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Abstract

In this article, we address the problem of clustering imprecise data using a finite
mixture of Gaussians. We propose to estimate the parameters of the model
using the fuzzy EM algorithm. This extension of the EM algorithm allows us
to handle imprecise data represented by fuzzy numbers. First, we briefly recall
the principle of the fuzzy EM algorithm. Then, we provide closed-forms for
the parameter estimates in the case of Gaussian fuzzy data. We also describe a
Monte-Carlo procedure for estimating the parameter updates in the general case.
Experiments carried out on synthetic and real data demonstrate the interest of
our approach for taking into account attribute and label uncertainty.

1. Introduction

Gaussian mixture models (GMMs) are very powerful tools for modeling mul-
tivariate distributions [1]. This model assumes the data to arise from a random
sample, whose distribution is a finite mixture of Gaussians. The major diffi-
culty is to estimate the parameters of the model. Generally, these estimates are
computed using the maximum-likelihood (ML) approach, through an iterative
procedure known as the expectation-maximization (EM) algorithm [2]. Once
the parameter values are known, the posterior probabilities of each data point
may be computed, thus giving a fuzzy partition of the data. Then, a crisp par-
tition may be obtained by assigning a label to each instance according to the
Maximum A Posteriori (MAP) rule.

In some applications, the precise value taken by the variables may be difficult
or even impossible to assess. For example, in acoustical engineering, flaws can
be detected on storage tanks by pressurizing the device and measuring the re-
sulting acoustical emissions; this technique provides locations of acoustic events
associated with imprecision degrees [3]. As stressed in [4], epidemiological data,
such as address of the patients, hospital admission times, etc, often suffer from
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imprecision. The interest of taking into account the uncertainty of the measure-
ments has been demonstrated [5]. For this purpose, various formalisms allowing
to quantify and propagate imprecision have been proposed, among which fuzzy
sets [6, 7, 8, 9]. Some consider that the data at hand are intrinsically fuzzy, a
position that has been known as the physical or ontic interpretation of fuzzi-
ness [10, 11]. Here, we rather adopt an epistemic interpretation, in which a
fuzzy number “imperfectly specifies a value that is existing and precise, but not
measurable with exactitude under the given observation conditions” [6]. In this
setting, partial knowledge of the actual precise value taken by a random variable
of interest is represented by a possibility distribution.

Several recent papers have addressed the problem of clustering imprecise
data, for which both the attributes and the class information may be partially
known. For instance, in [12], the imprecise data at hand are represented by
hyperspheres, and the clustering is achieved using a K-means-based procedure.
In [13], the imprecision of the data is represented by convex hulls, and hierarchi-
cal clustering is used to partition the data. In [14], a density-based clustering
algorithm, DBSCAN, is employed to cluster data in presence of noise. The
work presented in [15] is of notable importance: it addresses the problem of
clustering interval-valued data in the probabilistic setting of GMM parameter
estimation. It should be stressed that the EM algorithm is particularly well-
suited to this kind of imprecision. Indeed, handling such censored data dates
back to the seminal article by Dempster et al [2], and is still the subject of in-
vestigations [16]. Many articles also address handling probabilistic uncertainty
over the attributes: the partial knowledge of the value of a variable of interest is
described by a probability density function (pdf). The data may then be parti-
tioned in various ways, such as hierarchical clustering [17], or (non-parametric)
density-based clustering [18]. Some authors introduced an extension of the K-
means algorithm, called Uncertain K-means (UK-means) [19, 20, 21]. In [22],
K-means, K-median, and K-centre strategies are used. We may also mention
the work in [23], which considers micro-clustering for compressing data, and
[24], which addresses the problem of subspace clustering from imprecise data.
Reviews may be found in [25, 26, 27]. Eventually, many authors considered clus-
tering uncertain data described by fuzzy numbers or belief functions. Almost
all of them [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39] perform clustering us-
ing a geometric approach related to the Fuzzy C-means (FCM) algorithm. The
centers of the model and the membership degrees of the data to the clusters
are computed iteratively so as to optimize a within-cluster variance criterion.
In [40], an approach referred to as Belief K-modes was proposed in the belief
functions framework. A notable exception is [4], where the author considers
statistical tests to partition the data. Clustering multivariate fuzzy data using
mixtures of distributions has been addressed in [41].

Additionally, the related problem of learning from imprecisely labeled in-
stances has been widely addressed in the literature. Semi-supervised learning
[42, 43] considers that a subset of instances have been associated with a (pre-
cise) label, the labels of the other instances being unknown. Partially supervised
learning [44, 45, 46, 47, 48] encompasses this approach, by making it possible
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to associate each instance with a set of (equally) plausible labels. Besides,
the problem of noisy labels has been addressed in a probabilistic framework
[49, 50, 51]. More recently, the general framework of belief functions has been
successfully employed to estimate GMMs from imprecise and uncertain labels
[52, 53, 54, 55]. Finally, it should be stressed out that the literature dedicated
to fuzzy GMM estimation, or more generally imprecise or uncertain clustering,
actually refers to associating precise instances with several classes in a impre-
cise way. For example, [56] addresses the problem of image segmentation where
pixels may be mixed (e.g., in ground segmentation, the pixel may belong to
both “water” and “forest” categories). As well, [57] proposes to make GMM
estimation more flexible in order to fit curve manifolds, by using a trade-off
between GMM and fuzzy C-means estimation according to the geometric shape
of the dataset considered. Again, this work does not address the case where the
data at hand are uncertain. In [58], an algorithm for performing hierarchical
clustering of a set of precise instances is developed in the framework of belief
functions. Finally, in [59], the authors consider parameter uncertainty, rather
than attribute or class uncertainty. Once a GMM has been estimated using the
precise data, membership functions are defined on the corresponding parame-
ters, and the instances are linked to the classes by sets of likelihoods instead of
probabilities.

In this paper, we propose to fit a GMM defined by precise parameters to
uncertain data, where both the attribute vector and the class information may
be partially known. This paper distinguishes thus from most of the works men-
tioned above in that the approach is parametric: we postulate a probabilis-
tic model underlying the data, the parameters of which have to be estimated.
Flexibility is a notable advantage of the method: in presence of scarce or low-
quality data (or when it is justified by background knowledge), the model may
be simplified via additional assumptions on the parameters to estimate, such
as explained in [60]. We adopt here possibility distributions as mathematical
tools for representing partial knowledge of the instance values or weak class
information. In this case, the likelihood of the sample may be computed using
Zadeh’s definition of the probability of a fuzzy event [61]. Then, the fuzzy EM
algorithm may be used to estimate the parameters maximizing this likelihood.
This procedure was recently proposed by Denœux as an extension of the EM
algorithm for imprecise data represented by fuzzy numbers [62] and by belief
functions [63] 2. Thus, unlike in [52, 53, 55], we consider here both attribute and
class uncertainty in our estimation process. Note that [15] considered uncertain
attribute values represented by intervals; besides, the approach described in [54]
made it possible to take into account the fact that some attribute information
were missing. In our approach, we propose instead a generic strategy for in-
corporating partial attribute information and class information. Any kind of
partial knowledge may thus be integrated in the estimation process, as long as

2It should be noted that, due to the strong relationships between both formalisms, the
work presented in the fuzzy case may be straightforwardly extended to the credal case.
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the appropriate possibility function is specified. Under the epistemic interpre-
tation of uncertainty adopted here, fuzzy numbers represent information that
should have been precise under ideal conditions in the measurement process.
Then, two philosophies may be considered. Following [59], the uncertainty may
be propagated through the estimation process. In this case, the range of the
family of models estimated accounts for the imperfection of the data. Alterna-
tively, one may look for the best model, according to a particular criterion, given
the data at hand [64]. This is the approach considered in this paper, where a
generalized likelihood is used to measure the agreement between the model and
the fuzzy observations available.

The article is organized as follows. Section 2 recalls the model. Then, we
show how the FEM algorithm may be used in order to estimate the parameters
of a GMM. In Section 3, we first concentrate on the particular case of multi-
variate Gaussian possibility distributions: then, closed forms may be obtained
for the update equations of the model parameters. For computational reasons
however, this may not be possible in the general case (e.g., for trapezoidal pos-
sibility distributions). Then, we present in Section 4 an efficient and versatile
Monte-Carlo approximation procedure to overcome this problem. Section 5 ad-
dresses the problem of avoiding degenerate parameter estimates using Bayesian
priors. Section 6 presents various experiments on synthetic and real data, in
both clustering and classification settings. Eventually, Section 7 concludes the
paper.

2. Model

In this section, we recall basic knowledge on Gaussian mixture models. Then,
we formalize the estimation problem when the data at hand are fuzzy.

2.1. Data and generative model

From now on, we assume the existence of a random vectorY ∈ Y, referred to
as the complete data vector, which describes the result of a random experiment.
In our case, it takes the form of an iid sample: y = (y1, . . . ,yn). The ith
element yi = (xi, zi) of this sample is composed of two pieces of information:

• an attribute vector xi, supposed to be the realization of a random vector
X ∈ Rp drawn from a mixture of K Gaussian distributions with propor-
tions π1, . . . , πg. The marginal distribution of the attribute vectors thus
writes

gX(x1, . . . ,xn,Ψ) =

n∏

i=1

K∑

k=1

πk g(xi; νk,Σk), (1a)

g(·; νk,Σk) being the pdf of the multivariate Gaussian distribution with
mean vector νk and covariance matrix Σk:

g(x; νk,Σk) = (2π)p/2|Σk|
− 1

2 exp

(
−
1

2
(x− νk)

tΣ−1
k (x− νk)

)
. (1b)
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In the following, for the sake of clarity, we will write gk(·) = g(·; νk,Σk).

• a vector zi of realizations of Bernoulli random variables Zik, indicating
which component of the GMM generated xi (zik = 1 if xi was drawn
from the component ωk of the mixture, and zik = 0 otherwise). Note that
in clustering problems, these variables are typically unknown and must
be estimated. In discriminant analysis, however, the class indicators are
known, in which case the joint density of the sample can be written as

f(y) =
n∏

i=1

K∏

k=1

(πkgk(xi))
zik . (1c)

In the latter case, the ML estimates of the model parameters can be easily
computed by maximizing the complete likelihood defined by Equation (1c).
In the former case, however, proceeding with the observed likelihood (1a)
is difficult; the EM algorithm [1, 2] may then be used for this purpose.

In this paper, we address the case where the realizations are not precisely
observed. We only have a partial knowledge of the actual values xi and zi,
in the form of fuzzy subsets ỹi = (x̃i, z̃i) with possibility distribution µx̃i,z̃i =
µx̃i

(x)µz̃i
(z). The value µx̃i

(x) may be interpreted as a degree of possibility
that the actual realization of the random vector X is x. For example, assuming
a Gaussian possibility distribution with mean vector mi and covariance matrix
Si for xi gives:

µx̃i
(x) = exp

(
−
1

2
(x−mi)

tS−1
i (x−mi)

)
. (2)

The imprecise class information is represented by a vector z̃i = (δi1, . . . , δig),
where δik ∈ [0, 1] is the degree of possibility that xi was actually drawn from
ωk. Thus, the degree of possibility that zi represents the actual component from
which xi was generated is

µz̃i
(zi) =

K∏

k=1

(δik)
zik . (3)

Note that complete ignorance of the actual class of an instance corresponds to
δik = 1 for all k = 1, . . . ,K; while full certainty that its actual class of xi is ωk

corresponds to δik = 1 and δiℓ = 0 for all ℓ 6= k.

2.2. Generalized likelihood of fuzzy data

Let us assume that a fuzzy sample ỹ = (ỹ1, . . . , ỹn) has been observed.
According to Zadeh’s definition of the probability of a fuzzy event [65], the
probability of this fuzzy sample is the expectation of its possibility distribution:

P(ỹ; Ψ) = EΨ [µỹ(y)] =

∫

Y
µỹ(y)gY (y; Ψ)dy. (4)
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We assume here that the fuzzy observations are cognitively independent:

µỹ(y) =

n∏

i=1

µỹi
(yi). (5)

Thus, the likelihood of the imprecisely observed data is [62]:

L(Ψ; ỹ1, . . . , ỹn) = P(ỹ1, . . . , ỹn; Ψ) =

n∏

i=1

EΨ [µx̃i
(x)µz̃i

(z)] , (6a)

=

n∏

i=1

K∑

k=1

P(Zik = 1)EΨ [µx̃i
(x)µz̃i

(z)|Zik = 1] , (6b)

=

n∏

i=1

K∑

k=1

πk δik EΨ [µx̃i
(x)|Zik = 1] . (6c)

Maximizing this observed log-likelihood in order to compute an estimate of
the parameter vector Ψ is difficult. As mentioned in Section 2, computing
these estimates would be straightforward, should the data at hand be precise
and complete. Then, the model may be easily estimated by maximizing the
complete likelihood (1c), or equivalently the complete log-likelihood :

logL(Ψ;y1, . . . ,yn) =
K∑

k=1

(
log πk

n∑

i=1

zik

)
−

p

2
log(2π)

K∑

k=1

n∑

i=1

zik

−
1

2

K∑

k=1

n∑

i=1

zik
(
log |Σk|+ (xi − νk)

tΣ−1
k (xi − νk)

)
. (7)

3. Gaussian fuzzy numbers: estimation via the FEM algorithm

As mentioned in Section 2.2, computing parameter estimates by maximizing
the observed likelihood is difficult. It is possible to overcome this problem by
using an extension of the expectation-maximization (EM) algorithm for fuzzy
data, known as the fuzzy EM (FEM) algorithm [62], which we briefly recall.
Then, we assume that fuzzy instances are described by Gaussian possibility
distributions. Although any kind of distribution may be used, in this particular
case, closed forms may be obtained for the update equations of the parameters
in the FEM algorithm.

3.1. The FEM algorithm

The FEM algorithm proceeds iteratively with the complete log-likelihood
logLc(Ψ), alternating between two steps. At iteration q, the E-step consists
in computing the expectation Q(Ψ;Ψ(q)) of the complete log-likelihood with
respect to the imprecisely observed data. The M-step is similar to that of the
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classical EM algorithm, and requires the maximization of Q(Ψ;Ψ(q)) with re-
spect to Ψ. The FEM algorithm alternatively repeats the E- and M- steps until
the relative increase of the log-likelihood becomes smaller than some threshold.
In [62], it is shown that the FEM algorithm converges towards a local maxi-
mum of the observed log-likelihood. The proof is similar to that used in [2] for
assessing the convergence of the EM algorithm.

3.2. E-step

At iteration q, the E-step of the FEM algorithm consists in computing the
expectation Q(Ψ;Ψ(q)) of the complete log-likelihood (7) with respect to the
imprecisely observed data:

Q(Ψ;Ψ(q)) = EΨ(q) [logL(Ψ;y1, . . . ,yn)|ỹ1, . . . , ỹn], (8)

where Ψ(q) is the current estimate of the parameter vector Ψ. We may re-
mark that this expectation needs to be computed with respect to the imprecise
observations of both the instances and class labels. For this purpose, we re-
call the following definitions of the conditional density gX(·|x̃) and conditional
expectation E [X |x̃] of a random vector X with respect to a fuzzy event x̃:

gX(x|x̃) =
µx̃(x)gX(x)

P(x̃)
, (9a)

E [X |x̃] =

∫
x gX(x|x̃) dx. (9b)

Using Equations (9a)-(9b) in Equation (1b) gives

Q(Ψ,Ψ(q)) =
K∑

k=1

log πk

n∑

i=1

t
(q)
ik −

1

2

K∑

k=1

log |Σk|
n∑

i=1

t
(q)
ik −

np

2
log(2π)

−
1

2

n∑

i=1

K∑

k=1

t
(q)
ik EΨ(q) [(xi − νk)

tΣ−1
k (xi − νk)|x̃i, z̃i, Zik = 1]︸ ︷︷ ︸
EQF(q)

. (10)

Let us define

p
(q)
ik = PΨ(q)(x̃i, z̃i|Zik = 1) = γ

(q)
ik δ

(q)
ik , (11a)

p
(q)
i = PΨ(q)(x̃i, z̃i) =

K∑

k=1

π
(q)
k p

(q)
ik , (11b)

where γ
(q)
ik = PΨ(q)(x̃i|Zik = 1) and δ

(q)
ik = PΨ(q)(z̃i|x̃i, Zik = 1). Then, the
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quantity t
(q)
ik in Equation (10) may be computed using Bayes’ theorem:

t
(q)
ik = EΨ(q) [Zik|x̃i, z̃i] = PΨ(q)(Zik = 1|x̃i, z̃i), (12a)

=
PΨ(q)(Zik = 1)PΨ(q)(x̃i, z̃i|Zik = 1)

PΨ(q)(x̃i, z̃i)
, (12b)

=
π
(q)
k γ

(q)
ik δ

(q)
ik

p
(q)
i

=
π
(q)
k γ

(q)
ik δ

(q)
ik∑K

l=1 π
(q)
l γ

(q)
il δ

(q)
il

. (12c)

Equation (10) explicitly involves the expression of the possibility distribu-
tions describing our imprecise knowledge of the instances at hand. In this sec-
tion, we assume these fuzzy numbers to be Gaussian (Equation (2)). Let us
adopt the following notations:

A (x̃i) =

∫
µx̃i

(x)dx, (13a)

µ∗
x̃i
(x) =

µx̃i
(x)

A (x̃i)
. (13b)

It is obvious that µ∗
x̃i

is a pdf, provided that A (x̃i) is finite: it is positive, and
its integral equals 1 by construction. Moreover, if µx̃i

satisfies (2), then µ∗
x̃i

is
the pdf of a multivariate Gaussian, and

A (x̃i) = (2π)p/2 |Si|
1
2

∫
µ∗
x̃i
(x)dx = (2π)p/2 |Si|

1
2 . (14)

Based on these quantities, we may provide simple expressions for γ
(q)
ik and t

(q)
ik ,

using Equation (4) and the key property that the product of two Gaussians is
itself a Gaussian up to a normalization factor [66, page 200]:

µ∗
x̃i
(x)gk(x) = κikgik(x), (15a)

where gik stands for the multivariate Gaussian pdf with mean vector mik and
covariance matrix Σik, and where these parameters, as well as the normalization
term κik, are defined by

Σik =
(
S−1
i +Σ−1

k

)−1
, (15b)

mik = Σik

(
S−1
i mi +Σ−1

k νk
)
, (15c)

κik = |2π (Si +Σk)|
− 1

2 exp(−
1

2
(mi − νk)

t(Si +Σk)
−1(mi − νk)).(15d)

Let g
(q)
k stand for the estimate of gk obtained using the current fits ν

(q)
k and
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Σ
(q)
k . Then,

γ
(q)
ik = A (x̃i)

∫
µ∗
x̃i
(x)g

(q)
k (x)dx = A (x̃i)κ

(q)
ik

∫
g
(q)
ik (x)dx = A (x̃i)κ

(q)
ik ,

(16a)
whence:

t
(q)
ik =

π
(q)
k δ

(q)
ik κ

(q)
ik∑

l π
(q)
l δ

(q)
il κ

(q)
il

. (16b)

In the following, the current fits of these quantities at iteration q will be indicated
by the adequate superscript as before.

A closed form for the conditional expectation of the quadratic form, denoted
as EQF(q) in Equation (10), may also be computed. First, note that this ex-
pectation needs only be conditioned with respect to x̃i, since it is conditional
to the event Zik = 1. Then, according to Equations (9a)-(9b),

EQF(q) =
1

γ
(q)
ik

∫
(xi − ν

(q)
k )tΣ

(q)
k

−1
(xi − ν

(q)
k )µx̃i

(x)g
(q)
k (x)dx, (17a)

which we may rewrite using Equations (13a-16a) as

EQF(q) =

∫
(x− ν

(q)
k )tΣ

(q)
k

−1
(x− ν

(q)
k ) g

(q)
ik (x)dx. (17b)

Thus, EQF(q) is the expectation of a quadratic function of a random vector

X following a multivariate Gaussian distribution g
(q)
ik with expectation m

(q)
ik

and covariance matrix Σ
(q)
ik (note that these values are computed by using the

current fits for π
(q)
k , ν

(q)
k ,and Σ

(q)
k in the appropriate equations). Therefore:

EQF(q) = (m
(q)
ik − νk)

tΣ
(q)
k

−1
(m

(q)
ik − νk) + trace

(
Σ−1

k Σ
(q)
ik

)
. (18)

Using this new expression, we may give an explicit formulation for Equation (10):

Q(Ψ,Ψ(q)) =
K∑

k=1

log πk

n∑

i=1

t
(q)
ik −

1

2

K∑

k=1

log |Σk|
n∑

i=1

t
(q)
ik −

np

2
log(2π)

−
1

2

n∑

i=1

K∑

k=1

t
(q)
ik

(
(m

(q)
ik − νk)

t Σ−1
k (m

(q)
ik − νk) + trace(Σ−1

k Σ
(q)
ik )
)
. (19)

3.3. M-step

In the M-step, new estimates of the parameters are computed so as to maxi-
mize the expectation (19). The update equation of the parameters are obtained
by setting the corresponding partial derivatives of (19) to zero. We detail here-
after the computation of these update equations.

9



Prior probabilities πk

The first-order derivative of Q(Ψ,Ψ(q)) with respect to πk is:

∂Q(Ψ,Ψ(q))

∂πk
=

1

πk

n∑

i=1

t
(q)
ik . (20a)

Thus, taking into account the constraint that the proportions πk sum to 1, it
may easily be shown that

π
(q+1)
k =

1

n

n∑

i=1

t
(q)
ik . (20b)

Expectations νk
Taking the derivative of Equation (19) with respect to νk and setting it equal

to zero, we get:
n∑

i=1

Σ−1
k t

(q)
ik (m

(q)
ik − νk) = 0, (21a)

whence the update equation for the parameter νk:

ν
(q+1)
k =

∑n
i=1 t

(q)
ik m

(q)
ik∑n

i=1 t
(q)
ik

. (21b)

Covariance matrices Σk

Let us first recall some background notions of derivation with respect to
elements of matrices. Let A be a matrix with entries aij (i, j ∈ {1, . . . , p}), and
let f(A) be a function of A. For convenience, we will define the derivative of
f(A) with respect to A, written ∂f(A)/∂A, as the matrix with (i, j)th entry
(∂f(A)/∂aij). First, let us recall that x

tAx = trace(AB), with B = xxt, which
makes it possible to re-write Equation (19):

Q(Ψ,Ψ(q)) =
K∑

k=1

log πk

n∑

i=1

t
(q)
ik +

1

2

K∑

k=1

log |Σ−1
k |

n∑

i=1

t
(q)
ik −

np

2
log(2π)

−
1

2

n∑

i=1

K∑

k=1

t
(q)
ik trace

(
Σ−1

k B
(q)
ik

)
, (22)

where
B

(q)
ik = (m

(q)
ik − νk)(m

(q)
ik − νk)

t +Σ
(q)
ik . (23)

Furthermore, we have:

∂ trace(AB)

∂A
= B, (24a)

∂ log |A|

∂A
= (A−1)t. (24b)
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Taking the derivative of Equation (22) with respect to Σ−1
k thus gives:

∂Q(Ψ,Ψ(q))

∂Σ−1
k

=
1

2
Σk

n∑

i=1

t
(q)
ik −

1

2

n∑

i=1

t
(q)
ik B

(q)
ik . (25a)

Setting this partial derivative to zero gives the following update equation for
the covariance matrix Σk:

Σ
(q+1)
k =

∑n
i=1 t

(q)
ik B

(q)
ik∑n

i=1 t
(q)
ik

. (25b)

3.4. Computational complexity

We conclude this section with a brief discussion on the computational com-
plexity of our approach. More particularly, we compare our algorithm to the
classical EM algorithm for GMM estimation. Let us stress out that at each itera-
tion, both algorithms estimate the same parameters. However, for this purpose,
the FEM algorithm requires to perform some additional computations, that we
list below.

First of all, taking into account the partial class information when computing

the posterior probability estimates t
(q)
ik necessits to perform n × K additional

multiplications. The FEM algorithm also requires to compute the parameters

m
(q)
ik and Σ

(q)
ik . The former necessitsK inversions of a p×pmatrix and (n+1)×K

multiplications of a p × 1 vector by a p × p matrix. The latter involves K
inversions and K additions of a p× p matrix. Note that the quantities S−1

i and
S−1
i mi may be computed outside the main loop of the optimization procedure

of the FEM algorithm and stored.
The complexity of these additional operations is O(K × p2 × (n + p)), and

can be further reduced if optimized algorithms are used for performing matrix
inversions. This is comparable to the complexity of computing the n×K multi-
variate Gaussian densities. Overall, the computational complexities of the EM
and FEM procedures thus have the same order of magnitude.

4. General case: the Monte-Carlo FEM algorithm

In this section, we address the case where the possibility distributions rep-
resenting the partial knowledge of the instance values are not Gaussian. In this
general case, computing EQF(q) (Equation (10)) may be intractable: thus, it
may not be possible to obtain closed-forms for the update equations of the pa-
rameters. Therefore, we propose an efficient Monte-Carlo estimation technique
to approximate this quantity, making it possible to proceed with any kind of
weak knowledge of the instance values.

4.1. Monte-Carlo strategy

Monte-Carlo estimation consists in replacing the expectation of a function
ϕ(X) by an average of M terms ϕ(x(ℓ)), ℓ = 1, . . . ,M , where x(1), . . . ,x(M) are
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sampled according to the distribution of X. In our case, a straightforward appli-
cation of this principle would lead, at iteration q, to sample the data according

to g
(q)
k , yielding the following estimate for EQF(q):

ÊQF
(q)

=
1

γ̂ik
(q)

1

M

M∑

ℓ=1

(x(ℓ) − νk)
tΣ−1

k (x(ℓ) − νk)µx̃i
(x(ℓ)), (26a)

γ̂ik
(q)

=
1

M

M∑

ℓ=1

µx̃i
(x(ℓ)). (26b)

However, we may remark the following points. First, the support of each
possibility distribution µx̃i

is likely to cover a very small part of the input

space. Hence, the number M of terms generated according to g
(q)
k should be

large enough to ensure that a sufficient amount of these terms belong to this
support; otherwise, the Monte-Carlo strategy would yield poor estimates of the
parameters. This strategy thus becomes intractable in high dimension, due to
the curse of dimensionality.3 In addition, we may remark that, since the vector
of parameters Ψ is updated at each iteration of the EM algorithm, so should be
the sample.

Therefore, from a computational point of view, it seems much more efficient
to sample the data according to the normalized possibility distributions µ∗

x̃i

characterizing the fuzzy observations. Indeed, with such a strategy, data are
sampled only once, before the parameter estimates are iteratively computed.
The Monte-Carlo strategy thus defined is also generic: the sampling step being
dissociated from the estimation step, any kind of possibility distribution may
be used, provided that the adequate sampler is available. Finally, all the data
points generated in this fashion obviously fall within the support of the densities
gk. This Monte-Carlo strategy, applied to the FEM algorithm, will hereafter be
referred to as the MCFEM algorithm.

4.2. GMM estimation via the MCFEM algorithm

E-step

Our goal here is to estimate the integral in Equation (17a), which is generally
intractable. For this purpose, let us rewrite Equation (10) using Equations (13a)

3Note that we may restrict the sampling process to regions of the space where the fuzzy
instances lie, e.g., using truncated multivariate Gaussian distributions [67]. However, the use
of such distributions with reasonable complexity is still an open problem. Besides, when the
number of features p is arbitrary, computing a closed-form of the support of the possibility
distributions (in order to truncate the Gaussians) is also intractable.
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and (13b):

Q(Ψ,Ψ(q)) =

K∑

k=1

log πk

n∑

i=1

t
(q)
ik −

1

2

K∑

k=1

log |Σk|

n∑

i=1

t
(q)
ik −

np

2
log(2π)

−
1

2

K∑

k=1

n∑

i=1

t
(q)
ik

A (x̃i)

γ
(q)
ik

∫
(x− νk)

tΣ−1
k (x− νk)µ

∗
x̃i
(x) g

(q)
k (x) dx. (27)

As stressed in Section 3, the normalized possibility distributions µ∗
x̃i

satisfy the
requirements of a probability distribution. Thus, they may be used to sample
data, which makes it possible to estimate EQF(q) by

EQF(q) ≃
1

M

M∑

ℓ=1

(xi − νk)
tΣ

(q)
k

−1
(xi − νk) g

(q)
k (x

(ℓ)
i ), (28)

where the M instances x
(1)
i , . . . ,x

(ℓ)
i , . . . ,x

(M)
i are sampled according to µ∗

x̃i
.

This leads to the following Monte-Carlo approximation to Equation (10):

Q(Ψ,Ψ(q)) ≃

K∑

k=1

log πk

n∑

i=1

t
(q)
ik −

1

2

K∑

k=1

log |Σk|

n∑

i=1

t
(q)
ik −

np

2
log(2π)

−
1

2

K∑

k=1

n∑

i=1

t
(q)
ik

A (x̃i)

γ
(q)
ik

1

M

M∑

ℓ=1

(x
(ℓ)
i − νk)

tΣ−1
k (x

(ℓ)
i − νk) g

(q)
k (x

(ℓ)
i ). (29)

Note that this expression may be further simplified using the following approx-
imation to γik:

γik
A (x̃i)

= A (x̃i)

∫
µ∗
x̃i
(x) g

(q)
k (x)dx ≃

1

M

M∑

fℓ=1

gk(x
(ℓ)
i ). (30)

By dividing both the numerator and denominator in Equation (12c) by
A (x̃i), and using Equation (30), we get the following update equation for tik:

t
(q)
ik ≃

π
(q)
k δik

M∑

ℓ=1

g
(q)
k (x

(ℓ)
i )

∑

k

π
(q)
k δik

M∑

ℓ=1

g
(q)
k (x

(ℓ)
i )

. (31)

M-step: update equations of the parameters

The M-step is the same as in the case of Gaussian fuzzy numbers. Setting
the partial derivatives of Equation (29) with respect to the parameters to zero
gives the same update equations of the parameters, defined by Equations (20b),
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(21b) and (25b):

π
(q+1)
k =

1

n

n∑

i=1

t
(q)
ik , ν

(q+1)
k =

∑n
i=1 t

(q)
ik m

(q)
ik∑n

i=1 t
(q)
ik

, Σ
(q+1)
k =

∑n
i=1 t

(q)
ik B

(q)
ik∑n

i=1 t
(q)
ik

,

(32a)

with m
(q)
ik and B

(q)
ik being now defined by:

m
(q)
ik =

∑M
ℓ=1 g

(q)
k (x

(ℓ)
i )x

(ℓ)
i∑M

ℓ=1 g
(q)
k (x

(ℓ)
i )

, (32b)

B
(q)
ik =

∑M
ℓ=1 g

(q)
k (x

(ℓ)
i ) (x

(ℓ)
i − ν

(q+1)
k )(x

(ℓ)
i − ν

(q+1)
k )t

∑M
ℓ=1 g

(q)
k (x

(ℓ)
i )

. (32c)

5. Bayesian priors

5.1. Motivations

As mentioned previously, the convergence of the FEM algorithm to a local
maximum for the observed log-likelihood has been proved in [62]. Under some
conditions on the initial values of the parameters, L is bounded from above.
Since the observed log-likelihood increases at each iteration of the algorithm [2],
the convergence is ensured. In practice, the algorithm is stopped when the rela-
tive increase of the observed likelihood is less than a given threshold ǫ. As noted
in [68, page 85], in many practical applications, the EM algorithm converges to
a local maximizer of the observed log-likelihood. However, it is underlined that
this convergence towards nontrivial solutions relies on the compactness of the
parameter space. This assumption may not hold in certain cases. For example,
when computing ML estimators of the parameters in a mixture of Gaussians,
setting the mean of a class to be one of the data points and letting its variance
tend to zero will let L(Ψ) tend to infinity. In practice, such a behaviour may
be observed particularly when few data are available. It is interesting to note
that in our case, this behaviour will more generally depend on the informational

content of the data at hand. Indeed, the instances that are characterized by a
high degree of imprecision (e.g., Gaussian fuzzy numbers with a large covari-
ance matrix) will carry little information: the actual value for this instance may
be located in a large area of the input space. Our experiments showed that a
sample composed mostly of such imprecise instances is comparable to a sample
with few precise instances.

To avoid degenerate solutions in the estimation process, we propose to inte-
grate prior knowledge on the actual values of the parameters, using an adequate
distribution p(Ψ) [69, 70]. Then, the maximum a posteriori (MAP) estimate of
the vector parameter Ψ may be computed so as to maximize the log (incomplete)
posterior density

log p(Ψ|ỹ1, . . . , ỹn) = logL(Ψ|ỹ1, . . . , ỹn) + log p(Ψ). (33)
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The log posterior density may be maximized using the FEM algorithm. The
E-step consists in computing the expectation of Equation (33) with respect to
the imprecisely observed data, using the current fits of the parameters. Since
p(Ψ) does not depend on ỹ1, . . . , ỹn, we have

EΨ(q) [log p(Ψ|ỹ1, . . . , ỹn)] = Q(Ψ;Ψ(q)) + log p(Ψ). (34)

In the M-step, new estimates are computed by setting the partial derivatives of
this expectation to zero.

5.2. Conjugate priors

The analytic formulation for the update equations of the parameter estimates
is simpler if p(Ψ) is a conjugate prior for the distribution of the model. Indeed,
in this case, the derivatives of the log posterior density with respect to the
parameters lead to simple update equations for the parameters.

In the case of a mixture of Gaussians, the normal-inverse-Wishart prior is
commonly used to integrate background knowledge on the expectation vectors
and on the covariance matrices [69]. More particularly, for the kth component,
we have

log p(νk,Σk|νk0, n
(1)
k0 ,Σk0, n

(2)
k0 ) = log g(νk|νk0,Σk/n

(1)
k0 ) + log h(Σk|Σk0, n

(2)
k0 ),
(35a)

where g is given by Equation (1b); and where h is defined, for any p×p symmetric
positive-definite matrix, by:

h(Σ; Φ, τ) =
|Φ|

τ
2

2
τp

2 Γp(τ/2)
|Σ|−

τ+p+1
2 exp

(
−
1

2
traceΦΣ−1

)
, (35b)

with Φ and τ being the parameters of this density function, and Γp the multi-
variate Gamma function.

Thus, in our case, a Gaussian prior g with mean νk0 and covariance matrix

Σk/n
(1)
k0 is put on the expectation vector mk, and an inverse-Wishart prior h

with scale matrix Σk0 and parameter n
(2)
k0 is put on the covariance matrix Σk.

Here, n
(1)
k0 and n

(2)
k0 are the numbers of degrees of freedom associated with the

Gaussian and inverse-Wishart distributions, respectively. Note that Bayesian
regularization for multivariate GMM is discussed in [69, 70], in which many
details on the calculation of the parameter estimates may be found.

5.3. Update equations

The log priors write

log g(νk|νk0,Σk/n
(1)
k0 ) = −

p

2
log(2 π) +

p

2
logn

(1)
k0 +

1

2
log |Σ−1

k |

−
n
(1)
k0

2
(νk − νk0)

t Σ−1
k (νk − νk0) , (36a)
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log h(Σk|Σk0, n
(2)
k0 ) =

n
(2)
k0

2
log |Σk0|+

n
(2)
k0 + p+ 1

2
log |Σ−1

k |

−
1

2
trace

(
Σk0Σ

−1
k

)
−

n
(2)
k0 p

2
log(2)− log Γp(

n
(2)
k0

2
). (36b)

Expectations mk

Since the inverse-Wishart distribution does not depend on νk, the partial
derivative of the overall log prior with respect to νk is

∂ log g(νk|νk0,Σk/n
(1)
k0 )

∂νk
=

n
(1)
k0

2
Σ−1

k (νk − νk0) . (37a)

Thus, adding this term to the partial derivative of Q(Ψ;Ψ(q)) with respect to νk
gives the following update equation for the expectation vector when a Gaussian
prior is employed:

ν
(q+1)
k =

∑n
i=1 t

(q)
ik m

(q)
ik + n

(1)
k0 νk0∑n

i=1 t
(q)
ik + n

(1)
k0

, (37b)

with m
(q)
ik being defined either by Equation (15c) in the case of Gaussian fuzzy

numbers, or by Equation (32b) when using the MCFEM algorithm.

Covariance matrices Σk

The partial derivative of the overall log prior with respect to Σ−1
k writes as

∂ log p(νk,Σk|νk0, n
(1)
k0 ,Σk0, n

(2)
k0 )

∂Σ−1
k

=
1

2
Σk −

n
(1)
k0

2
(νk − νk0) (νk − νk0)

t

+
n
(2)
k0 + p+ 1

2
Σk −

1

2
Σk0. (38a)

This leads to the following update equation for the covariance matrix Σk, when
the likelihood is regularized using a normal-inverse-Wishart prior:

Σ
(q+1)
k =

∑n
i=1 t

(q)
ik B

(q)
ik + n

(1)
k0

(
ν
(q+1)
k − νk0

)(
ν
(q+1)
k − νk0

)t
+Σk0

∑n
i=1 t

(q)
ik + n

(2)
k0 + p+ 2

, (38b)

where B
(q)
ik is defined by Equation (23) when the data at hand are Gaussian

fuzzy numbers, or by Equation (32c) for the MCFEM algorithm.

6. Experiments

In this section, we first present results obtained by clustering synthetic data,
in order to assess the robustness of our algorithm to noise and to the lack of
information. Then, we present experiments realized on classical real datasets,
in which quadratic discriminant analysis is used in presence of corrupted data.
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Table 1: Parameters of the components of the Gaussian mixture.

comp. 1 comp. 2 comp. 3
πk 0.4 0.25 0.35

νk (2, 1)t (0,−2)t (−2, 1)t

Σk

(
2 0
0 1

) (
1 0.5
0.5 1.25

) (
1.5 0.75
0.75 1.5

)

6.1. Synthetic data

Noisy instances

First, we ran an experiment using synthetic two-dimensional data in order to
evaluate the performance of our algorithms in presence of data with corrupted
instance values. More precisely, we generated the data so that the level of impre-
cision on the instances depends on the magnitude of the instance values. First,
we drew a sample of n = 1000 realizations x1, . . . ,xn of a Gaussian mixture of
K = 3 components with the parameters given in Table 1. Then, we introduced
noise in the data as follows. For each instance xi, we randomly generated a co-
variance matrix Wi according to an inverse-Wishart distribution with 4 degrees
of freedom, and we set then Si = λWi. The scalar λ ∈ {2, 4, . . . , 20} makes
it possible to set the degree of imprecision introduced in the data. For each
instance xi, a noisy value mi was then generated from a multivariate Gaussian
with mean xi and covariance matrix Si.

We thus created a set of Gaussian fuzzy numbers with mean value mi and
covariance matrix Si. We also defined a set of trapezoidal fuzzy numbers, such
that the support and the core of the ith element are the squares containing
respectively 95% and 50% of the Gaussian distribution with mean wi and co-
variance matrix Si. The parameters (aij , dij) and (bij , cij), that respectively
define the support and the core along the jth dimension (j ∈ {1, 2}), are thus

aij = w̃ij + σ̃iΦ
−1(1−

√
0.95
2 ), dij = w̃ij + σ̃i Φ

−1(1+
√
0.95
2 ),

bij = w̃ij + σ̃iΦ
−1(1−

√
0.5

2 ), cij = w̃ij + σ̃i Φ
−1(1+

√
0.5

2 );
(39)

where w̃ij denotes the jth component of wi, and where Φ stands for the cumu-
lative distribution function of the centered and scaled Gaussian distribution.

We estimated the parameters of a GMM with three components as follows.
The original (precise, uncorrupted) data and the precise corrupted ones were
processed using the EM algorithm. The Gaussian fuzzy instances were clus-
tered using the Gaussian FEM algorithm. The MCFEM algorithm was used
in the case of trapezoidal fuzzy instances: for this purpose, M = 200 instances
were generated according to each trapezoidal distribution using the procedure
described in AppendixA. For each value of λ, we ran each algorithm five times.
The starting values were computed using 10% of randomly selected instances in
each class (the same for all the algorithms). The labels of these instances were
considered as known throughout the estimation process. We stopped iterating
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when the relative increase of the log-likelihood becomes small, i.e.

logL(Ψ(q))− logL(Ψ(q−1))

| logL(Ψ(q−1))|
≤ 10−5. (40)

Then, for each algorithm, we kept the best solution over the five trials in terms
of observed log-likelihood. Each instance xi was classified so as to maximize the

estimated posterior probabilities t
(q)
ik . The adjusted Rand index (ARI) [71] was

then computed in order to assess the accuracy of the partition thus obtained.
We recall here that the ARI is a corrected-for-chance version of the Rand index,
a popular measure frequently employed to compare two partitions. This whole
procedure (data generation and corruption, model estimation, and assessment
of the accuracy of the partition thus obtained) was repeated 50 times, so that
averages of the ARI may be computed.

Figure 1 displays the evolution of the average ARI as a function of the
degree of noise λ introduced in the instances. Without surprise, the partitions
computed from noisy data exhibit a poor accuracy when the amount of noise
increases. However, taking into account the uncertainty on the attribute values
improves the robustness of the model, and the partition thus obtained is closer
to the actual partition of the data.
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Figure 1: Evolution of the average adjusted Rand index as a function of the degree of noise
λ in the data. The values of the average Rand index and the 95% confidence intervals are
computed over 50 experiments.

Figure 2 presents the results obtained for one experiment with λ = 20. The
instances are printed with a color depending on the component from which they
were generated. The mean vectors thus obtained are displayed, along with the
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covariance matrices represented by the 95% confidence ellipsoids. We may see
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Figure 2: Original data (top left), noisy data (top right), Gaussian (bottom left) and trape-
zoidal (bottom right) fuzzy data, along with the parameters estimated using the EM algorithm
(top) and the fuzzy EM algorithm (bottom).

that the parameters (and in particular the covariance matrices) computed using
the crisp EM algorithm are sensitive to the presence of noisy data. However,
taking into account the attribute uncertainty using the FEM algorithm yields
more robust parameter estimates.

Corrupted labels

We realized an experiment on data with corrupted labels. We generated data
as before, with λ = 2. Then, we introduced noise in the labeling: the actual
labels were replaced by a random label with probability η. The probability
η ∈ {0.1, 0.2, . . . , 1} thus allowed us to control the level of noise introduced in
the labels. Then, we compared the results obtained with two kinds of labeling:

• crisp labeling, which corresponds to a semi-supervised approach, where an
instance xi is associated with a vector zi indicating its (possibly corrupted)
associated label;
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• imprecise labeling, where the partial knowledge of the actual class of an
instance is represented using a possibility distribution.

In this last case, we followed [55, 63] and gave the observed label ωk a degree
of possibility δik = 1, and the other plausible labels ωk′ , k′ 6= k a degree of
possibility plik′ = η.

As previously, we computed the average ARI over 50 randomly generated
datasets. The data without label information and the data with noisy labels
were clustered via the EM algorithm. The FEM and MCFEM algorithm were
used to process the Gaussian and the trapezoidal fuzzy instances with plausi-
bilistic labels, respectively. Figure 3 displays the ARI as a function of the degree
of noise η introduced in the labels. Estimating the parameters of the model us-
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Figure 3: Evolution of the adjusted Rand index as a function of the degree of noise η in the
labels. The values of the average Rand index and the 95% confidence intervals are computed
over 50 experiments.

ing a semi-supervised labeling gives good results when the amount η of noise
is low. As η increases, the accuracy of the obtained partition decreases. The
results obtained using imprecise labels via the FEM and MCFEM algorithms
are almost identical, and always better than those in the semi-supervised case.
Remarkably, their poorest performance is achieved for η = 1: then, all the
components being equally plausible, their accuracy is similar to that of the
unsupervised EM algorithm.

Robustness to lack of data

We produce here the results of an experiment which purpose is to demon-
strate how Bayesian priors may ameliorate the estimation of the parameters, as
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explained in Section 5. First of all, it should be pointed out that the amount
of information contained in a fuzzy sample is directly related to the degree of
imprecision of the data. Figure 4 displays the GMM estimated using the FEM
algorithm on Gaussian fuzzy data with two levels of imprecision. The data
were generated as before, with λ = 2 in one case and λ = 20 in the other case
(the instances having the same mean values mi). It may be observed that a
high amount of imprecision results in a decrease of the trace of the estimated
covariance matrices.
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Figure 4: Parameters estimated using the FEM algorithm on Gaussian fuzzy data, for a low
(left) and a high (right) amount of imprecision λ in the data. The trace of the estimated
covariance matrices decreases when the level of imprecision increases.

To show the interest of using Bayesian priors, we generated Gaussian fuzzy
data as previously, except that the mean mi of each Gaussian fuzzy number
x̃i was set to xi: the data at hand are thus imprecise, but not noisy. Then,
we clustered the imprecise data at hand using three different versions of the
Gaussian FEM algorithm:

• without setting any prior on the model parameters;

• using the actual parameter values as prior: in this case, the degrees of

freedom n
(1)
k0 and n

(2)
k0 were set to n̂

(1)
k0 = 1e6 and n̂

(2)
k0 = 1e − 6 − 2,

respectively;

• using estimated priors obtained as follows: for each class ωk, we randomly
selected a number n̂k of precise instances, corresponding to 25% of the
instances in the class, which were used to compute estimates ν̂k and Σ̂k of
the class parameters. Then, we set a Gaussian-inverse-Wishart prior on
the kth component of the GMM, with mean νk0 = ν̂k, covariance matrix

Σk0 = n
(2)
k0 Σ̂k, and degrees of freedom n

(1)
k0 = n̂k and n

(2)
k0 = n̂k − 2,

respectively.

Figure 5 displays the evolution of the average ARI, computed over 100 ex-
periments, as a function of the degree of imprecision of the instances. We may
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Figure 5: Evolution of the adjusted Rand index as a function of the level of imprecision λ

in the instances. The values of the average Rand index and the 95% confidence intervals are
computed over 50 experiments.

notice that the ARI decreases while the level of imprecision λ increases, which
shows that the accuracy of the model highly depends on the informational con-
tent of the data at hand. However, using Bayesian priors makes it possible to
guide the algorithm towards more robust parameter estimates.

6.2. Real data

In this Section, we report the results obtained by applying GMM estima-
tion to classification problems. We considered seven real datasets described in
Table 2. For each dataset, we randomly selected 66% of the data for learning

Table 2: Characteristics of the real datasets processed.

dataset number of number of number of
instances classes variables

Iris 150 3 4
Letter 18200 26 16

Pageblocks 5473 5 10
Pendigits 10992 10 16
Satimage 6435 6 36
Waveform 5000 3 21

the parameters of a GMM. Note that in some datasets, one or several variables
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may be constant; such uninformative variables were suppressed to avoid nu-
merical problems. The remaining variables were then centered and scaled. We
introduced noise in the instance values as explained before, using a parameter
value λ = 1 (note that the labels were left unchanged). Then, the parameters
of each class were estimated from the noisy training instances, and from the
fuzzy instances using the FEM algorithm. The remaining test instances were
classified using quadratic discriminant analysis (QDA): no additional assump-
tion was made on the covariance matrices of the classes. Conditional densities
and then posterior probabilities were computed for each test instance using the
parameters estimated, using Equation (16b) in the case of fuzzy instances.

Since the imprecision of the instances may not be known for test labels, we
performed two series of experiments. A first estimation of the posterior proba-
bilities was performed using Equation (16b) using the actual covariance matrices
generated to corrupt the data. Besides, we also estimated these covariance ma-
trices, by averaging the ones used for the fuzzy training data.

This whole procedure (random selection of training and test sets, intro-
duction of noise, estimation of the parameters, and classification of the test
data) was repeated 25 times. Figures 6 to 11 present the classification accuracy
obtained. The results obtained by classifying the uncorrupted and noisy test
instances with the quadratic classifier trained from noisy data (boxplots 1 and
2, respectively) are referred to as “crisp QDA”; while “fuzzy QDA” refers to
processing fuzzy test instances with a classifier estimated from fuzzy training
data (boxplot 3 when the actual uncertainty of the test instances is used, and
boxplot 4 for the estimated uncertainty).
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Figure 6: Classification accuracy, Iris dataset. Boxplot 1: crisp QDA, uncorrupted test data;
boxplot 2: crisp QDA, noisy test data; boxplot 3: fuzzy QDA, test data with actual uncer-
tainty; boxplot 4: fuzzy QDA, test data with estimated uncertainty.
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Figure 7: Classification accuracy, Letter dataset. Boxplot 1: crisp QDA, uncorrupted test
data; boxplot 2: crisp QDA, noisy test data; boxplot 3: fuzzy QDA, test data with actual
uncertainty; boxplot 4: fuzzy QDA, test data with estimated uncertainty.
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Figure 8: Classification accuracy, Pageblocks dataset. Boxplot 1: crisp QDA, uncorrupted
test data; boxplot 2: crisp QDA, noisy test data; boxplot 3: fuzzy QDA, test data with actual
uncertainty; boxplot 4: fuzzy QDA, test data with estimated uncertainty.
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Figure 9: Classification accuracy, Satimage dataset. Boxplot 1: crisp QDA, uncorrupted test
data; boxplot 2: crisp QDA, noisy test data; boxplot 3: fuzzy QDA, test data with actual
uncertainty; boxplot 4: fuzzy QDA, test data with estimated uncertainty.
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Figure 10: Classification accuracy, Pendigits dataset. Boxplot 1: crisp QDA, uncorrupted test
data; boxplot 2: crisp QDA, noisy test data; boxplot 3: fuzzy QDA, test data with actual
uncertainty; boxplot 4: fuzzy QDA, test data with estimated uncertainty.
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Figure 11: Classification accuracy, Waveform dataset. Boxplot 1: crisp QDA, uncorrupted
test data; boxplot 2: crisp QDA, noisy test data; boxplot 3: fuzzy QDA, test data with actual
uncertainty; boxplot 4: fuzzy QDA, test data with estimated uncertainty.

The results clearly assess the interest of our approach for estimating the
parameters of the model. Indeed, taking into account the uncertainty on the
training and test data makes it possible to achieve better results than ignoring
this information. In addition, the results obtained with the fuzzy GMM with
estimated covariance matrices is significantly better than the results obtained
via the crisp GMM in three cases over six. This clearly advocates taking into
account the uncertainty when processing data pervaded with noise.

7. Conclusion

In this paper, we addressed the problem of estimating the parameters of a
GMM from imprecisely observed data. Our approach is based on an extention
of the EM algorithm for fuzzy data proposed by Denœux [62, 63]. Given a
sample of fuzzy numbers, the likelihood of a mixture of Gaussians is computed
using Zadeh’s definition of the probability of a fuzzy event. Then, the estimates
maximizing this likelihood is estimated using an iterative procedure. At each
iteration, the expectation of the log-likelihood with respect to the fuzzy sample
is first computed. In a second step, the parameters of the model are updated
so as to maximize this expectation.

We presented two main results. First, we showed that when the data are
represented by Gaussian fuzzy numbers, closed-forms of the parameter esti-
mates may be computed. Furthermore, we proposed a Monte-Carlo approach
to estimate the parameters in the general case. This Monte-Carlo approach is
generic, since it is suitable to any kind of possibility distribution, provided that
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an adequate sampler be available. It is also computationally efficient, since the
sampling step is made only once, and outside of the estimation procedure.

We conducted experiments on synthetic and real data. The results show
that our algorithm makes it possible to estimate accurately the distribution of
imprecisely known data. In particular, taking into account all the available in-
formation on the data uncertainty makes it possible to compute robust estimates
of the parameters in presence of noisy attributes and corrupted labels. When
applied to the classification of noisy data via quadratic discriminant analysis,
taking into account the uncertainty on the instance values makes it possible
to improve the classification accuracy, even when the uncertainty on the test
data is estimated from the training set. In conclusion, the results clearly shows
the interest of our approach for performing clustering or classification in the
presence of noisy or uncertain information.
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AppendixA. Sampling according to trapezoidal possibility distribu-

tions

We provide here details about sampling according to trapezoidal-based mul-
tivariate fuzzy numbers. We assume here that each multivariate possibility
distribution µx̃i

associated with x̃i may be expressed as the product of the
unidimensional possibility distributions µx̃ij

of its components x̃ij :

µx̃i
(x) =

p∏

j=1

µx̃ij
(xj). (A.1)

Thus, data may be sampled feature-wise and aggregated. Let us denote by

x
(1)
ij , . . . , x

(M)
ij the sample generated according to the univariate trapezoidal dis-

tribution µx̃ij
. The sample x

(1)
i , . . . ,x

(M)
i following the multivariate distribution

µx̃i
may then be obtained by concatenating these one-dimensional samples: we

obtain x
(ℓ)
i = (x

(ℓ)
i1 , . . . , x

(ℓ)
ip ), for each ℓ = 1, . . . ,M .

To obtain an univariate sample x(1), . . . , x(M) from a parent variable accord-
ing to a univariate trapezoidal distribution, we propose the following procedure.
Let F be the cumulative distribution function of the trapezoidal distribution.
First, a random sample u(1), . . . , u(M) is generated according to an uniform dis-
tribution U[0;1]. Then, the inverse cdf F

−1 is applied to these numbers to obtain

the univariate sample: x(ℓ) = F−1(u(ℓ)), for ℓ = 1, . . . ,M .
We provide below the expression of the cumulative distribution function Fx̃

associated with an univariate trapezoidal fuzzy number x̃ with support [a; d]
and core [b; c], as well as of its inverse F−1

x̃ . Details may be found in [72].

Fx̃(x) =





0 if x ≤ a,

1

A (x̃)

(x− a)
2

2(b− a)
if a ≤ x ≤ b,

1

A (x̃)

(
x−

a+ b

2

)
if b ≤ x ≤ c,

1

A (x̃)

(
A (x̃) +

(x− d)2

2(c− d)

)
if c ≤ x ≤ d,

1 if d ≤ x;

(A.2)

with

A (x̃) =

∫
µx̃(x) dw, (A.3)

=
c+ d− a− b

2
. (A.4)
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Thus, the inverse cdf F−1
x̃ is defined, for all u ∈ [0; 1], by:

F−1
x̃ (u) =





a+
√
2(b− a)A (x̃)u if 0 ≤ u ≤

b− a

2A (x̃)
;

a+ b

2
+A (x̃) u if

b− a

2A (x̃)
≤ u ≤

2c− b− a

2A (x̃)
,

d−
√
2(d− c)A (x̃)u if

2c− b− a

2A (x̃)
≤ u ≤ 1.

(A.5)
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