . H mi(Q) » 5 (8)
g=1 r#q

where t;, is the gth element of a binary vector ¢; =

{ti1,...,tic}, with t;, = 1 if and only if V; = w,.

When Y; = w, is true, minimizing loss;(A) can force both

my ({wg}) = 1 —m;?(Q) and |J m;"(Q) to approach

one as far as possible, thus achieving the goal to maximize the



reliability of the right hypothesis (Y; = w,) but minimize the
reliability of other assertions. As the result, the learnt matrix
A can lead X; only close to samples from the same class
in the transformed space, thus protecting the classification
performance of the EK-NN method.

Therefore, for all training samples, the loss function in
respect of the transformation matrix A can be finally defined

as
E loss;(A

where loss; (A) represents the learning cost for training sample
(X;,Y;) that quantified by (8). The ¢31-norm sparsity regu-

larization
1% v 1/2
_ 2
Al = (zAi,j)

j=1 \i=1

)+ AMAll2,1, &)

(10)

is imported to select input features. By forcing columns of the
transformation matrix A to be zero during the learning pro-
cedure, this sparsity term only selects the most reliable input
features to calculate the linear transformation, thus controlling
the influence of unreliable input features on the output low-
dimensional transformed space. Scalar A is a hyper-parameter
that controls the influence of this regularization. Generally
speaking, a too small A\ may fail to limit the influence of
unreliable input features; while, a too large A may also delete
informative features.

B. Optimization

Since loss; (8) is differentiable in respect of matrix A while
[|Al|2,1 (10) is partly smooth (it is non-smooth when and
only when A = 0), the proximal Forward-Backward splitting
(FBS) algorithms [44], [50], which belong to the class of first
order methods, are efficient alternatives to solve the proposed
loss function (9). More specifically, as an improved version
of the classical FBS methods, the Beck-Teboulle proximal
gradient algorithm [51] is used in this paper considering its
computational simplicity and fast convergence rate.

In general, each iteration of the FBS algorithms can be
broken up into a gradient descent step using +; Zfil loss;(A),
followed by a proximal operation using ||A4||2,1. According to
(6)-(8), the derivative of loss; concerning A (i.e., dloss;/OA)
can be deduced as

221?“]{1—
{ {%}Hm

8[053z

(o)) Hmmm}

r#q

(11)

() 30 2O }
r#q s#T.q
In which, value mZ-Fq is calculated via (7), and for Vg =
1,...,¢
Im; * ({wq})

_ Z 8m”

jET,

I

lqu\J

9A (12)

Algorithm 1: Beck-Teboulle proximal gradient algorith-
m [51]

Initialize A© € R"*Y and 8 > 0, set H® = A© and
10 =1,

forn=0,1,2,. d

G(”) — H(”) N Ziv L Blossq| T
Aln+1) :proxﬁ*1,|\AH2)1G L) _
arg min g {)\HA* é”A*_G(n)HZ} .
n+1 W+ 1 /2
5()—14_[ _]_]/thrl)
H®HD) = A() 4 (M [A+D) _ g()]
end

While, mass m;; is determined using (5) and (6), and
0A

Based on (11)-(13), the Beck-Teboulle proximal gradient
algorithm executes as the form shown in Algorithm 1, so as
to deduce an optimal or at least sub-optimal low-dimensional
transformation matrix A. To facilitate the optimization proce-
dure, classical metric learning methods (e.g., PCA) can also be
used to generate the initialization (i.e. A(?)) for the proposed
method. The learnt matrix A is then applied in (6) to measure
the dissimilarity between different instances, and finally used
in the EK-NN classification.

Complexity of the gradient calculation: Given m;; and
mf‘l, for i = 1,..., N, the calculation of dloss;/JA can be
performed in the following order:

1) calculation of Om,;(€2)/0A for j =1,...,N — 1 using
(13). Since (X; — X;)(X; — X;)T can be determined
beforehand, this step requires (N — 1)vV? arithmetic
operations;

2) calculation of 8m£‘1/8A for ¢ = 1,...,c using (12),
which requires 22:1 ITq[vV = (N — 1)vV arithmetic
operations;

3) calculation of the last term in (11), which requires cvV
operations. Since ¢; has and only has one nonzero ele-
ment, the calculation of (11) needs cvV operations.

= 2my; ({wg DA — X)X — X)T. (13)

Based on above steps, the complexity for calculating
dloss;/0A is O (vVV2N + vV (N +¢)).

IV. EXPERIMENTAL RESULTS

The presented experiments consist of four parts. In the first
part, the proposed method, namely EDML, was evaluated on
a synthetic data set. The proportion of unreliable (noisy and
imprecise) features in this synthetic data was varied to assess
the robustness of EDML under different situations. In the
second part, EDML was evaluated on several real data sets.
The corresponding classification accuracy was compared with
some other metric learning methods. The parameters used in
the proposed method were also studied. Finally, we further
compared the two-dimensional visualization performance of
different metric learning methods, so as to evaluate whether



TABLE I
CLASSIFICATION ACCURACY (BOTH TRAINING AND TESTING, IN %) OF THE EK-NN BASED ON DIFFERENT METRIC LEARNING METHODS. IN THE
STUDIED SYNTHETIC DATA SETS, n, = 2 AND n; = 2. EDML-FS AND EDML DENOTE, RESPECTIVELY, THE PROPOSED METHOD WITH/WITHOUT THE
£2,1-NORM SPARSITY REGULARIZATION. PERFORMANCE OF THE SVM AND ENN CLASSIFIERS JOINT WITH PCA WERE ALSO PRESENTED AS TWO
BASELINES FOR COMPARISON.

Ty SVM | ENN PCA NCA LMNN | EDML | EDML-FS
6 92.00 | 91.33 90.67 99.33 98.00 98.67 99.33
16 83.33 | 85.33 84.67 | 100.00 96.00 99.33 100.00
training 26 81.33 | 83.33 74.00 | 100.00 96.67 100.00 100.00
36 77.33 | 76.00 76.00 | 100.00 | 100.00 99.33 100.00
46 76.67 | 74.67 68.67 | 100.00 99.33 99.33 100.00
6 85.33 | 84.00 84.00 91.33 90.00 86.00 94.67
16 74.00 | 72.00 73.33 84.00 86.67 86.00 92.00
testing 26 66.67 | 69.33 64.67 78.67 78.67 84.67 90.00
36 69.33 | 69.67 62.00 70.00 78.00 76.67 95.33
46 64.67 | 66.00 57.33 82.67 76.67 76.67 94.00

the proposed method can effectively separate instances from
different classes in low-dimensional subspaces.

A. Performance on Synthetic Data

The studied synthetic data sets were generated using a
process similar to the one described in [52]. The feature space
contains n, relevant features uniformly and independently
distributed between -1 and +1. To obtain a high non-linear
discriminant surface, the output label for a given instance is
defined as

wy if max;(z;) > 2= mr — 1

y = 1 .’L % ’ (1 4)

wo otherwise,
where z; is the ith relevant feature. Besides the relevant
features, there are n,, irrelevant (noisy) features also uniformly
distributed between -1 and +1, without any relation with the
class label; and also n; imprecise features copied as the cubic
of the relevant features.

The numbers of relevant, irrelevant and imprecise features
were set, respectively, as n, = 2, n, € {6,16,26,36,46}
and n; = 2 to simulate five different situations. Under each
situation, we generated 150 training instances and the same
number of testing instances. PCA, NCA, LMNN and the
proposed EDML methods were executed to learn a two-
dimensional dissimilarity metric A (i.e., € R > ("r¥mutni)
on the training set. The obtained metric A was then used in
the EK-NN to classify both the training and testing samples.
As two baselines, results obtained by the SVM and Evidential
Neural Network (ENN) [16] classifiers joint with PCA were
also included for comparison.

Parameters of each method used in this experiment (four
metric learning methods, i.e., PCA, NCA, LMNN and EDML,
and three classifiers, i.e., EK-NN, ENN and SVM) can be
summarized as follows:

o For LMNN, as suggested by [40], parameters K and p

were set as K = 3 and p = 0.5.

o For the proposed EDML, a rough grid search s-
trategy was used to select an appropriate A from
{0.005,0.007,0.009} according to the training perfor-
mance.

o For the EK-NN classifier, parameters o and vy were
optimized via the operation proposed in [15]. The number
of nearest neighbors was set as K = 3.

o For the SVM, the gaussian kernel was used with the radial
basis o = 1.
« For the ENN classifier, the number of prototypes per class
was set as 5.
It is worth illustrating that the parameters of the compared
methods were always kept the same in the sequel experiments.
Finally, the training and testing (more important) accuracy
(in %) obtained by different metric learning methods are
summarized in Table I, in which EDML (manually set A = 0)
and EDML-FS (namely EDML joint with Feature Selection)
represent, respectively, the proposed method without/with the
sparsity regularization. As can be seen, the proposed EDML-
FS led to higher testing accuracy than other methods under
all the five different situations. It is also worth noting that the
difference increased following the augment of unreliable input
features, which reveals that the proposed method is stable and
immune to severely deteriorated input information.

TABLE II
PROPERTIES OF THE FIVE REAL DATA SETS STUDIED IN SECTION IV-B.
data sets  classes  input features  instances
Wine 3 13 178
Seeds 3 7 210
Soybean 4 35 47
LSVT 2 309 126
Faces 40 100 400

B. Performance on Real Data

The proposed method was further evaluated using five
real data sets of varying input features and classes. Four
of these data sets (Wine, Seeds, Soybean-small and LSVT
voice rehabilitation [53] data) were downloaded from the UCI
Machine Learning Repository'. The other one is the Olivetti
face recognition data set?>. As a preprocessing operation for
the Face data, we down-sampled the images to 38 x 31 pixels
and used PCA to further reduce the dimensionality to 100.
Properties of all the five data sets are briefly summarized in
Table II.

The training and testing instances were randomly generated
with 70/30 splitting, and repeated 50 times. Under each

IPlease see at https://archive.ics.uci.edu/ml/index.html
2Please see at http://www.uk.research.att.com/facedatabase.html.
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Fig. 1. Average testing accuracy obtained by different metric learning methods: (a) Wine data, (b) Seeds data, (c) Soybean-small data, (d) LSVT data and
(e) Faces data. In each subfigure, the horizontal axis represents the output dimension (i.e., v) of the learnt transformation A, while the vertical axis represents

the corresponding classification accuracy (in %).

TABLE IIT
THE BEST TRAINING AND THE CORRESPONDING TESTING ACCURACY (AVE£STD, IN %) OBTAINED BY DIFFERENT METHODS WITH v € {2,3,...,15}.
EDML-FS AND EDML DENOTE, RESPECTIVELY, THE PROPOSED METHOD WITH/WITHOUT THE SPARSITY REGULARIZATION. RESULTS OF THE SVM
ANDENN JOINT WITH PCA WERE ALSO PRESENTED AS TWO BASELINES FOR COMPARISON.

SVM ENN PCA NCA LMNN EDML EDML-FS

Wine 99.95+0.19 | 100.00=£0.00 || 97.65+1.24 | 100.00£0.00 | 100.00£0.00 | 100.00£0.00 | 100.00£0.00

Seeds 99.581+0.47 | 98.74+0.644 || 92.90£1.87 | 97.04£1.33 | 95.86+1.50 | 99.13+0.70 | 98.52+1.27

training | Soybean || 100.0040.00 | 100.0010.00 || 98.85+1.72 | 100.00+0.00 | 100.0040.00 | 100.00+0.00 | 100.004-0.00
LSVT 99.52+0.83 | 93.82+1.28 || 80.71£3.94 | 98.63+1.69 | 100.00£0.00 | 96.45+1.46 | 97.14+1.33

Faces 83.43+2.69 | 99.99+0.05 || 90.28=£1.34 | 99.87+0.24 | 100.00£0.00 | 99.37+0.37 | 99.71+0.26

Wine 96.15+2.50 | 97.514+2.30 [[ 95.90+£2.63 [ 96.97+2.23 | 97.88+1.68 | 96.46+2.95 | 97.98+1.86

Seeds 91.78+2.93 | 92.924£2.96 || 92.25£3.14 | 93.85+2.88 | 94.54+2.78 | 94.48+2.45 | 95.49+1.84

testing | Soybean || 100.00F0.00 | 98.00£3.83 || 98.28+3.97 | 99.86£1.00 | 99.44+2.80 | 100.00+0.00 [ 100.00+0.00
LSVT 80.42+4.82 | 85.21£3.94 || 80.92+5.76 | 82.57+6.35 | 82.13£5.40 | 85.03£4.98 | 86.09+4.63

Faces 65.88+4.05 | 85.23+£3.08 || 89.48+£2.20 | 89.18+3.50 | 97.63F1.66 | 93.40+2.13 | 97.08£1.55

random split, we used PCA, NCA, LMNN and the proposed
EDML methods, respectively, to learn a low-dimensional
dissimilarity metric A (i.e., € R with v < V) on the
training data; then used it in the EK-NN to classify both
the training and testing instances. Parameters of compared
methods were the same as that used in the last experiment
(namely Section IV-A). For the proposed method, the hyper-
parameter A was still determined by a rough grid search
strategy according to the training performance. On average,
good results were obtained with A between [0.0005, 0.01] for
the five data studied in this experiment.

The value of the output dimension v was orderly set
as {2,3,...,15}. Then, the average testing accuracy with
different v was calculated and is shown in Fig. 1. As can
be seen, the proposed method consistently performed well
on these data sets as compared with other methods. More

specifically, LMNN (blue line) and EDML (magenta line) had
comparable testing accuracy on Wine and Faces data sets;
NCA (green line), LMNN and EDML resulted in almost the
same performance (EDML was slightly better) on the soybean-
small data set; and EDML yielded the best performance on the
other two data (Seeds and LSVT).

To further analyze the experimental results obtained on these
real data sets, we computed the average training performance
as a criterion to select the best output dimension v (from
{2,3,...,15}) for the learnt dissimilarity metric A. The
best training accuracy and the corresponding testing accuracy
(more important) for each method are summarized in Table III,
in which results obtained by the SVM and ENN joint with
PCA are also presented as two baselines for comparison.
As in the former subsection, EDML (manually set A = 0)
and EDML-FS represented the proposed method without/with
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the sparsity regularization. From Table III, it can be found
that EDML-FS consistently yielded better performance than
other methods on the first four data sets, especially on the
LSVT data. This is mainly because the proposed method
only selected the most informative features (from all the three
hundred input features) to calculate the linear transformation.
LMNN outperformed our method on the Face data set, but
only with a slight difference. In addition, we can also see
that, thanks to the {3 ;-norm sparsity regularization, EDML-
FS performed better than EDML.

C. Parameter Analysis

1) Output Dimension: As discussed above, the best output
dimension v (from {2,3,...,15}) for the five real data sets
studied in the last subsection was determined according to
the training performance. Therefore, besides the classification
accuracy presented in Table III, the corresponding output
dimension obtained by different methods on these real data
sets was also summarized and is shown in Fig 2.

2) Regularization Parameter: the hyper-parameter A in the
loss function (10) controls the effect of the sparsity regulariza-
tion on the output low-dimensional transformation. It should
be tuned specifically for each data set at hand. Generally
speaking, a too small A may fails to limit the influence of
unreliable input features, while a too large A may also removes
many significant input features. On average, good results were
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Fig. 4. Average accuracy of the EK-NN classification on the LSVT data set
with regard to the number of nearest neighbors K. The output dimension was
set as v = 5.

obtained with A between [0.0005,0.01] for all the five data
studied in the last subsection.

In this experiment, the LSVT data set was used as an
example to further analysis the influence of the parameter
A. The training and testing data were generated with 70/30
splitting, and repeated 20 times. We orderly selected a A
from {0, 0.0005, 0.0006, . .., 0.001, 0.002,...,0.015} to learn
a low-dimensional transformation (with v = 5) of the input
space. Then, the EK-NN classifier (with K = 3) was used
to classify the testing instances on the transformed space. For
all the 20 random splits, the average testing accuracy (in %)
with regard to X is finally shown in Fig. 3, in which the
horizontal line represents the average accuracy of the EK-NN
classification in the input space. As can be seen, relatively
high performance on this data set is obtained with A between
[0.0005, 0.01]. The classification is less sensitive in the region
[0.0005,0.005] than in other regions of .

3) Number of Nearest Neighbors: we also studied the
parameter K of the EK-NN classification with the dissimilarity
metric learnt by the proposed method. Still on the LSVT
data set, the training and testing data were generated with
70/30 splitting, and repeated 20 times. Under each random
split, we used the proposed method to learn a low-dimensional
transformation of the input space. The output dimension and
the regularization parameter were set as v = 5 and A = 0.002.
Then, the EK-NN classifier with K = {1,2,...,30} was
orderly executed to classify the testing instances in the trans-
formed space. As for comparison, the EK-NN classifier with
the same K was also directly executed in the input space
to classify the testing instances. The average testing accuracy
with regard to K is finally summarized in Fig.4. It can be
found that, with a metric learnt by the proposed method, the
EK-NN classification always has higher accuracy on this data
set than directly using the Euclidian distance in the input
space. In addition, we can also see that the proposed method
is robust to the parameter K.
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D. Two-Dimensional Visualization

To further evaluate whether the proposed method can ef-
fectively separate instances from different classes in low-
dimensional transformation space, we visualized the dimen-
sion reduction in 2D, as shown in Fig. 5. PCA, NCA, LMNN
and the proposed method were still compared on the same data
sets (one synthetic and five real data sets) used in the former
subsections. The input feature space for the synthetic data was
set as fifty (n, = 2,n; = 2 and n,, = 46). For simplicity, only
the first seven classes were studied in the Faces data. From
the obtained results we can see that instances from different
classes were always well separated by our method on all the
six data sets. It led to the largest margin on the synthetic
data, and the most satisfying separation on the Seeds data. In
contrast, NCA did not separate the LSVT data perfectly; while
LMNN resulted in large overlaps on the synthetic data.

V. CONCLUSION

To optimize the performance of the EK-NN classification
on imperfect data sets, an approach based on Dempster-
Shafer theory has been proposed to learn a dissimilarity
metric specifying for the application at hand. By treating other
training patterns as different sources of information, the belief
concerning the class membership of each query pattern has
been quantified and refined in the belief function framework.
A specific loss function consisting of two terms has been
developed for metric learning under uncertainty, in which
the first term is used to minimize the imprecision regarding
each instance’s class membership, while the second term is
the /5 1-norm sparsity regularization of the low-dimensional
transformation matrix. Through a feature selection procedure,
it serves to limit the influence of uncertainty and/or imprecise
input features. The proposed method has been evaluated on
several synthetic and real data sets, consistently showing good
performance with regard to classification accuracy and class
structure visualization. Moreover, it has also proved that the
proposed method is not sensitive to the parameter K.

Future work will focus on two main aspects. First, to
improve the efficiency of the proposed method on large data
sets, we will further study other more advanced optimization
algorithms. Furthermore, it is worth extending the proposed
method to learn non-linear transformation of the input space,
so as to improve the performance of the EK-NN classifier on
high complex data sets.
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