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Abstract

We study a new approach to statistical prediction in the Dempster-
Shafer framework. Given a parametric model, the random variable to
be predicted is expressed as a function of the parameter and a piv-
otal random variable. A consonant belief function in the parameter
space is constructed from the likelihood function, and combined with
the pivotal distribution to yield a predictive belief function that quan-
tifies the uncertainty about the future data. The method boils down
to Bayesian prediction when a probabilistic prior is available. The
asymptotic consistency of the method is established in the iid case,
under some assumptions. The predictive belief function can be ap-
proximated to any desired accuracy using Monte Carlo simulation and
nonlinear optimization. As an illustration, the method is applied to
multiple linear regression.
Keywords: Dempster-Shafer Theory, Evidence Theory, Statistical in-
ference, Likelihood, Uncertainty, Forecasting, Linear regression.
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1 Introduction

The Dempster-Shafer theory of belief functions [11, 12, 58] is now a well
established formal framework for reasoning with uncertainty. It has been
successfully applied to many problems, including classification [21], function
approximation [54, 64], clustering [20, 47], image segmentation [40], scene
perception [39], multiple-attribute decision making [10], machine diagnosis
and prognosis [56, 57], etc. To further extend the application of Dempster-
Shafer theory to new problems, we need well-founded and computationally
tractable methods to model different kinds of evidence in the belief function
framework. The purpose of this paper, which builds on previous work by
the authors [18,19,35,36], is to present such methods for statistical inference
and prediction.

Although statistical inference provided the first motivation for intro-
ducing belief functions in the 1960’s [11–13], applications in this area have
remained limited. The reason might be that the approach initially intro-
duced by Dempster [15], and further elaborated in recent years [41, 45, 46]
under the name of the “weak belief” model, is computationally demanding
and it cannot be applied easily to the complex statistical models encoun-
tered in many areas, such as machine learning or econometrics. For this
reason, frequentist and Bayesian methods have remained by far the most
popular. Yet, these approaches are not without defect. It is well known
that frequentist methods provide pre-experimental measures of the accu-
racy of statistical evidence, which are not conditioned on specific data [8].
For instance, a 95% confidence interval contains the parameter of interest
for 95% of the samples, but the 95% value is just an average, and the inter-
val may certainly (or certainly not) contain the parameter for some specific
samples [8, page 5]. For this reason, a confidence level or a p-value are not
appropriate measures of the strength of statistical evidence (see more dis-
cussion on this point in [8]). Bayesian methods do implement some form
of post-experimental reasoning. However, they require the statistician to
provide a prior probability distribution, which is problematic when no prior
knowledge, or only weak information, is available. These shortcomings of
traditional methods of inference have motivated the development of alter-
native approaches up to these days. The theory of belief functions, which
focuses on the concept of evidence [58], seems particularly well-suited as a
model of statistical evidence. However, statistical methods based on belief
functions will not gain widespread acceptance unless they are conceptually
simple and easily applicable to a wide range of problems and models.

In this paper, we advocate another approach to statistical inference us-
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ing belief functions, based on the concept of likelihood. This approach was
initially introduced by Shafer in [58, Chapter 11] and was later studied by
some authors [1, 65]. It was recently derived axiomatically from three prin-
ciples: the likelihood principle, compatibility with Bayesian inference and
the principle of maximum uncertainty [18,19]. This approach is in line with
likelihood-based inference as advocated by Fisher in his later work [28] and,
later, by Birnbaum [9], Barnard [5], and Edwards [27], among others. It re-
tains the idea that “all we need to know about the result of a random exper-
iment is contained in the likelihood function”, but reinterprets it as defining
a consonant belief function. Combining this belief function by Dempster’s
rule with a Bayesian prior yields the Bayesian posterior distribution, which
ensures compatibility with Bayesian inference. An important advantage of
the belief function approach, however, is that it allows the statistician to use
either a weaker form of prior information1, as a general belief function, or
even no prior information at all (which corresponds to providing a vacuous
belief function as prior information).

In recent work [36], we have extended the likelihood-based approach to
prediction problems. Prediction can be defined as the task of making state-
ments about data that have not yet been observed. Assume, for instance,
that we have drawn y balls out of n draws with replacement from an urn
contain an unknown proportion θ of black balls, and a proportion 1 − θ of
white balls. Let z be a binary variable defined by z = 1 if the next ball to
be drawn is black, and z = 0 otherwise. Guessing the value of z is a predic-
tion problem. The general model for such problems involves a pair (y, z) of
random quantities whose joint distribution depends on some parameter θ,
where y is observed but z is not yet observed. In [36], we proposed a solution
to this problem, using the likelihood-based approach outlined above, and we
applied it to a very specific model in the field of marketing econometrics.
The same approach was used in [67] to calibrate a certain kind of binary
classifiers. In this paper, we further explore this method by proving that,
under some mild assumptions, the predictive belief function converges, in
some sense, to the true probability distribution of the not-yet observed data.
We also address describe several simulation and approximation techniques
to estimate the predictive belief function or an outer approximation thereof.
Finally, we illustrate the practical application of the method using multi-
ple linear regression. In particular, we show that the ex ante forecasting

1A similar goal is pursued by robust Bayes [7] and imprecise probability approaches
(see, e.g., [42,48]), which attempt to represent weak prior information by sets of probability
measures. A comparison with these alternative approaches is beyond the scope of this
paper.
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problem has a natural and simple solution using our approach.
The rest of this paper is organized as follows. Some background on belief

functions will first be given in Section 2. The estimation and prediction
methods will then be presented, respectively, in Sections 3 and 4. The
application to linear regression will then be studied in Section 5. Finally,
Section 6 will conclude the paper.

2 Background on belief functions

Most applications of Dempster-Shafer theory use belief functions defined on
finite sets [58]. However, in statistical models, the parameter and sample
spaces are often infinite. To make the paper self-contained, we will recall
some basic definitions and results on belief functions defined on arbitrary
spaces (finite or not).

2.1 Belief function induced by a source

Let (Ω,B) be a measurable space. A belief function on B is a mapping
Bel : B → [0, 1] verifying the following three conditions:

1. Bel(∅) = 0;

2. Bel(Ω) = 1;

3. For any k ≥ 2 and any collection B1, . . . , Bk of elements of B,

Bel

(
k⋃
i=1

Bi

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Bel

(⋂
i∈I

Bi

)
. (1)

Similarly, a plausibility function can be defined as a function Pl : B →
[0, 1] such that:

1. Pl(∅) = 0;

2. Pl(Ω) = 1;

3. For any k ≥ 2 and any collection B1, . . . , Bk of elements of B,

Pl

(
k⋂
i=1

Bi

)
≤

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Pl

(⋃
i∈I

Bi

)
. (2)
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It is clear that, Bel is a belief function if and only if Pl defined by Pl(B) =
1 − Bel(B) for all B ∈ B is a plausibility function. The function pl : Ω →
[0, 1] such that pl(x) = Pl({x}) for any x ∈ Ω is called the contour function
of Bel.

In Dempster-Shafer theory, a belief function Bel is used as a represen-
tation of a belief state about some question of interest, induced by a given
piece of evidence. The number Bel(B) is interpreted as the probability that
the evidence supports (implies) B, while Pl(B) is the probability that the
evidence does not support the complement of B (is not contradictory with
B).

A convenient way to create a belief function is through a multivalued
mapping from a probability space to B [12]. More precisely, let (S,A, P ) be
a probability space and let Γ : S → 2Ω be a multi-valued mapping. We can
define two inverses of Γ:

1. The lower inverse

Γ∗(B) = B∗ = {s ∈ S|Γ(s) 6= ∅,Γ(s) ⊆ B}; (3)

2. The upper inverse

Γ∗(B) = B∗ = {s ∈ S|Γ(s) ∩B 6= ∅}, (4)

for all B ∈ B. We say that Γ is strongly measurable with respect to A and
B iff, for all B ∈ B, B∗ ∈ A. This implies that, for all B ∈ B, B∗ ∈ A.

We then have the following important theorem [52].

Theorem 1 Let (S,A,P) be a probability space, (Ω,B) a measurable space
and Γ a strongly measurable mapping w.r.t. A and B such that P(Ω∗) 6= 0.
Let the lower and upper probability measures be defined as follows: for all
B ∈ B,

P∗(B) = K · P(B∗), (5a)

P∗(B) = K · P(B∗) = 1− P∗(B), (5b)

where K = [P(Ω∗)]−1. Then, P∗ is a belief function and P∗ is the dual
plausibility function.

Under the conditions of Theorem 1, the four-tuple (S,A,P,Γ) is called
a source for the belief function P∗. The set Γ(s) are called the focal sets of
Bel.

5



Given a source (S,A,P,Γ), we can also define a third notion of inverse
for Γ as

Γ̃(B) = B̃ = {s ∈ S|Γ(s) ⊇ B}, (6)

for all B ∈ B. If B̃ ∈ A for all B ∈ B, then we can define another function
Q from B to [0, 1], called the commonality function, as Q(B) = K · P(B̃).

2.2 Practical models

In Section 3 below, we will encounter three important examples of sources
defining belief functions of practical interest in Ω = Rd: random vectors,
consonant random closed sets and random intervals.

Random vectors

Let X be a random vector from (S,A,P) to (Rd,B(Rd)). It is clear that
the mapping Γ from S to the power set of Rd, defined by Γ(s) = {X(s)}, is
strongly measurable. The induced belief function is the probability distri-
bution PX of X.

Consonant random closed sets

Let us assume that Ω = Rd. Let π be an upper semi-continuous map from
Rd to [0, 1], i.e., for any s ∈ [0, 1], the set

sπ = {x ∈ Rd|π(x) ≥ s} (7)

is closed. Furthermore, assume that π(x) = 1 for some x. Let S be the
interval [0, 1], A be the Borel σ-field on [0, 1], λ the uniform probability
measure on S, and Γ the mapping defined by Γ(s) = sπ. Then Γ is strongly
measurable and it defines a random closed set [53]. We can observe that
its focal sets are nested: it is said to be consonant. The corresponding
plausibility and belief functions verify the following equalities, for any B ⊂
Rd:

Pl(B) = sup
x∈B

π(x), (8)

and
Bel(B) = 1− Pl(B) = inf

x 6∈B
(1− π(x)). (9)

The corresponding contour function pl is equal to π.
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Random closed intervals

Let (U, V ) be a bi-dimensional random vector from a probability space
(S,A,P) to R2 such that

P({s ∈ S|U(s) ≤ V (s)}) = 1. (10)

The mapping
Γ : s→ Γ(s) = [U(s), V (s)] (11)

is strongly measurable. It defines a random closed interval [14], which is a
source for a belief function in Ω = R.

The lower and upper cumulative distribution functions (cdf) of the ran-
dom interval [U, V ] are the function F∗ and F ∗ defined, respectively, as
follows,

F∗(x) = Bel ((−∞, x]) (12a)

F ∗(x) = Pl ((−∞, x]) , (12b)

for all x ∈ R, where Bel and Pl are the belief and plausibility functions
associated to [U, V ]. The following equalities hold,

F∗(x) = P([U, V ] ⊆ (−∞, x]) = P(V ≤ x) = FV (x), (13)

where FV is the cdf of V , and

F ∗(x) = P([U, V ] ∩ (−∞, x] 6= ∅) = P(U ≤ x) = FU (x). (14)

2.3 Dempster’s rule

Assume that we have n sources (Si,Ai,Pi,Γi) for i = 1, . . . , n, where each
Γi is a multi-valued mapping from Si to 2Ω. Then, the combined source
(S,A,P,Γ) can be defined as follows [12]:

S = S1 × S2 . . .× Sn, (15a)

A = A1 ⊗A2 . . .⊗An, (15b)

P = P1 ⊗ P2 . . .⊗ Pn, (15c)

Γ∩(s) = Γ1(s1) ∩ Γ2(s2) ∩ . . . ∩ Γn(sn), (15d)

where A is the tensor product σ-algebra on the product space S, and P is the
product measure. The belief function Bel induced by the source (S,A,P,Γ∩)
can then be written as Bel1 ⊕ . . . ⊕ Beln, where Beli is the belief function
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induced by source i. For each B ∈ B, Bel(B) is the conditional probability
that Γ∩(s) ⊆ B, given that Γ∩(s) 6= ∅,

Bel(B) =
P ({s ∈ S|Γ∩(s) 6= ∅,Γ∩(s) ⊆ B})

P({s ∈ S|Γ∩(s) 6= ∅})
, (16)

which is well defined iff the denominator is non-null (i.e., if the n belief func-
tions are not totally conflicting). The consideration of the product probabil-
ity measure in (15c) corresponds to an assumption of independence between
the items of evidence.

When Ω = Rd, the combined belief values Bel(B) usually cannot be
computed analytically, even when the individual belief functions Beli have
one of the simple forms outlined in Section 2.2. However, they can easily
be approximated by Monte Carlo simulation. The method, described in Al-
gorithm 1, is to draw (s1, . . . , sn) from the product probability measure P
and to compute the intersection of the sets Γ(sk) for k = 1, . . . , n. If this
intersection is non-empty, we keep it as a focal set of the combined belief
function Bel = Bel1 ⊕ . . . ⊕ Beln. This process is repeated until we get N
focal sets B1, . . . , BN . These focal sets with probability masses 1/N con-

stitute a belief function B̂el that approximates Bel. In particular, degrees
of belief Bel(B) and degrees of plausibility Pl(B) can be approximated by

B̂el(B) and P̂ l(B) defined as follows,

B̂el(B) =
1

N
#{i ∈ {1, . . . , N}|Bi ⊆ B}, (17a)

P̂ l(B) =
1

N
#{i ∈ {1, . . . , N}|Bi ∩B 6= ∅}. (17b)

If the degree of conflict P({s ∈ S|Γ∩(s) = ∅}) between the n belief functions
is high, then Algorithm 1 will be slow, because the condition

⋂n
k=1 Γk(sk) 6=

∅ will often not be met, and a large number of draws will be needed to
get N focal sets. Moral and Wilson have proposed Markov chain [50] and
importance sampling [51] algorithms to approximate the combination of
conflicting belief functions on a finite space more efficiently. We are not
aware, however, of any extension of these methods to the case where Ω is
infinite. In any case, conflict will not be an issue in paper, as the belief
functions to be combined as part of the prediction method described in
Section 4 have no conflict.

2.4 Least-commitment principle

In many cases, a belief function is underdetermined by some constraints.
For instance, an expert might provide only the contour function pl. Usually,
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Algorithm 1 Monte Carlo algorithm for Dempster’s rule.

Require: Desired number of focal sets N
i← 0
while i < N do

for k = 1 to n do
Draw sk from Pk

end for
if
⋂n
k=1 Γk(sk) 6= ∅ then

i← i+ 1
Bi ←

⋂n
k=1 Γk(sk)

end if
end while

infinitely many belief functions are compatible with such constraints. The
Least-Commitment Principle (LCP) [25,61], or principle of maximal uncer-
tainty [38], then prescribes to select the least informative (committed) one,
if it exists. To make this principle operational, we need ways to compare
the information contents of belief functions. Several partial informational
orderings have been defined (see, e.g., [17,24,37,68]). For instance, Bel1 can
be considered to be less committed than Bel2 if it assigns smaller degrees
of belief to every statement, i.e., if Bel1 ≤ Bel2. Alternatively, Bel1 is said
to be Q-less committed than Bel2 if Q1 ≥ Q2, where Q1 and Q2 are the
commonality functions associated to Bel1 and Bel2, respectively. As shown
in [24], these two notions are not equivalent.

2.5 Lower and upper expectations

Let Bel be a belief function on (Ω,B) induced by a source (S,A,P,Γ), and
let P(Bel) denote the set of probability measures P on (Ω,B) such that
Bel(B) ≤ P (B) ≤ Pl(B), for all B ∈ B. For any measurable function
X from Ω to R, its lower and upper expectations with respect to Bel are
defined as follows,

E∗(X) = inf
P∈P(Bel)

EP (X) and E∗(X) = sup
P∈P(Bel)

EP (X), (18)

where EP (·) denotes the expectation with respect to P . It can be shown [65]
that

E∗(X) =

∫
S
X(s)P(ds) and E∗(X) =

∫
S
X(s)P(ds), (19)
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where
X(s) = inf

ω∈Γ(s)
X(ω) and X(s) = sup

ω∈Γ(s)
X(ω). (20)

In the special case where Ω = R and Bel is induced by a random interval
[U, V ], the lower and upper expectations of a non-decreasing function X :
Ω→ R are thus simply its expectation with respect to U and V ,

E∗(X) = EU (X) and E∗(X) = EV (X). (21)

As shown in [31], the lower and upper expectations are the Choquet
integrals with respect to Bel and Pl, respectively. A Savage-like axiomatic
justification of decision-making based on maximization of Choquet-expected
utilities has been provided by Gilboa [30].

3 Estimation using belief functions

The definition of a belief function from the likelihood function will first be
recalled in Section 3.1. Some connections with classical methods of inference
will then be outlined in Section 3.2, and the consistency of the method will
be studied in Section 3.3.

3.1 Likelihood-based belief function

Let y ∈ Y denote the observed data, assumed to be a realization of a random
vector Y with probability mass or density function fθ(y), where θ ∈ Θ is
an unknown parameter. The likelihood function is a mapping Ly from Θ to
[0,+∞) defined by

Ly(θ) = cfθ(y), (22)

where c > 0 is an arbitrary multiplicative constant. Several authors have
defended the view that the likelihood function contains all the information
about the parameter provided by the experiment, a thesis called the Likeli-
hood Principle (LP) [5, 8, 9, 27]. In particular, this principle was shown by
Birnbaum in [9] to follow from two principles generally accepted by most
(but not all) statisticians: the conditionality principle (see also [8, page 25])
and the sufficiency principle. As likelihood is defined up to a multiplica-
tive constant, it can conveniently be rescaled to the interval [0, 1], by the
transformation

Ry(θ) =
Ly(θ)

Ly(θ̂)
, (23)
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where θ̂ is a maximizer of Ly(θ), i.e., a maximum likelihood estimate (MLE)

of θ, and it is assumed that Ly(θ̂) < +∞. Plots of function Ry(θ), called the
relative likelihood, provide a complete graphical description of the result of a
random experiment [63]. Likelihood regions, defined as the set of parameter
values θ whose relative likelihood exceeds some threshold,

sRy = {θ ∈ Θ|Ry(θ) ≥ s}, (24)

for s ∈ [0, 1], are useful summaries of function Ry.
In [58], Shafer proposed to interpret Ry(θ) as the plausibility of θ af-

ter observing y. The relative likelihood is then considered as the contour
function ply(θ) of a belief function BelΘy on Θ:

ply(θ) = Ry(θ), (25)

for all θ ∈ Θ. If one further assumes BelΘy to be consonant, then the
plausibility of any hypothesis H ⊆ Θ is given by (8) as

PlΘy (H) = sup
θ∈H

ply(θ). (26)

As explained in Section 2.2, BelΘy is then induced by the source (S,A, λ,Γy),
where S = [0, 1], A is the Borel sigma-field on S, λ is the uniform probability
measure on [0, 1] and Γy(s) = sRy for all s ∈ S.

The so-called likelihood-based approach to belief function-based infer-
ence was introduced by Shafer on intuitive grounds. It was recently shown
in [18] to be the only belief function BelΘy on Θ verifying the following three
requirements:

1. Likelihood principle: BelΘy should only depend on the likelihood func-
tion Ly(θ).

2. Compatibility with Bayesian inference: if a Bayesian prior g(θ) is avail-
able, combining it with BelΘy using Dempster’s rule (see Section 2.3)
should yield the Bayesian posterior.

3. Least Commitment Principle (see Section 2.4): BelΘy should be the
least committed belief function (according to the Q-ordering), among
all those satisfying the previous two requirements.

These principles are discussed at length in [18] and in the subsequent discus-
sion [19, 22, 49]. They can be considered to provide a firm theoretical basis
for the likelihood-based belief function approach.
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Figure 1: Contour function on θ for an iid sample from U([0, θ]), with y(n) =
1 and n ∈ {5, 10, 50}.

Example 1 Let y = (y1, . . . , yn) be a realization from an iid random sample
Y = (Y1, . . . , Yn) from the uniform distribution U([0, θ]), where θ ∈ Θ =
[0,+∞) is the unknown parameter. The likelihood function is

Ly(θ) = θ−n1[y(n),+∞)(θ), (27)

where y(n) = max1≤i≤n yi, and the contour function is

ply(θ) =
(y(n)

θ

)n
1[y(n),+∞)(θ). (28)

It is plotted in Figure 1 for y(n) = 1 and n ∈ {5, 10, 50}. We note that,
the contour function being unimodal and upper-semicontinous, the focal sets
Γy(s) are close intervals [θ̂y∗(s), θ̂

∗
y(s)], with θ̂y∗(s) = y(n) and θ̂∗y(s) =

y(n)s
−1/n for all s ∈ [0, 1]. Consequently, the belief function BelΘy is induced

by the random closed interval [y(n), y(n)S
−1/n], with S ∼ U([0, 1]). �

3.2 Connections with classical statistical concepts

Likelihood-based inference The approach to statistical inference out-
lined in the previous section is very close to the “likelihoodist” approach
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advocated by Birnbaum [9], Barnard [5], and Edwards [27], among others.
The main difference resides in the interpretation of the likelihood function
as defining a belief function. This interpretation allows us to quantify the
uncertainty in statements of the form θ ∈ H, where H may contain mul-
tiple values. This is in contrast with the classical likelihood approach, in
which only the likelihood of single hypotheses is defined. The belief function
interpretation provides an easy and natural way to combine statistical infor-
mation with expert opinions (see, e.g., [6]). It will also allow us to provide
an original solution to the prediction problem, as will be shown in Section
4.

Frequentists tests and confidence regions We can also notice that
PlΘy (H) given by (26) is identical to the likelihood ratio statistic for H.
From Wilk’s theorem [66], we know that, under regularity conditions, the
large sample distribution of −2 lnPly(H), when H holds, is chi-squared,
with degrees of freedom equal to the number r of restrictions imposed by
H. Consequently, rejecting hypothesis H if its plausibility is smaller than
exp(−χ2

r;1−α/2), where χ2
r;1−α is the 1− α-quantile of the chi-square distri-

bution with r degrees of freedom, is a testing procedure with significance
level approximately equal to α. Another consequence is that the likelihood
(or plausibility) regions (24) are approximate confidence regions [34]. Re-
cently, Martin [43] proposed to define the plausibility of any hypothesis H
not as (26), but as

PlΘy (H) = sup
θ∈H

Fθ(Ry(θ)), (29)

where Fθ is the cdf of RY (θ) when Y ∼ fθ. In this way, rejecting H when
PlΘy (H) ≤ α is an exact testing procedure with size α, and exact confidence
regions can be constructed. However, this estimation method is no longer
compatible with Bayesian inference, i.e., combining PlΘy defined by (29)
with a prior using Dempster’s rule does not yield the Bayesian posterior.
Imposing this condition, as done in this paper, thus rules out (29) as a valid
definition for the plausibility of a hypothesis.

Profile likelihood Assume that θ = (ξ,ν), where ξ is a (vector) param-
eter of interest and ν is a nuisance parameter. Then, the marginal contour
function for ξ is

ply(ξ) = sup
ν
ply(ξ,ν), (30)

which is the profile relative likelihood function. The profiling method for
eliminating nuisance parameter thus has a natural justification in our ap-
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proach. When the quantities ply(ξ) cannot be derived analytically, they
have to be computed numerically using an iterative optimization algorithm.

Rejection sampling The likelihood-based method described here does
not require any prior knowledge of θ. However, by construction, this ap-
proach boils down to Bayesian inference if a prior probability g(θ) is provided
and combined with BelΘy by Dempster’s rule. As it will usually not be possi-
ble to compute the analytical expression of the resulting posterior distribu-
tion, it can be approximated by Monte Carlo simulation, using Algorithm 1.
The algorithm generates a sample θ1, . . . ,θN from the posterior distribution
g(θ|y). The particular form of this algorithm when the likelihood-based be-
lief function is combined with a Bayesian prior is described as Algorithm 2.
We can see that this is just the rejection sampling algorithm with the prior
g(θ) as proposal distribution. The rejection sampling algorithm can thus be
seen, in this case, as a Monte Carlo approximation to Dempster’s rule of
combination.

Algorithm 2 Monte Carlo algorithm for combining the likelihood-based
belief function with a Bayesian prior by Dempster’s rule.

Require: Desired number of focal sets N
i← 0
while i < N do

Draw s in [0, 1] from the uniform probability measure λ on [0, 1]
Draw θ from the prior probability distribution g(θ)
if ply(θ) ≥ s then
i← i+ 1
θi ← θ

end if
end while
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3.3 Consistency

In this section, we assume that the observed data y = (y1, . . . , yn) is a re-
alization of an iid sample Y = (Y1, . . . , Yn) from Y ∼ fθ(y). In such a
situation, it is generally required from any statistical procedure that it pre-
cisely identifies the true value θ0 of parameter θ in the limit, when n tends
to infinity. Since, in our case, the result of the estimation is given in the
form of a belief function on the parameter space Θ, this consistency prop-
erty has to be given a precise definition. In Bayesian statistics, a posterior
distribution µn is said to be consistent at θ0 if, for every neighborhood N of
θ0, µn(N) → 1 almost surely under the law determined by θ0. As we shall
see, a similar property holds, under mild conditions, for the likelihood-based
belief function defined in Section 3.1.

In the following, to emphasize the dependency on the sample size n,
we will index by n all the quantities depending on y. For instance, the
likelihood and plausibility contour functions will be denoted, respectively,
as Ln(θ) and pln(θ). The following theorem states that the plausibility of
any value of θ different from the true value θ0 tends to 0 as the sample
size tends to infinity. The simple proof given here follows closely that of
Fraser [29, page 298]. We reproduce it for completeness.

Theorem 2 If Eθ0 [log fθ(Y )] exists, is finite for all θ, and has a unique
maximum at θ0, then, for any θ 6= θ0, pln(θ) → 0 almost surely under the
law determined by θ0.

Proof. As Eθ0 [log fθ(Y )] has a unique maximum at θ0, Eθ0 [log fθ(Y )] <
Eθ0 [log fθ0(Y )] for any θ 6= θ0 or, equivalently,

Eθ0 [log fθ(Y )− log fθ0(Y )] = ε < 0. (31)

Hence, by the strong law of large numbers,

Pθ0

[
lim
n→∞

1

n

n∑
i=1

[log fθ(Yi)− log fθ0(Yi)] = ε

]
= 1, (32)

Now,

log
Ln(θ)

Ln(θ0)
=

n∑
i=1

[log fθ(Yi)− log fθ0(Yi)], (33)

so (32) can be written as

Pθ0
[

lim
n→∞

1

n
log

Ln(θ)

Ln(θ0)
= ε

]
= 1, (34)
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which implies that

Pθ0
[

lim
n→∞

log
Ln(θ)

Ln(θ0)
= −∞

]
= 1, (35)

or, equivalently,

Pθ0
[

lim
n→∞

Ln(θ)

Ln(θ0)
= 0

]
= 1. (36)

Finally, Ln(θ̂) ≥ Ln(θ0), hence

pln(θ) =
Ln(θ)

Ln(θ̂)
≤ Ln(θ)

Ln(θ0)
, (37)

from which we can deduce that pln(θ)→ 0 almost surely. �
From the consistency of the MLE, it might be expected that pln(θ0)→ 1

almost surely. However, this is not the case in general. A recalled in Section
3.2, −2 log pln(θ0) converges in distribution to a chi square distribution with
1 degree of freedom, hence pln(θ0) does not converge to 1. However, it can
be shown that, under mild conditions, the belief and plausibility functions
become more and more concentrated around θ0 when the sample size tends
to infinity. This is a consequence of the following theorem, which follows
directly a result proved by Fraser [29, page 301].

In the following, we assume that Θ = Rd and we denote by Bρ(θ) the
ball of radius ρ about θ,

Bρ(θ) = {θ′ ∈ Θ : ‖θ − θ′‖ < ρ}. (38)

We also denote by Bρ(∞) a ball about ∞, defined as

Bρ(∞) = {θ ∈ Θ : ‖θ − 0‖ > 1/ρ}. (39)

Theorem 3 If the following assumptions hold,

1. fθ(y) is a continuous function of θ in Rd ∪ {∞};

2. For each θ 6= θ0, the distribution fθ(y) is different from fθ0(y);

3. For each θ′ in Rd ∪ {∞}, there is a neighborhood Bρ(θ
′) such that

sup
θ∈Bρ(θ′)

log fθ(y) ≤Mθ′(y), (40)

where Mθ′(y) is a bounding function with finite mean value Eθ0 [Mθ′(Y )],
and the expectation Eθ0 [log fθ′(Y )] is finite;
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then, for any δ > 0,

Pθ0
[

lim
n→∞

PlΘn (Bδ(θ0)) = 0
]

= 1. (41)

Proof. Under the assumptions of the theorem, Fraser [29, page 301] shows
that

Pθ0

[
lim
n→∞

sup
‖θ−θ0‖≥δ

log
Ln(θ)

Ln(θ0)
= −∞

]
= 1. (42)

The theorem follows directly from (37) and (42). �
As an immediate corollary, the belief and the plausibility of any neigh-

borhood of θ0 tends to 1 almost surely.

Corollary 1 Under the assumptions of Theorem 3, for any neighborhood
N of θ0, BelΘn (N) → 1 and PlΘn (N) → 1 almost surely under the law
determined by θ0.

Proof. For any δ > 0, the following equality holds:

BelΘn (Bδ(θ0)) = 1− PlΘn (Bδ(θ0)). (43)

Consequently, BelΘn (Bδ(θ0))→ 1 almost surely. For any neighborhood N of
θ0, there is some δ > 0 such that Bδ(θ0) ⊆ N , so BelΘn (N) ≥ BelΘn (Bδ(θ0))
and BelΘn (N)→ 1 almost surely. As PlΘn (N) ≥ BelΘn (N), it also holds that
PlΘn (N)→ 1 almost surely. �

4 Prediction

The prediction method introduced in [36] will first be recalled in Section 4.1,
and its consistency in the case of iid data will be established in Section 4.2.
Practical calculation of the predictive belief function using Monte Carlo will
then be addressed in Section 4.3. Finally, the method will be extended to
the prediction of multidimensional quantities in Section 4.4.

4.1 Basic method

As we have seen in Section 3, the estimation problem is to make state-
ments about some parameter θ after observing some data y with distribution
fθ(y). The prediction problem considered in this section is, in some sense,
the inverse of the previous one: given some knowledge about θ obtained by
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observing y (represented here by a belief function), we wish to make state-
ments about some future data Z ∈ Z, whose conditional distribution fy,θ(z)
given y depends on θ. In some cases, y = (y1, . . . , yn) is a vector composed
of the n first observations of an i.i.d. sample, and Z = (Yn+1, . . . , Yn+m) is a
vector containing m observations to be drawn independently from the same
distribution. However, the model used here is more general. For instance,
y = (y0, y1, . . . , yT ) might be a time series and Z = (ZT+1, . . . , ZT+h) might
represent h future values to be predicted. Vectors y and Z may also depend
on some covariates, as in the regression model considered in Section 5.

To describe our prediction method, let us consider the case where the
unobserved data Z is one-dimensional2. The multi-dimensional case will be
addressed in Section 4.4. The main idea is to write Z, for fixed y, as function
of θ and some pivotal variable W , whose distribution does not depend on
θ,

Z = ϕy(θ,W ). (44)

Hereafter, such an equation will be called a ϕ-equation. In practice, function
ϕy can be constructed canonically as follows. Let us first assume that Z is
a continuous r.v. Let Fθ,y(z) be its conditional cdf given y. We know that
W = Fθ,y(Z) has a standard uniform distribution, and one can write Z as
a function of θ and W as

Z = F−1
θ,y(W ), (45)

with W ∼ U([0, 1]), which has the same form as (44). When W is discrete,
(45) is still valid if F−1

θ,y now denotes the generalized inverse of Fθ,y,

F−1
θ,y(W ) = inf{z|Fθ,y(z) ≥W}. (46)

Example 2 Assume that Z has a continuous uniform distribution on [0, θ]
and is independent from Y . Then Fθ(z) = z/θ for all 0 ≤ z ≤ θ and we can
write Z = θW with W ∼ U([0, 1]). �

Example 3 Let Z be a normal r.v. with mean µ and standard deviation σ.
Let θ = (µ, σ). Then

Fθ(Z) = Φ

(
Z − µ
σ

)
= W ∼ U([0, 1]),

from which we get
Z = µ+ σΦ−1(W ).

�
2We use normal fonts for scalars, and bold fonts for vectors.

18



For fixed y, Equation (44) describes a relation between z, θ and an
auxiliary variable W with standard uniform distribution. Dempster [12,13,
15] used such an equation to construct a belief function on θ after observing
Z = z. Here, we will use it to construct a belief function on Z, given the
belief function on θ induced by the likelihood function Ly(θ). For that
purpose, we can notice that Equation (44) defines a multi-valued mapping

Γ′y : w → Γ′y(w) = {(z,θ) ∈ Z×Θ|z = ϕy(θ, w)}, (47)

where Z is the sample space of z. The source ([0, 1],B([0, 1]), λ,Γ′y), where
B([0, 1]) is the Borel sigma-field on [0, 1], defines a joint belief function
BelZ×Θ

y on Z×Θ.

We now have two belief functions, BelΘy and BelZ×Θ
y , induced by multi-

valued mapping s→ Γy(s) and w → Γ′y(w). Given y, the random variables
S and W are independent: for instance, if we know that S = s, i.e., θ ∈
Γy(s), this information influences our beliefs about Z (because Z depends
on θ), but it does not influence our beliefs about W , which continues to have
a standard uniform distribution. Because of this independence property, the
two belief functions BelΘy and BelZ×Θ

y can be combined by Dempster’s rule.

After marginalizing on Z, we then get a predictive belief function BelZy on
Z. The focal sets of the combined belief function are obtained by taking the
intersections

(Z× Γy(s)) ∩ Γ′y(w) = {(z,θ) ∈ Z×Θ|z = ϕy(θ, w),θ ∈ Γy(s)}. (48)

Projecting these sets on Z, we get

{z ∈ Z|z = ϕy(θ, w),θ ∈ Γy(s)} = ϕy(Γy(s), w). (49)

Let Γ′′y denote the multi-valued mapping

(s, w)→ ϕy(Γy(s), w). (50)

The predictive belief function BelZy is thus induced by the source

([0, 1]2,B([0, 1]2), λ2,Γ
′′
y), (51)

where λ2 is the uniform probability measure in [0, 1]2. We then have

BelZy(A) = λ2

(
{(s, w) ∈ [0, 1]2|ϕy(Γy(s), w) ⊆ A}

)
, (52a)

PlZy(A) = λ2

(
{(s, w) ∈ [0, 1]2|ϕy(Γy(s), w) ∩A 6= ∅}

)
, (52b)

for any subset A of Z for which the above expressions are well-defined.
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Example 4 Continuing Examples 1 and 2, assume that Y1, . . . , Yn, Z is iid
from U([0, θ]). We have seen that the belief function BelΘy after observing

Y = y is induced by the random interval [y(n), y(n)S
−1/n]. As function

ϕ(θ,W ) = θW is continuous in θ, each focal set of BelZy is an interval

ϕ(Γy(s), w) = [y(n)w, y(n)s
−1/nw], (53)

so that BelZy is induced by the random interval

[Ẑy∗, Ẑ
∗
y] = [y(n)W, y(n)S

−1/nW ]. (54)

From (13)-(14), the upper and lower cdfs of BelZy are, respectively, the cdfs

of Ẑy∗ and Ẑ∗y. As Ẑy∗ ∼ U([0, y(n)]), we have

F ∗(z) = PlZy((−∞, z]) = P(Ẑy∗ ≤ z) =


0 if z ≤ 0,

z/y(n) if 0 < z ≤ y(n),

1 if z > y(n),

(55)

and

F∗(z) = BelZy((−∞, z]) = P(Ẑy∗ ≤ z) (56a)

=

∫ 1

0
P(y(n)S

−1/nW ≤ z|W = w)dw (56b)

=

∫ 1

0
P(S ≥ (wy(n)/z)n)dw (56c)

=


0 if z ≤ 0,

nz
(n+1)y(n)

if 0 < z ≤ y(n),

1− 1
n+1

(
z
y(n)

)n
if z > y(n),

(56d)

These functions are plotted in Figure 2 for y(n) = 1 and n = 5.
The lower expectation of Z is E∗(Z) = y(n)E(W ) = y(n)/2, and its

upper expectation is E∗(Z) = y(n)E(S−1/n)E(W ). It is easy to show that

E(S−1/n) = n/(n− 1). Hence,

E∗(Z) =
ny(n)

2(n− 1)
. (57)

It is interesting to study to the behavior of the predictive random interval
(54) when the sample size n tends to infinity. From the consistency of the
MLE, Y(n) converges in probability to θ0, so

ẐY ∗ = Y(n)W
d−→ θ0W = Z, (58)
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Figure 2: Lower and upper predictive cdf for y(n) = 1 and n = 5 (Example
4).

where
d−→ denotes convergence in distribution. We have seen that E(S−1/n) =

n/(n− 1), and

Var(S−1/n) =
n

(n− 2)(n− 1)2
. (59)

Consequently, E(S−1/n)→ 1 and Var(S−1/n)→ 0, so S−1/n P−→ 1. Hence,

Ẑ∗Y = Y(n)S
−1/nW

d−→ θ0W = Z. (60)

In this example, the predictive random interval is thus consistent, in the
sense that its bounds converge in probability to the true distribution of Z.
In the next section, we will see that this property generally holds under mild
conditions. �

4.2 Consistency

In this section, we will assume that the observed data y = (y1, . . . , yn) is a
realization of an iid sample Y = (Y1, . . . , Yn). Furthermore, we will assume
that the likelihood function Ln(θ) is unimodal and upper-semicontinuous, so
that its level sets Γn(s) are closed and connected, and that function ϕ(θ, w)
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is continuous. Under these conditions, the random set ϕ(Γn(S),W ) is a
closed random interval [Ẑ∗n, Ẑ

∗
n]. We then have the following theorem:

Theorem 4 Assume that the conditions of Theorem 3 hold, and that the
predictive belief function BelZn is induced by a random closed interval [Ẑ∗n, Ẑ

∗
n].

Then Ẑ∗n and Ẑ∗n both converge in distribution to Z when n tends to infinity.

Proof. Let S1, S2, . . . be an iid sequence of random variables with a standard
uniform distribution, and let θ̃1, θ̃2, . . . be a sequence of random variables
such that θ̃n ∈ Γn(Sn). According to Theorem 3, for any δ > 0, we have,

lim
n→∞

Beln(Bδ(θ0)) = lim
n→∞

P(Γ(Sn) ⊆ Bδ(θ0)) = 1, (61)

almost surely under the law determined by θ0. Since θ̃n ∈ Γn(Sn), its follows
that

lim
n→∞

P(‖θ̃n − θ0‖ ≤ δ) = 1, (62)

i.e., θ̃n converges in probability to θ0. Now,

Ẑ∗n = minϕ(Γn(Sn),W ) = ϕ(θ̂∗n,W ), (63)

for some θ̂∗n ∈ Γn(Sn). As shown above, θ̂∗n converges in probability to
θ0. By the continuity of ϕ, it results that Ẑ∗n converges in distribution to
ϕ(θ̂∗n,W ) = Z. The same line of reasoning leads to a similar conclusion for
Ẑ∗n. �

4.3 Practical calculation

For most models, the calculations cannot be done analytically as in Example
4, and one often has to approximate the quantities defined in (52) by Monte
Carlo simulation. Some computational issues are discussed in this section.

Hereafter, we will assume that each focal set ϕy(Γy(s), w) to a closed
interval [z∗(s, w), z∗(s, w)], in which case the predictive belief function BelZy
is equivalent to a random closed interval. If this is not the case, due to, e.g.,
the multi-modality of the likelihood function Ly(θ), then we can always rep-
resent each focal set ϕy(Γy(s), w) by its interval hull [ϕy(Γy(s), w)] (i.e., the
smallest enclosing interval). This strategy yields a conservative approxima-
tion, in the sense that the approximating belief-plausibility intervals always
contain the true ones.

Basically, the general Monte Carlo approach is to draw N pairs (si, wi)
independently from a uniform distribution, and to compute (or approximate)
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the focal sets ϕy(Γy(si), wi). The predictive belief and plausibility of any
subset A ⊆ Z are then estimated by

B̂el
Z
y(A) =

1

N
#{i ∈ {1, . . . , N}|ϕy(Γy(si), wi) ⊆ A}, (64a)

P̂ l
Z
y(A) =

1

N
#{i ∈ {1, . . . , N}|ϕy(Γy(si), wi) ∩A 6= ∅}. (64b)

When each focal set ϕy(Γy(si), wi) is a closed interval [z∗(si, wi), z
∗(si, wi)],

the lower and upper expectations of Z can be estimated, respectively, by
the sample means of z∗(si, wi) and z∗(si, wi).

The main questions to be considered are (1) how to generate the pairs
(si, wi), and (2) how to compute the focal sets ϕy(Γy(si), wi).

Generation of the pairs (si, wi): To generate the pairs (si, wi), we may
use a uniform random number generator. However, better results can be
obtained using quasi-random low-discrepancy sequences such as Halton se-
quences [33] [32, page 625]. A sequence of Halton draws is generated as
follows. Let r be a prime number greater than two. An integer g can be
expressed in terms of the base r as

g =
I∑
i=0

bir
i, (65)

where 0 ≤ bi ≤ r − 1 and rI ≤ g ≤ rI+1. The Halton sequence is then the
series

H(g) =

I∑
i=0

bir
−i−1, (66)

for g = 1, 2, . . . , N . To generate a two-dimensional series, we select two
prime numbers r and r′.

Computation of the focal sets ϕy(Γy(si), wi) The basic method is to
search for the minimum and the maximum of ϕy(θ, wi) under the constraint
ply(θ) ≥ si, which can be achieved using an iterative constrained nonlinear
optimization algorithm. In some cases, however, these optimization prob-
lems can be simplified.

First, consider the case where the parameter θ is a scalar. If the contour
function is upper-semicontinuous and multimodal, the constraint ply(θ) ≥ si
can be expressed as θ̂∗(si) ≤ θ ≤ θ̂∗(si), where θ̂∗(si) and θ̂∗(si) are the
solutions of the equation ply(θ) = si. These solutions can be found by any
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root-finding algorithm. If function ϕy(θ, wi) is monotone in θ, then the
minimum and maximum of ϕy(θ, wi) can be found directly.

In the case where y = (y1, . . . , yn) is a realization of an iid sample, then
the contour function will often be, for large n, approximately Gaussian [18],

ply(θ) ≈ exp

[
−1

2
Iy(θ̂)(θ − θ̂)2

]
, (67)

where Iy(θ̂) is the observed information defined as

Iy(θ̂) = − ∂2 log ply(θ)

∂θ2

∣∣∣∣
θ=θ̂

= −∂
2 logLy(θ)

∂θ2

∣∣∣∣
θ=θ̂

. (68)

The equation ply(θ) = si then has the following two approximate solutions

θ̂∗(si) ≈ θ̂ −
√
−2 log si

Iy(θ̂)
(69a)

θ̂∗(si) ≈ θ̂ +

√
−2 log si

Iy(θ̂)
. (69b)

Before studying the multidimensional case, let us consider the following
example.

Example 5 Let y = (y1, . . . , yn) be a realization from an iid sample from
the exponential distribution with rate parameter θ, with pdf

fθ(y) = θ exp(−θy)1[0,+∞)(y) (70)

and cdf
Fθ(y) = 1− exp(−θy). (71)

Let Z be an independent rv with the same distribution as Y . By solving the
equation Fθ(Z) = W , we get the ϕ-equation

Z = − log(1−W )

θ
, (72)

where W is a rv with a standard uniform distribution. The contour function
is

ply(θ) =

(
θ

θ̂

)
exp

[
(θ̂ − θ)

n∑
i=1

yi

]
, (73)
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with θ̂ = 1/y is the inverse of the mean of the yi. The focal sets ϕy(Γy(si), wi)
are the intervals [z∗(si, wi), z

∗(si, wi)] with

z∗(si, wi) = − log(1− wi)
θ̂∗(si)

and z∗(si, wi) = − log(1− wi)
θ̂∗(si)

, (74)

where θ∗(si) and θ∗(si) are the solutions of the equation ply(θ) = si. These
solutions have no analytical expression, but they can be approximated by

θ̂∗(si) ≈ θ̂

(
1−

√
−2

log si
n

)
(75a)

θ̂∗(si) ≈ θ̂

(
1 +

√
−2

log si
n

)
. (75b)

Figure 3 shows lower and upper cdfs computed with N = 10, 000 focal
sets, for n = 30 observations drawn from the exponential distribution with
θ = 1. The MLE of θ was θ̂ = 1.010396. The solid and dotted lines corre-
spond, respectively, to the exact bounds and to the normal approximations.
We can see that the approximation is already very good for moderate n. Fig-

ure 4 shows the convergence of B̂el
Z
y([0, 3]) to BelZy([0, 3]) for Halton draws

and random draws from a uniform distribution. The convergence of the Hal-
ton estimator is clearly faster, which confirms previous findings [32, page
628]. �

Let us now consider the case where Θ = Rp with p > 1. When p is
large, the minimization and maximization of ϕy(θ, wi) under the constraint
ply(θ) ≥ si, for each pair (si, wi), may be time-consuming. However, an
outer approximation of the predictive belief function can be computed effi-
ciently as follows. Let ply(θj) be the marginal contour function for compo-
nent j of θ,

ply(θj) = sup
θ−j

ply(θ), (76)

where θ−j is the subvector of θ with component j removed. Assuming

ply(θj) to be unimodal and upper-semicontinuous, let θ̂j∗(si) and θ̂∗j (si) be
the two roots of the equation ply(θj) = si. Then, the Cartesian product of

the intervals [θ̂j∗(si), θ̂
∗
j (si)] contains Γy(si),

p∏
j=1

[θ̂j∗(si), θ̂
∗
j (si)] ⊇ Γy(si). (77)
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Figure 3: Lower and upper cdf for the exponential data (Example 5): exact
bounds (plain curves) and normal approximations (dotted curves)
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Let z̃∗(si, wi) and z̃∗(si, wi) be the minimum and the maximum of ϕy(θ, wi)

under the constraints θ̂j∗(si) ≤ θj ≤ θ̂∗j (si) for j = 1, . . . , p. From (77), we
have

z̃∗(si, wi) ≤ z∗(si, wi) ≤ z∗(si, wi) ≤ z̃∗(si, wi), (78)

where z∗(si, wi) and z∗(si, wi) are the minimum and the maximum of ϕy(θ, wi)
under the constraint ply(θ) = si. The approximating intervals

[z̃∗(si, wi), z̃
∗(si, wi)]

thus contain the true focal intervals [z∗(si, wi), z
∗(si, wi)], resulting in an

outer approximation of the true predictive belief function.

Example 6 Let y = (y1, . . . , yn) be a realization of an iid sample from the
normal distribution with mean µ and standard deviation σ. The vector of
parameters is thus θ = (µ, σ). Let Z be an unobserved random quantity with
the same distribution. As mentioned in Example 3, we can write Z as

Z = ϕ(θ,W ) = µ+ σΦ−1(W ), (79)

where Φ denotes the cdf of the standard normal distribution and W has a
standard uniform distribution. The contour function on Θ is

ply(µ, σ) =

(
s2

σ2

)n/2
exp

(
n

2
− 1

2σ2

n∑
i=1

(yi − µ)2

)
, (80)

where s2 is the sample variance. The focal sets ϕ(Γy(si), wi) are closed inter-
vals [z∗(si, wi), z

∗(si, wi)], where z∗(si, wi) and z∗(si, wi) are the minimum
and the maximum of ϕ(θ, wi) under the nonlinear constraint ply(µ, σ) = si.
Now, the marginal contour functions are

ply(µ) = ply(µ, σ̂2(µ)) =

(
s2

σ̂2(µ)

)n/2
, (81)

where

σ̂2(µ) =
1

n

n∑
i=1

(yi − µ)2, (82)

and

ply(σ) = ply(y, σ2) =

(
s2

σ2

)n/2
exp

[
n

2

(
1− s2

σ2

)]
. (83)
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Figure 5: Lower and upper cdf for the normal data (Example 6): exact
bounds (solid lines), approximations using the marginal contour functions
(interrupted lines) and plug-in cdf Φ((z − y)/s2) (central dotted line).

Let µ̂∗(si) and µ̂∗(si) be the roots of the equation ply(µ) = si. Similarly, let
σ̂∗(si) and σ̂∗(si) be the roots of the equation ply(σ) = si. We have

z̃∗(si, wi) =

{
µ̂∗(si) + σ̂∗(si)Φ

−1(wi) if wi ≥ 0.5

µ̂∗(si) + σ̂∗(si)Φ
−1(wi) if wi < 0.5,

(84a)

z̃∗(si, wi) =

{
µ̂∗(si) + σ̂∗(si)Φ

−1(wi) if wi ≥ 0.5

µ̂∗(si) + σ̂∗(si)Φ
−1(wi) if wi < 0.5.

(84b)

Figure 5 shows lower and upper cdfs computed using the exact focal
intervals [z∗(si, wi), z

∗(si, wi)] (solid lines) and using the approximations
[z̃∗(si, wi), z̃

∗(si, wi)] (interrupted lines), for a normal sample of size n = 10
with y = 0.3083027 and s2 = 1.006766. We also show the plug-in cdf
Φ((z − y)/s2) (central dotted line). We can see that, in this case, the outer
approximation is quite accurate. We will see later that this is not always
true (see Example 9). Further research is needed to determine the condi-
tions under which this approximation method produces acceptable results.
�
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4.4 Prediction of a multidimensional variable

Until now, we have assumed, for simplicity, the predicted variable Z to be
one-dimensional. However, the method can be extended in a straightforward
way to the more general case where the data Z to be predicted is a vector.
Assume, for instance, that Z is a two-dimensional vector (Z1, Z2). We can
express the marginal distribution of Z1 and the conditional distribution of
Z2 given z1 as follows,

Z1 = F−1
y,θ(W1) (85a)

Z2 = F−1
y,z1,θ

(W2), (85b)

where Fy,θ is the conditional cdf of Z1 given y, Fy,z1,θ is the conditional
cdf of Z2 given y and z1, and W = (W1,W2) has a uniform distribution in
[0, 1]2. This line of reasoning shows that any d-dimensional vector z can be
written as

Z = ϕy(θ,W ), (86)

whereW has a uniform distribution on [0, 1]d. The predictive belief function
BelZy is then induced by the source

([0, 1]d+1,B([0, 1]d+1), λd+1,Γ
′′
y), (87)

where λd+1 is the uniform probability measure in [0, 1]d+1 and Γ′′y is the
multi-valued mapping

(s,w)→ ϕy(Γy(s),w). (88)

In general, the focal sets Γ′′y(s,w) are subsets of Rd with arbitrary shape.
They can be approximated by boxes

B(s,w) =

d∏
k=1

[z∗k(s,w), z∗k(s,w)], (89)

where z∗k(s,w) and z∗k(s,w) are, respectively, the minimum and maximum
of the k-th component of z under the constraint ply(θ) ≥ s.

Example 7 Consider an AR(1) process

Xt = c+ φXt−1 + εt, (90)
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with εt ∼ N (0, σ2). Let y = (x1, . . . , xT ) the observed sequence between
times 1 and T . Given that

X1 ∼ N
(

c

1− φ
,

σ2

1− φ2

)
and

Xt|xt−1 ∼ N
(
c+ φxt−1, σ

2
)

the likelihood function can easily computed as

Ly(θ) = f(x1)
T∏
t=2

f(xt|xt−1), (91)

where θ = (c, φ, σ). The contour function is then ply(θ) = Ly(θ)/Ly(θ̂),

where the MLE θ̂ has to be computed numerically. Assume now that we wish
to predict the next two terms of the sequence, and let Z = (XT+1, XT+2).
We can write

Z1 = c+ φxt + σΦ−1(W1) (92a)

Z2 = c+ φz1 + σΦ−1(W2) (92b)

= c+ φc+ φ2xt + φσΦ−1(W1) + σΦ−1(W2). (92c)

Vector Z can thus be written as Z = ϕy(θ,W1,W2), with (W1,W2) having
a uniform distribution on [0, 1]2. The focal sets ϕy(Γy(s),w) are regions of
R2 defined as

ϕy(Γy(s),w) = {(z1, z2) : ∃(c, φ, σ), ply(c, φ, σ) ≥ s,
z1 = c+ φxt + σΦ−1(w1), z2 = c+ φz1 + σΦ−1(z2)}. (93)

They can be approximated by boxes

B(s,w) = [z∗1(s,w), z∗1(s,w)]× [z∗2(s,w), z∗2(s,w)], (94)

with

z∗1(s,w) = min
c,φ,σ

[c+ φxt + σΦ−1(w1)] (95a)

z∗1(s,w) = max
c,φ,σ

[c+ φxt + σΦ−1(w1)] (95b)

z∗2(s,w) = min
c,φ,σ

[c+ φc+ φ2xt + φσΦ−1(w1) + σΦ−1(w2)] (95c)

z∗2(s,w) = max
c,φ,σ

[c+ φc+ φ2xt + φσΦ−1(w1) + σΦ−1(w2))], (95d)

under the constraint ply(c, φ, σ) ≥ s.
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4.5 Comparison with previous work

In this section, we briefly discuss the relationships between our approach
and previous work on statistical prediction in the belief function framework.

Dempster’s approach [12, 13] is entirely based on ϕ-equations such as
(44) (see also [2, page 251]. With our notation, this approach is to write
(Y , Z) as function of θ and a pivotal random variable W ,

(Y , Z) = ϕ(θ,W ), (96)

which induces a belief function of the product space Y×Z×Θ. Conditioning
on the observed data y and marginalizing on Z then yields a predictive
belief function on Z. This approach is appealing because of its conceptual
simplicity. However, it has proved difficult to put at work in practice, except
for very simple models. Our method combines Shafer’s idea of building a
consonant belief function from the likelihood function, with Dempster’s ϕ-
equation used only in the prediction step, resulting in a well-founded and
yet computationally tractable method.

One could imagine using a different method to construct a belief function
in the estimation step. Shafer [59] mentions three methods, including Smets’
Generalized Bayes Theorem [60, 61]. However, this method is only applica-
ble in the very specific situation where the parameter space Θ is finite, and
we have independent datasets for each single parameter value θk ∈ Θ [23].
These conditions are usually non satisfied in statistical inference problems.
As argued in Section 3, the likelihood-based approach to representing statis-
tical evidence is both well-founded theoretically and easy to use for a wide
range of statistical problems.

In [16], Denoeux proposed a different method to build a predictive belief
function for a discrete variable Z, based on multinomial confidence regions.
This approach was extended to the case of a continuous variable in [3],
using confidence bands on the cdf. Predictive belief functions constructed
using this approach have the property that they are dominated by the true
probability distribution of Z with some confidence level 1−α, i.e., for a pro-
portion of at least 1−α of the observed samples. In [4], a different approach
based on the inverse pignistic transformation [26] was proposed. In this
approach, we consider a set P of probability distributions that contains the
true distribution of Z with some specified probability. We then demand that
the pignistic probability distribution [62] of the predictive belief function be
contained in P, and we construct the most committed consonant belief func-
tion that is less committed than any belief function having this property.
These two approaches have a frequentist flavor and can be implemented
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using multinomial confidence regions and confidence bands in the case of
iid data. In contrast with the method described here, they are, however,
fundamentally incompatible with Bayesian reasoning. Our new approach is
also more widely applicable, as it does not rely on the iid assumption.

In a recent paper3 [44], Martin and Lingham propose a different approach
in the Inferential Model framework [45, 46]. This approach starts with two
separate ϕ-equations for Y and Z,

Y = ϕ(θ,W ) and Z = ϕ′(θ,W ′). (97)

Solving for θ in the first equation and plugging in to the second one yields
a new ϕ equation of the form

Z = ϕ′(θ(Y ,W ),W ′), (98)

which they rewrite as Z = ϕ′′(Y ,W ′′). They then define a predictive random
set for W ′′, which, for fixed y, allows them to define the plausibility of any
assertion A ⊂ Y of interest. The authors indicate that “the choice of a
predictive random set ought to depend on the assertion A of interest”. The
approach thus departs from the classical Dempster-Shafer theory, in which
belief functions quantify degrees of belief. In contrast, our method sticks
strictly to this subjective interpretation. As both approaches have been
developed independently and almost simultaneously, more work is needed
to carry out a deep analysis of the relative merits of the two approaches,
both from the theoretical and practical viewpoints.

5 Application to regression

To provide a more detailed illustration of the way the above estimation and
prediction methods can be put at work, we will discuss their use for regres-
sion analysis. The estimation and prediction problems will first addressed,
respectively, in Sections 5.1 and 5.2. Finally, the prediction problem with
uncertain inputs will be studied in Section 5.3.

5.1 Estimation

We consider the following standard linear regression model,

y = Xβ + ε, (99)

3We thank an anonymous reviewer for bringing this work to our attention.
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where y = (y1, . . . , yn)′ is the vector of n observations of the dependent
variable, X is the fixed design matrix of size n× (p+ 1), such that the first
column contains 1’s and column j (1 ≤ j ≤ p) contains the observations of
the j-th covariate, and ε = (ε1, . . . , εn)′ is the vector of errors, assumed to
be normally distributed with mean 0 and covariance matrix σ2In, where In
is the identity matrix of size n. The vector of coefficients is θ = (β′, σ)′.
The likelihood function for this model is

Ly(θ) = (2πσ2)−n/2 exp

[
− 1

2σ2
(y −Xβ)′(y −Xβ)

]
. (100)

Assuming X to have full column rank, the MLE of β is the ordinary least
squares estimate

β̂ = (X ′X)−1X ′y (101)

and the MLE of σ is the standard deviation of residuals:

σ̂ =

√
(y −Xβ̂)′(y −Xβ̂)/n. (102)

The contour function (25) can thus be readily calculated as

ply(θ) = Ly(θ)/Ly(θ̂), (103)

with θ̂ = (β̂
′
, σ̂)′.

Let us now consider assertions (hypotheses) H of the form Rβ = q,
where R is a r× (p+ 1) constant matrix and q is a constant vector of length
r, for some r ≤ p + 1. (Equations of the form Rβ = q are sometimes
called “linear restrictions”). This general formulation includes as special
cases usual assumptions of the forms {βj = 0}, {βj = 0, ∀j ∈ {1, . . . , p}}, or
{βj = βk}. The plausibility of H is

PlΘy (H) = sup
Rβ=q

ply(θ). (104)

The solution of this linearly constrained optimization problem is given by

the restricted least-squares estimate θ̂∗ = (β̂
′
∗, σ̂∗)

′, which has the following
expression [32, page 122],

β̂∗ = β̂ − (X ′X)−1R′[R(X ′X)−1R′]−1(Rβ̂ − q), (105)

and

σ̂∗ =

√
(y −Xβ̂∗)′(y −Xβ̂∗)/n. (106)
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We then have

PlΘy (H) =
Ly(θ̂∗)

Ly(θ̂)
. (107)

Equations (105)-(107) allow us, in particular, to compute the marginal con-
tour functions ply(βj). The marginal contour functions ply(σ2) is

ply(σ2) =

(
σ̂2

σ2

)n/2
exp

[
n

2

(
1− σ̂2

σ2

)]
. (108)

We note that assertions of the form c(β) = 0, where c is a nonlinear
function, could be handled as well, the solving the corresponding nonlinear
optimization problem numerically.

Example 8 As an example, we considered the task of predicting the box
office success of movies. We used the same dataset4 as in [32, page 93],
containing data about 62 movies released in 2009. We considered the log-
arithm of Box Office receipts as dependent variable, and 11 covariates: 3
dummy variables ( G, PG, PG13) to encode the MPAA (Motion Picture
Association of America) rating, logarithm of budget (LOGBUDGET), star
power (STARPOWR), a dummy variable to indicate if the movie is a sequel
(SEQUEL), four dummy variables to describe the genre ( ACTION, COM-
EDY, ANIMATED, HORROR), and one variable to represent internet buzz
(BUZZ). This last variable was constructed by aggregating four measures
using principal component analysis, as described in [32, pages 93–94].

Table 1 shows the MLEs of the coefficients, together with the usual statis-
tics (standard errors, t and p-values) and the plausibilities Pl(βj = 0) com-
puted using (105)-(26). We can see that, from a practical point of view, the
p-values and the plausibilities provide similar information. Both measures
identify variables BUZZ, ACTION and, to a lesser extent, ANIMATED as
having a coefficient significantly different from zero. However, they have
completely different interpretations: the p-value is the probability, under the
hypothesis βj = 0 and assuming new data to be repeatedly drawn, of observ-
ing an absolute value |T | of the t statistics as least as large as the observed
value |t|. It is thus based on the assumption of repeated sampling, and it
takes into account, in the computation of the probability, values of statistics
|t| larger than the one that has actually been observed. In contrast, the as-
sertion Pl(βj = 0) = α means that there is a vector β of coefficients, with

4This dataset can be downloaded at http://pages.stern.nyu.edu/~wgreene/Text/
econometricanalysis.htm.
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Table 1: Regression coefficients (movie example).

Estimate Std. Error t-value p-value Pl(βj = 0)

(Intercept) 15.400 0.643 23.960 < 2e-16 1.0e-34
G 0.384 0.553 0.695 0.49 0.74
PG 0.534 0.300 1.780 0.081 0.15
PG13 0.215 0.219 0.983 0.33 0.55
LOGBUDGET 0.261 0.185 1.408 0.17 0.30
STARPOWR 4.32e-3 0.0128 0.337 0.74 0.93
SEQUEL 0.275 0.273 1.007 0.32 0.54
ACTION -0.869 0.293 -2.964 4.7e-3 6.6e-3
COMEDY -0.0162 0.256 -0.063 0.95 0.99
ANIMATED -0.833 0.430 -1.937 0.058 0.11
HORROR 0.375 0.371 1.009 0.32 0.54
BUZZ 0.429 0.0784 5.473 1.4e-06 4.8e-07
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Figure 6: Marginal contour functions for the coefficients of variables G (a)
and BUZZ (b).
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βj = 0, whose likelihood, given the data, is α times the maximum likelihood.
This interpretation only involves the observed data (and not any other data
that might have been observed). More complete information can be gained by
plotting the marginal contour functions ply(βj), such as displayed in Figure
6 for parameters G and BUZZ.

Finally, it is common practice in regression analysis to test the hypothesis
that all coefficients (except the intercept) are equal to zero. If this hypothesis
is rejected, the regression is said to be significant. In our approach, the
plausibility of this hypothesis can be computed using (105)-(107), with the
restriction matrix R of size p × (p + 1) such that Rij = 1 if j = i + 1 and
Rij = 1 otherwise, and taking q as a vector of p components, each of which
is equal to zero. In the movie example, we get PlyΘ(H) = 10−12, which
clearly indicates that this hypothesis is extremely unlikely, given the data. �

5.2 Prediction

Prediction with the linear regression can be easily handled using the method
described in Section 4. Let Z be a not-yet observed value of the dependent
variable for a vector x0 of covariates:

Z = x′0β + ε0, (109)

with ε0 ∼ N (0, σ2). We can write, equivalently,

Z = x′0β + σΦ−1(W ), (110a)

= ϕy(θ,W ), (110b)

where W has a standard uniform distribution. The predictive belief function
on Z can then be approximated using the methods described in Section
4.3. The exact method necessitates, for each pair (si, wi), to compute the
minimum and the maximum of the linear function x′0β + σΦ−1(wi) under
the nonlinear constraint ply ≥ si. The outer approximation method is to

compute the si-level sets [β̂j∗(si), β̂
∗
j (si)] and [σ̂∗(si), σ

∗(si)] of the marginal
contour functions ply(βj) and ply(σ). Each focal set ϕy(Γy(si), wi) is then
approximated by the interval [z̃∗(si, wi), z̃

∗(si, wi)], with

z̃∗(si, wi) =
∑

j:x0j>0

β̂j∗(si)x0j +
∑

j:x0j<0

β̂∗j (si)x0j+

(σ̂∗(si)1wi≥0.5 + σ̂∗(si)1wi<0.5)Φ−1(wi) (111a)
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z̃∗(si, wi) =
∑

j:x0j>0

β̂∗j (si)x0j +
∑

j:x0j<0

β̂j∗(si)x0j+

(σ̂∗(si)1wi≥0.5 + σ̂∗(si)1wi<0.5)Φ−1(wi). (111b)

Example 9 Continuing Example 8, let us consider a reduced model with
only the variables ACTION and BUZZ as inputs (as only these two factors
have a significant effect on the dependent variable). Assume that, for a par-
ticular movie, we have the following input vector x0 = (1, 12.81)′, meaning
that it is an action film with buzz variable equal to 2.81. Figure 7(a) dis-
plays the lower and upper cdfs of the predictive belief function, approximated
using N = 5000 randomly generated focal sets, using the exact method (solid
lines) and using the outer approximation method (interrupted lines). We can
see that, in this case, the outer approximation method is very conservative,
which may be due to a high correlation between the coefficient estimates.
The figure also shows the bounds of the 95% prediction interval, as well as
the cdf of the plug-in distribution of Z, which is the normal distribution with
mean x′0β̂ and standard deviation σ̂. Figure 7(b) is a “pl-plot”, which shows
the plausibilities PlZy([z − δ, z + δ]) (computed using the exact method) as a
function of z, for different values of δ. The plug-in estimate of the expec-
tation of Z is 17.27. The lower-upper expectation interval is [17.02, 17.51].
Its estimation using the outer approximation method is [16.57, 17.97]. �

5.3 Prediction with uncertain inputs

From a practical point of view, a significant advantage of the predictive be-
lief function formalism is the ease with which, being built upon the very
general Dempster-Shafer framework, it can accommodate various sources
of uncertain information. Consider, for example, the ex ante forecasting
situation, in which some explanatory variables are unknown at the time
of the forecast and have to be estimated or predicted. The classical way to
handle this problem is to assume that x0 has been estimated with some vari-
ance, which has to be taken into account in the calculation of the forecast
variance. However, as noted by Green [32, page 87], this problem is con-
sidered by many authors as “simply intractable” and, even with simplifying
assumptions, “analytical results for the correct forecast variance remain to
be derived except for simple special cases”. In contrast, this problem can be
handled very naturally in our approach by modeling partial knowledge of x0

by a belief function BelX in the sample space X of x0. Recall, from Section
4.1, that the predictive belief function BelZy is obtained by combining the

likelihood belief function BelΘy with the joint belief function BelZ×Θ
y induced
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Figure 7: (a): Lower and upper cdf for the prediction problem: exact values
(solid lines) and outer approximations (interrupted lines); the central curve
is the cdf of the plug-in distribution of Z; the vertical dotted lines correspond
to the frequentist 95% prediction interval. (b): pl-plot: plausibility PlZy([z−
δ, z + δ]) as a function of z, for δ ∈ {0, 0.5, 1, 2}.

by (45). As the belief function BelX is just another piece of evidence, it can
be combined with the other two by Dempster’s rule. The combined belief
function is then, as before, marginalized on Z to get the predictive belief
function. To describe the corresponding algorithm, let us emphasize the
dependence of Z on x0 by rewriting (110b) as

Z = ϕy(x0,θ,W ). (112)

Assume that the belief function BelX is induced by a source (Ω,A,PΩ,Λ),
where Λ is a multi-valued mapping from Ω to 2X. The predictive belief
function BelZy is then induced by the multi-valued mapping

(ω, s, w)→ ϕy(Λ(ω),Γy(s), w). (113)

If ϕy is continuous and if both Λ(ω) and Γy(s) are connected for all ω and
s, then each set ϕy(Λ(ω),Γy(s), w) is an interval, and BelZy is equivalent to
a random interval. It can be approximated by Monte Carlo simulation using
Algorithm 3.

Example 10 To illustrate the application of this algorithm, we considered
the prediction of movie box office receipt with the same input vector x0 as
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Algorithm 3 Monte Carlo algorithm for approximating a predictive belief
function with uncertain input vector x0 (random interval case).

Require: Desired number of focal sets N
for i = 1 to N do

Draw (si, wi) uniformly in [0, 1]2

Draw ω from PΩ

Search for z∗i = minθ ϕy(x0,θ, wi) such that ply(θ) ≥ si and x0 ∈
Λ(ω).
Search for z∗i = maxθ ϕy(x0,θ, wi) such that ply(θ) ≥ si and x0 ∈
Λ(ω).
Bi ← [z∗i, z

∗
i ]

end for

in Example 9, but assuming the buzz variable to be partially unknown. To
model partial knowledge of BUZZ, we used a consonant random interval with
the following triangular contour function,

pl(x) =


x̃− x
x̃− x∗

if x∗ ≤ x < x̃

x− x̃
x∗ − x̃

if x̃ ≤ x < x∗

0 otherwise,

(114)

with x∗ = 0, x∗ = 5 and x̃ = 2.81. The resulting lower and upper cdfs
are shown as interrupted lines in Figure 8(a), and the corresponding pl-plot
is shown in Figure 8(b). The estimated lower-upper expectation interval is
[16.36, 18.11]. We can see that, as expected, the predictive belief function
becomes more uncertain, as a result of the uncertainty on one of the covari-
ates. �

Another situation in which the regression analysis has to be combined
with other sources of information is the case where, in addition to the sta-
tistical prediction computed from the linear regression model, some expert
opinions about the future data Z are available. In our example, we can
figure out that specialists of the movie industry (such as film critics) can
provide a prediction of a movie’s box office success, taking into account
various pieces of evidence that can never be fully captured by a regression
equation. Such non-statistical information can be represented in the belief
function framework and combined with the predictive belief function using
Dempster’s rule. In contrast, it is not at all clear how prediction intervals
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Figure 8: (a): Lower and upper cdf for the prediction problem with uncertain
inputs (solid lines) and with certain inputs (interrupted lines); (b): pl-plot
of the predictive belief function with uncertain inputs.

and expert options, being of totally different natures, could be combined in
a principled way.

6 Conclusions

In many areas, such as business and economics, forecasts are typically used
for decision-making and strategic planning. When aggregating predictions
from numerical models with other information, decision-makers need to as-
sess the uncertainty of the forecasts. Describing this uncertainty in a faithful
and accurate way is thus a very important issue. The approach advocated
in this paper is to model estimation uncertainty using a belief function con-
structed from the likelihood, and to combine it with random uncertainty
arising from the data-generating process, resulting in a predictive belief
function. The practical use of this method has been illustrated using a
simple but widely used model: standard linear regression.

Predictive belief functions constructed in this way have been argued to be
better founded than frequentist prediction intervals, and to be more widely
applicable than Bayesian posterior predictive distributions, which always
require prior distributions. However, the latter are recovered when a prior
distribution on the model parameters is specified. The proposed method also
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has practical advantages over the frequentist approach, which often has to
resort to asymptotic approximations. For instance, in linear regression with
serial correlation, the variance of prediction errors cannot be determined
exactly, making it difficult to compute prediction intervals [55, page 215].
In contrast, the predicted belief function can easily be approximated to any
desired accuracy using Monte Carlo simulation, even for small sample sizes.
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