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Abstract

Multi-label classification allows instances to belong to several classes at once. It has
received significant attention in machine learning and has found many real world
applications in recent years, such as text categorization, automatic video annotation
and functional genomics, resulting in the development of many multi-label classifi-
cation methods. Based on labelled examples in the training dataset, a multi-labelled
method extracts inherent information in order to output a function that predicts
the labels of unlabelled data. Due to several problems, like errors in the input
vectors or in their labels, this information may be wrong and might lead the multi-
label algorithm to fail. In this paper, we propose a simple algorithm for overcoming
these problems by editing the existing training dataset, and adapting this edited set
with different multi-label classification methods. Evaluation on benchmark datasets
demonstrates the usefulness and effectiveness of our approach.
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1 Introduction1

Multi-label classification is the supervised classification task where each in-2

stance can be associated with multiple classes simultaneously from a set of3

disjoint classes; the classes are then no longer mutually exclusive. Contrary4

to single-label classification, the multi-label problem is influenced by intrinsic5

latent correlations between labels, in the sense that the membership of an6

instance to a class can be helpful to predict its set of labels [44]. For example,7

a patient with a high blood pressure is more likely to develop heart disease8

than an other person, but less likely to develop a muscular dystrophy.9

Multi-label classification methods have been applied with modern applications10

like text categorization, where each document can be associated with a set of11

predefined topics [30]. In bioinformatics, each protein may be labelled with12

multiple functional labels such as metabolism, energy and cellular biogene-13

sis [17]. In video annotation, a film might be annotated with several labels or14

tags [25].15

Multi-label methods learn usually a classifier function from the training dataset16

with known class labels. However, real world data often suffer from noisy or er-17

roneous instances due to several problems, like errors in the input vectors or in18

their labels. To cope with this problem in the framework of single-label learn-19

ing, several methods based on data reduction have been introduced. These20

techniques are usually based on prototype selection [4,13,27,39].21

Prototype selection methods are usually applied to remove erroneous or re-22

dundant instances from the training dataset [13,20,24]. These methods are23

widely used with the traditional nearest neighbor rule due to their simplicity24

and effectiveness. In addition to improving classification accuracy for unseen25

instances, using prototypes dramatically decreases storage and classification-26

time costs.27

However, despite extensive work in multi-label learning [5,21,26,37,42,44],28

there is a lack of methods for improving the quality of multi-labelled training29

instances. This fact motivated us to study this problem in the framework of30

multi-label learning. In this paper, we develop an original method based on31

a prototype selection using the nearest neighbor rule and a local evaluation32

criterion, in order to purify training dataset and improve the performance of33

multi-label classification algorithms. The evaluation criterion used in this pa-34

per is the very well known Hamming loss metric. Nevertheless, the proposed35

method may be straightforwardly adapted to any other criterion. Given one36

training instance with known set of labels, we consider the editing rule which,37

based on the Hamming Loss calculated by estimating to this instance a set of38

predicted labels from the neighborhood, either delete or remain the instance39
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unchanged. After applying this edited rule on all observations of the training40

dataset and eliminating the less relevant in the sense of the chosen criterion,41

a learning algorithm on the edited training set may be applied efficiently.42

To show the effectiveness of this method, we apply existing multi-label clas-43

sification methods, which are the evidential multi-label k-nearest neighbor44

(EMLkNN) [10] and the Rank-SVM [12] methods, on the edited dataset. The45

proposed algorithm is applied to several multi-labelled data from different do-46

mains using several multi-label classification measures. Even if the Hamming47

loss is used as a criterion to edit the data, the performances are evaluated us-48

ing several multi-label classification measures. Note that, more than increasing49

classification performance, the new method has the advantage of needing less50

of storage requirements and decreasing the running time of the initial classi-51

fication algorithms.52

Note that a short paper on the purification (or edition) of multi-labelled53

datasets was presented at the conference Fusion [18]. In this paper, the edi-54

tion method is more thoroughly interpreted and discussed. Furthermore, we55

add the effect of editing on the SVM techniques and we provide an illustra-56

tive example on a simulated dataset. In addition, extensive comparisons on57

several real world datasets are presented, and the effectiveness of the method58

compared to that before editing is shown using statistical tests (t-test and59

Friedman test).60

This paper is structured as follows. Background notions on the nearest neigh-61

bor rule in the classical single-label framework and some related techniques for62

prototype selection will first be recalled in Section 2. Section 3 will introduce63

the principle of multi-label classification and review the EMLkNN and Rank-64

SVM methods. Our approach will then be exposed in Section 4. Section 5 will65

report the experimental evaluation of the presented methods on synthetic and66

real-world datasets. Finally, our contribution will be summarized in Section 6.67

2 Related work on prototype selection for single-labelled data68

The problem of noise handling has received considerable attention in the liter-69

ature on machine learning. Seeking to start with something relatively simple,70

scientists have focused on the nearest neighbor classifier considered as one of71

the most well-known technique in machine learning and data mining due to72

its simplicity and effectiveness. Given a training set of single-labelled data, the73

idea is to select an optimal set of training instances, known as prototypes, in74

order to maximize the performances of the Nearest Neighbor (NN) classifier75

and/or to minimize the computing time of this classifier [8]. Later, the idea76

of selecting ”good” instances has also been applied to other types of classi-77
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fiers [4]. In this section, we will rapidly review the nearest neighbor rule, and78

give a definition and summary of work related to prototype selection methods79

for the NN rule.80

2.1 Nearest Neighbor classification81

The Nearest Neighbor rule [7] is a well-known and non-parametric decision82

procedure for machine learning and data mining tasks. It has been considered83

as one of the most effective algorithms in machine learning, and one of the top84

ten methods in data mining [13,41]. In traditional supervised learning, this85

rule assigns to an unseen sample x, the class of the nearest training instance86

according to some distance metric. The voting k-nearest neighbor rule (k-NN),87

with k > 1, is a generalization of the NN approach where the predicted class of88

x is set as equal to the class represented a majority of its k nearest neighbors89

in the training set.90

However, the k-NN rule suffers from several problems such as large storage re-91

quirements, high computational complexity in the operational phase, and low92

tolerance to noise due to considering all instances as relevant while the train-93

ing set may contain noisy or mislabelled examples. Different techniques have94

been proposed in the literature to alleviate these problems. One technique,95

known as prototype selection, consists of selecting an appropriate subset of96

the training data that yields a similar or even higher classification accuracy.97

Prototype selection methods can be categorized into three different families.98

First, edition methods eliminate noisy instances from the original training99

set in order to improve classification accuracy. Second, condensation meth-100

ods select a sufficiently small subset of training instances which lead to the101

same performance of the single nearest neighbor rule (1-NN), by removing102

instances that will not affect classification accuracy. Finally, hybrid methods103

select a small subset of training instances that incorporates the goals of these104

two previous methods [13,3]. In the following, we consider only the editing105

methods.106

2.2 Editing methods107

Editing methods process the training data by removing border and noisy in-108

stances or making other necessary cleaning, with the aim of improving classi-109

fication accuracy of learning algorithms on test data. Below we review some110

algorithms related to the editing approach for the nearest neighbor rule.111

Wilson proposed the first editing rule [40], called Edited Nearest Neighbor112

(ENN), to improve the performance of the 1-NN rule. This method can be113
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described in the following manner. Each instance in the training set is classified114

using the k-NN rule, and it is marked for deletion if its predicted class does115

not agree with the true class. Edition is achieved by deleting all misclassified116

instances at once. After, any input sample is classified using the 1-NN rule117

with the remaining instances. Experiments with the editing rule were reported118

by Tomek who proposed two variants of the ENN rule: RENN and All k-119

NN [34]. The Repeated Edited Nearest Neighbor (RENN) rule repeats the120

ENN algorithm until a stable set is obtained where no more samples are edited121

out. The All k-NN applies iteratively the ENN algorithm with the i-NN rule122

where i is going from 1 to k.123

In [19], the generalized editing procedure based on the kk′-NN rule was in-124

troduced. The purpose of this procedure was two-fold: improving the level of125

performance of the ENN algorithm and reducing the proportion of deleted126

samples. Based on the class of a majority of k′ instances from a group of k127

nearest samples to an instance x, the group of k samples is either deleted128

or relabelled as belonging to the majority class. The 1-NN is then used on129

the edited set to classify an input instance. In [11], the authors proposed the130

well-known Multiedit algorithm, which randomly breaks the initial training131

set into different subsets. In each subset, every instance is classified using the132

1-NN rule with the instances in the next subset. Misclassified instances are133

discarded. The remaining instances constitute a new set and the algorithm is134

iteratively repeated until no more instances are edited out.135

In [16], a Modified Edited k-NN rule (MEKNN) was proposed. According to136

this rule, a sample x is deleted from the initial set if its class does agree with137

the class of its k nearest neighbors and their tying instances (tying instances138

are those in the training set that are at the same distance to x as its furthest139

neighbor). In addition, this method introduces a fixed number of pairs (k, k′).140

k is the number of neighbors to make the edition process and k′ is employed141

to classify any new instance in the obtained edited set. The goal was to obtain142

the optimal pairs of k and k′ to employ the final editing reference set.143

Another method for nearest neighbor editing was proposed in [15]. This method144

uses the concept of semi-supervised learning and edits the training instances145

by using the whole dataset including: labelled and unlabelled instances. The146

proposed method, called NNEAUD (Nearest Neighbor Editing Aided by Un-147

labelled Data), consists of two steps: labels are first predicted for unlabelled in-148

stances, and the augmented dataset is then used in data editing. The NNEAUD149

method uses ENN, RENN, and AllkNN algorithms with unlabelled data to150

edit the training instances.151
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3 Multi-label learning152

3.1 Problem153

Let X denote an instance space, and let Y = {ω1, . . . , ωQ} be a finite set of154

labels. Let D = {(x1, Y1), . . . , (xn, Yn)} denote a dataset composed of n multi-155

labeled objects (xi, Yi), xi ∈ X and Yi ⊆ Y , where each instance is independent156

and identically distributed (i.i.d.) drawn from an unknown distribution. The157

goal of multi-label learning is to build a multi-label classifier H that maps158

an instance x to its associated set of labels Y and optimizes some evaluation159

metrics. Here, the set of all subsets of Y is the power set of Y denoted by 2Y .160

Numerous methods have been proposed in the literature to deal with multi-161

label learning problems. Existing algorithms can be grouped into three cate-162

gories as proposed in [21]: problem transformation approaches, problem adap-163

tation algorithms and ensemble methods. The first category divides the multi-164

label problem into one or more conventional single-label problems. Binary165

Relevance and Label Powerset are two examples of such type of approaches.166

The second category generalizes single-label algorithms to cope with multi-167

labeled data directly. Examples include boosting [29], decision tree [2] and the168

Multi-label k-nearest neighbors methods [44,47]. Finally, the third category169

incorporates the merits of these two previous approaches. Several ensemble170

methods have been proposed, among them: ensemble of classifier chains [26],171

random k-label sets [38] and ensemble of multi-label classifiers [32].172

3.2 Performance evaluation in multi-label learning173

In the traditional single-label classification task, predictive performance is174

determined under the traditional accuracy measure, where each test instance175

can either be correctly or incorrectly classified, and performance is given by the176

proportion of correctly classified test instances. In the multi-label classification177

task, predictive performance is more complex than that of single-label systems,178

where the classification of each test instance can be fully correct, partially179

correct or fully wrong. Given a set S = {(x1, Y1), . . . , (xm, Ym)} of m test180

examples, evaluation metrics can be divided into two groups: prediction-based181

and ranking-based metrics [37]. Prediction-based metrics are calculated based182

on the comparison between the predicted and the ground truth sets of labels,183

while ranking-based metrics evaluate the label ranking quality depending on a184

scoring function f(., .), (f : X×Y −→ R, where X is the domain of instances185

and Y is the set of Q target classes) that attributes a score to each class in186

Y [44]. More details on evaluation metrics are given in appendix A.187
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We will focus in this paper on the Hamming loss and the Ranking loss metrics.188

The Hamming loss is a prediction-based metric regarded as an average of the189

error rate of the classifier on the Q binary problems where the decision is190

performed separately [28]. It is defined by:191

HLoss =
1

m

m∑
i=1

|Yi4Ŷi|
Q

, (1)

where Yi is the ground truth label set for the pattern xi, Ŷi is the predicted192

label set for xi and 4 denotes the symmetric difference between two sets.193

In other words, the Hamming loss is based on counting prediction errors (an194

incorrect label is predicted) and missing errors (a true label is not predicted).195

The Ranking loss is a ranking-based metric which evaluates the average frac-196

tion of crucial pairs of labels that are misordered for an instance [29]. The197

Ranking Loss is:198

RLoss =
1

m

m∑
i=1

1

|Yi|Yi|
|R(xi)|, (2)

where R(xi) = {(ωq, ωr) ∈ Yi × Yi | f(xi, ωq) ≤ f(xi, ωr)}, Yi denotes the199

complement of Yi in Y . Smaller values of these metrics correspond to higher200

classification quality. Note that the value of these evaluation criteria is in the201

interval [0, 1]. We will present briefly in next sections the two multi-label202

algorithms that will be used in this paper and which are the Evidential multi-203

label k-NN and the Rank-SVM methods.204

3.3 Evidential multi-label k-NN classification205

The evidential k-NN (EMLkNN) method introduced in [10] answers the multi-206

label classification problems under the belief functions framework and can207

be summarized as follows. Let D = {(x1, A1, B1), . . . , (xn, An, Bn)} be the208

learning set, where Ai ⊆ Y = {ω1, . . . , ωQ} denotes a set of classes that surely209

apply to the instance xi, and Bi is the complement of Ai in Y , (Y is known210

as the frame of discernment of the problem).211

To classify an unlabelled instance x, we identify its k-nearest neighbors, de-212

noted as Nx, by computing the distance of x to the labelled objects in D based213

on a certain distance function. Each element xi in Nx constitutes an item of214

evidence regarding the label set of x. This item of evidence can be described215

by the following simple two-valued mass function:216

mi(Ai, Bi) = α exp(−γd(x,xi)),

mi(∅, ∅) = 1− α exp(−γd(x,xi)),
(3)
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where d(x,xi) is the distance between x and xi, α and γ are two parameters,217

such that 0 < α < 1 and γ > 0. Parameter α is usually fixed to a value close218

to 1 such as 0.95 [9], whereas γ can be optimized or fixed heuristically [48].219

If the number of neighbors of the x is k, the resulting k mass functions are220

combined using the conjunctive rule:221

m = ∩©i: xi∈Nx
mi (4)

where the ∩© symbol denotes the unnormalized Dempster’s rule of combi-222

nation [10]. This rule strongly emphasizes the agreement between multiple223

sources, where no elementary item of evidence should be counted twice. The224

predicted multi-label set for x is then determined by computing separately for225

each label ω ∈ Ω two quantities: the degree of belief bel({ω}, ∅) that the true226

label set Y contains ω, and the degree of belief bel(∅, {ω}) that it does not227

contain ω. The multi-label classifier H is defined finally as:228

H(x) = {ω ∈ Y|bel({ω}, ∅) ≥ bel(∅, {ω})}, (5)

where ∅ denotes the empty set of Y .229

3.4 Rank-SVM230

Rank-SVM is a multi-label ranking approach introduced by Elisseeff and We-231

ston in [12]. The ultimate goal was to minimize a criterion measure for multi-232

label learning, called Ranking loss, and to maximize the margin. The authors233

introduce a special multi-label margin defined on (x, Y ) as the signed distance234

between the instance x and the decision boundary. Note that the boundary of235

class q is a grouping of several boundaries separating the class q and the other236

classes. For Rank SVM method, which ranks the values of rq(x) = 〈wq,x〉+bq,237

the decision boundaries for x are defined by the hyperplanes whose equations238

are 〈wq − wl,x〉+ bq− bl = 0. Thus, the margin with respect to class q is equal239

to:240

min
(q,l) | (ωq ,ωl)∈(Y×Y )

yq
〈wq − wl,x〉+ bq − bl

‖wq − wl‖
where wq, wl and bq, bl denote the weight vectors and bias terms, and yq is a241

binary element equal to +1 if label q is in Y , −1 otherwise. According to [12],242

q denotes a relevant label, and l the irrelevant one. For training instances, it is243

desirable that any relevant label should be ranked higher than any irrelevant244

one.245

The Rank-SVM model is built from two different sub-systems. The first one,246

named ranking system, orders the labels via a quadratic optimization problem,247

according to their outputs, rq(x) = 〈wq,x〉 + bq for q = 1, . . . , Q. The other248

goal of this method is to predict a threshold t(x) and all integer q such that249
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rq(x) > t(x) are considered to belong to the label set Y of x. It is well-known250

that such an algorithm can be generalized to non-linear separating boundaries251

by just replacing the dot products < xi,xj > by kernels k(xi,xj).252

4 Editing multi-labelled data using the k-NN rule253

4.1 Motivation254

In multi-label learning, the goal is to generate a multi-label classifier that will255

generalize from a set of multi-labelled training instances in such a way that256

classification performances for labelling new data are optimized. However, er-257

rors in multi-labelled training datasets can occur for several reasons. One cause258

is the subjectivity, when the boundaries of each class are based on individ-259

ual perspectives. For example, in genre classification of musical signals, each260

musical genre may have its boundaries shifted from person to person [1]. A sec-261

ond cause of anomalies or noisy instances is ambiguity during data-entry. For262

example, in clinical text for multi-label classification (medical multi-labelled263

data collected from Cincinnati children’s hospital medical center), abbrevia-264

tions and acronyms used to anonymization of patients may lead to ambiguity265

when processing such data by taking more than one sense and having multi-266

purposes (in a clinical setting, FT can be an abbreviation for full-term, foot267

test, field test, full-time or family therapy) [23]. Other errors can arise from268

missing information and data transformation or storage. Furthermore, many269

examples may have an erroneous set of labels due to an experimental assign-270

ment problem or even a human annotation error. To the best of our knowledge,271

no algorithm addressing these problems under the multi-label framework has272

been proposed so far.273

In the following, we propose an original method to edit multi-labelled data274

by identifying and eliminating erroneous or anomalous samples. The purpose275

of this method is three-fold: first, to increase the quality of training instances276

assumed to become more reliable; second, to improve the performances of277

the classifier built from the resulting training data; and third to increase the278

response time of the learning algorithm. This method is based on the k-nearest279

neighbor rule for multi-label classification, and on an evaluation criterion used280

locally in the set Nx of k-nearest neighbors of x to evaluate the quality of281

an instance x. Based on this evaluation criterion, we can delete the most282

irrelevant, or the worst samples from the initial training dataset. We will283

present hereafter a simple method using this metric conjointly with a k-NN284

rule for multi-label classification in order to edit the training dataset.285
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4.2 Editing algorithm: Edited Nearest Neighbor for Multi-Labelled data286

Let x be an unseen instance for which we wish to estimate the set of labels.287

In the following steps, we describe the proposed method to edit the training288

dataset:289

(1) For each training instance xi in D, search for Nxi
, the set of its k nearest290

neighbors;291

(2) Apply a k-NN based multi-label classifier and calculate a predicted set292

of labels Ŷi for xi;293

(3) For each training instance in D, calculate the associated Hamming loss294

given by:295

HLossi =
|Yi4Ŷi|
Q

; (6)

(4) Estimate the Hamming loss HLoss, which is the mean of the associated296

Hamming loss for all instances in D:297

• if HLoss is less than a predefined threshold t, then stop the algorithm;298

• else,299

(a) Rank the training instances in D with respect to their HLossi and300

select a subset E l containing l instances with the higher Hamming301

loss HLossi;302

(b) Update the training set by deleting those in E l : D ← D \ E l;303

(c) Return to step 1.304

Note that any k-NN based multi-label classifier [44,10,46] can be applied in305

Step 2. In this paper, we chose the EMLkNN method introduced in Section 3.3.306

According to this method, each element in Nxi
represents a piece of knowledge307

about the labelling of xi. A two-valued mass function is then associated to each308

of the k neighbors in Nxi
according to Equation 3. These items of evidence309

are combined to produce a global mass function, using the conjunctive rule310

of Equation 4. In order to estimate the label set for xi denoted by Ŷi, the311

global mass function is used according to Equation 5. Intuitively, k should312

be set to a small value because if k is high, undesirable instances elimination313

will occur on the boundary between different classes. If k is equal to 1, the314

EMLkNN algorithm boils down to the 1-NN algorithm, and the set of labels315

to be assigned to an example is the same as that of his neighbor. In Step 3,316

one can use other stopping criteria than the general HLoss. For example, we317

can stop editing if the Hamming loss associated to each instance is less than318

a predefined threshold t. We can also substitute the Hamming loss by another319

multi-label metric evaluation. In Steps 4a and 4b, we delete instances with320

high value of HLossi, which means deleting the worst instances with respect321

to a local EMLkNN rule. One can add a condition to keep instances belonging322

to classes with low occurrence.323
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5 Experimental Evaluation324

In this section, we present experiment results with synthetic and real-world325

datasets from different domains to demonstrate the effect of edition on the326

performances of the two multi-label classification methods described below.327

5.1 Experiments with Synthetic Data328

In this section, we will illustrate the behavior of our editing algorithm on329

synthetic datasets using the two methods of classification discussed above.330

The goal of these experiments is to study the effects of edition on multi-label331

learning algorithms.332

A dataset with three-overlapping classes in two-dimension was first considered.333

The dataset contains 600 instances belonging to three possible labels Ω =334

{ω1, ω2, ω3}. These instances were drawn from seven Gaussian distributions335

with means (−5,−5), (5,−5), (0, 5), (0,−5), (−3, 1),(3, 1), and (0, 0). The336

standard deviations was equal two for the first three distributions and one for337

the others. We assigned the following classes, respectively, for samples drawn338

from each of these distributions: {ω1}, {ω2}, {ω3}, {ω1, ω2}, {ω1, ω3}, {ω2, ω3},339

{ω1, ω2, ω3}. This dataset was randomly divided into training and test datasets340

with size 400 and 200, respectively. Table 1 gives the distribution of instances341

over the different labels.342

Table 1
Description of the synthetic data without the erroneous instances.

Label set Training instances Testing instances

{ω1} 85 41

{ω2} 84 41

{ω3} 82 46

{ω1, ω2} 30 20

{ω1, ω3} 42 18

{ω2, ω3} 46 23

{ω1, ω2, ω3} 31 11

To test our editing algorithm, 40 instances drawn in the region allocated to343

classes {ω1}, {ω2} and {ω1, ω2} were wrongly assigned to class {ω3}. These344

noisy samples are generated randomly from two normal distributions with345

means (−4,−6) and (4,−6), respectively, and a standard deviation equal to346

2. Figure 1 shows the dataset (initial + noisy instances) with their class as-347
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Fig. 1. Training instances of synthetic data
348

Figures 2(a) and 2(b) show the decision boundaries for our synthetic data with349

a support vector domain using a Gaussian kernel. The boundary region for350

each class label was drawn using the Rank-SVM method, with the Gaussian351

kernel: k(x,x′) = exp(−γr‖x − x′‖2), γr = 5. We used the same parameters352

values for the Rank-SVM method with the training data before and after edit-353

ing. Figure 2(a) shows the decision boundaries for the initial training dataset.354

As we can see, these decision boundaries are significantly influenced by noisy355

instances and there is no clear separation between classes. In the area of class356

{ω2} (on the right of this figure), we can see several zones belonging to classes357

{ω1, ω2, ω3}. Also, in the area of class {ω1}, the erroneous instances create358

many zones with instances belonging to class {ω3}.359

In Figure 2(b), we can see the decision boundaries for the same dataset after360

editing. In this figure, we can see that, with editing, noisy instances have been361

removed, and, smoother decision boundaries are produced. The area is now362

divided into seven zones. Instances belonging to class {ω1} are on the left of363

Figure 2(b), instances assigned by label {ω2} are on the right, and instances364

labelled with {ω3} are at the top. Using a geometrical interpretation, we can365

easily distinguish the area belonging to each combination of these classes.366

Instances annotated by three classes are in the middle of this figure. Note367

that the number of training instances was reduced to 382 (initial number of368

training data was 440), and the number of support vectors was decreased369

from 409 to 352. Table 2 reports the experimental results on three evaluation370
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Fig. 2. The Rank-SVM decision boundaries between classes with the training in-
stances, a) before editing, b) after editing.
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criteria: Hamming loss, accuracy and the F1-measure.371

Table 2
Some evaluation measures for the Rank-SVM method before and after the edition
of the synthetic dataset.

Before Editing After Editing

Hamming loss− 0.1667 0.1017

Accuracy+ 0.7283 0.8358

F1+ 0.7422 0.8423
+(-): the higher (smaller) the value, the better the performance.

From these two figures, we can observe that training the Rank-SVM method372

with a purified dataset leads to smoother separating boundaries, creates ho-373

mogeneous clusters and reduces the number of support vectors.374

Figure 3 shows the performance of our editing approach on the synthetic data375

using the EMLkNN method. We used from the library of multi-label measures376

three evaluation criteria: Hamming loss, accuracy and the F1-measure. The377

values of these metrics are shown as a function of the number of neighbors k.378

From this figure, we can observe that when k takes small values, the EMLkNN379

algorithm tested on the edited dataset performs better than EMLkNN tested380

on noisy dataset. As k increases, the EMLkNN method tends to have the same381

performance on these two datasets . This can be explained by the fact that,382

when increasing the number of neighbors, the effect of randomly erroneous383

instances decreases giving that we use more information (coming from more384

instances), and also the applied method (EMLkNN) is based on an evidential385

distance-weighted k-nearest neighbor rule.386

5.2 Experiments on Real-World Data387

In this section, we apply the two multi-label classification methods discussed388

above (EMLkNN and Rank-SVM) to our datasets and we evaluate their per-389

formances before and after editing. In the following, we will report the bench-390

mark datasets, the evaluation metrics used in our experiments and parameter391

settings for edition. Finally, we will provide a discussion of experimental re-392

sults.393
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Fig. 3. Some evaluation measures for the EMLkNN method before and after the
edition of the synthetic dataset.

5.2.1 Datasets394

The datasets 1 that were included in our experiments cover different appli-395

cation domains: multimedia classification (Emotions), bioinformatics (Yeast)396

and text categorization (Medical, Enron and Webpage).397

• Emotions dataset. This dataset consists of 593 songs labeled by experts ac-398

cording to the emotions they generated. Each piece of music is described by 8399

rhythmic features and 64 timbre features, and can be annotated with the fol-400

lowing emotions: amazed-surprised, happy-pleased, relaxed-calm, quiet-still,401

sad-lonely and angry-fearful. The average number of labels for each song is402

1.869, and the number of distinct label sets is equal to 27 [35].403

• Yeast dataset. The yeast Saccharomyces cerevisiae is one of the best stud-404

ied organisms. Each gene is described by the concatenation of micro-array405

expression data and phylogenetic profile and it is associated with a subset406

of 14 functional classes from the Comprehensive Yeast Genome Database407

1 Datasets available at http://mulan.sourceforge.net/datasets.html, and
http://cse.seu.edu.cn/people/zhangml/.
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of the Munich Information Center for Protein Sequences 2 . This dataset408

contains 2417 genes and 14 possible labels [22].409

• Medical dataset. This dataset contains 978 documents for patient symptom410

histories collected from the Computational Medicine Center concerning a411

challenge task on the automated processing of clinical free text. Each doc-412

ument is represented by a vector of 1449 features [23].413

• Enron dataset. The Enron email 3 dataset was made public by the Federal414

Energy Regulatory Commission during its investigation. It contains around415

517.431 emails (without attachments) from 151 users distributed in 3500416

folders. Each message includes the senders and the receiver email address,417

date and time, subject, body, text and some other email specific technical418

details. After preprocessing and careful selection of these documents, 53419

different labels are obtained with 753 combinations of distinct label sets [31].420

• Webpage categorization dataset. This dataset were collected from the ”ya-421

hoo.com” domain [33]. Eleven different webpage categorization subproblems422

are considered, corresponding to 11 independent multi-label categories: Arts423

and Humanities, Business and Economy, Computers and Internet, Edu-424

cation, Entertainment, Health, Recreation and Sports, Reference, Science,425

Social and Science, and Society and Culture. Each subproblem consists of426

5000 documents (2000 as training dataset and 3000 as testing dataset).427

Each webpage was represented as a bag of words and normalized to the428

unit length.429

Tables 3 and 4 provide an overview of the different characteristics of all ex-430

perimental datasets. These characteristics are explained in the appendix B at431

the end of the article.432

Table 3
Characteristics of the Emotions, Yeast, Medical and Enron datasets.

Domain Number of Feature vector Number of Label Label Distinct

instances dimension labels cardinality density label sets

Emotions music 593 72 6 1.868 0.311 27

Yeast biology 2417 103 14 4.237 0.303 198

Medical text 978 1449 45 1.245 0.028 94

Enron text 1702 1001 53 3.378 0.064 753

5.3 Parameter Tuning433

In this section, we comment how to tune different parameters to apply the434

different algorithms described in this paper. We call editing parameters those435

applied on the initial dataset with the editing algorithm in order to obtain an436

edited training dataset. We call testing parameters those used in a multi-label437

2 http://mips.gsf.de/genre/proj/yeast/
3 http://enrondata.org/content/research/
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Table 4
Characteristics of the Webpage categorization dataset.

Number of Feature vector Number of Label Label Distinct

instances dimension labels cardinality density label sets

Arts and Humanities 5000 462 26 1.627 0.063 462

Business and Economy 5000 438 30 1.590 0.053 161

Computers and Internet 5000 681 33 1.487 0.046 253

Education 5000 550 33 1.465 0.044 308

Entertainment 5000 640 21 1.426 0.068 232

Health 5000 612 32 1.667 0.052 257

Recreation and Sports 5000 606 22 1.414 0.065 322

Reference 5000 793 33 1.159 0.035 217

Science 5000 743 40 1.489 0.036 398

Social and Science 5000 1047 39 1.274 0.033 226

Society and Culture 5000 636 27 1.705 0.063 582

classification algorithm learnt from initial or edited learning dataset. Note that438

the number k of neighbors to be used is not necessarily the same as that used439

in the editing algorithm. To avoid confusion, the number of neighbors used in440

the editing algorithm will be noted by k′. Hereafter, we will show the influence441

of these parameters by using the Emotions dataset.442

5.3.1 Editing parameters443

For the editing algorithm presented in Section 4.2, there are three tunable444

parameters:445

• γ: Parameter used in Equation 3 to scale the distance to each neighbor. It446

was fixed at the best value obtained by cross validation using the EMLkNN447

method on the initial training dataset.448

• k′: Number of neighbors used in the editing algorithm.449

• t: Threshold used to determine the number l of instances to delete. We use450

in the simulation a Hamming loss calculated on each instance as in Equation451

(6). This Hamming loss calculated on only one instance will have a value452

equals q/Q, where q ∈ {0, . . . , Q}. Note that the value of the parameter t453

to be taken should depend on the global Hamming loss calculated on the454

training dataset.455

Figure 4 shows the box plot for the Hamming loss metric obtained by the456

EMLkNN method on the initial dataset before editing the data for different457

values of γ, where k was varied from 1 to 12 (thus each box plot corresponds458

to 12 values of the Hamming loss obtained for a given γ). Figure ?? shows the459

Hamming loss measure obtained as a function of t, where k′ was varied from 1460

to 12, γ was fixed to 0.1, and k was fixed to 3 (we can get the same results for461

any value of k, for that we chose for it a small value). The box plot in Figure462
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Fig. 4. Hamming loss measure for EMLkNN on the initial Emotions training set for
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Fig. 5. Hamming loss measure for EMLkNN after editing the Emotions training set
as a function of t.

6 shows the Hamming loss criterion with respect to the number of neighbors463

k′. k was varied from 1 to 12, and γ was fixed to 0.1.464

5.3.2 Testing parameters465

In the testing phase, the EMLkNN and the Rank-SVM methods are tested466

with the edited data. EMLkNN has two parameters: the number of neighbors467

k, and the discounting parameter γ. These parameters were determined using468

grid search and by focusing on the Hamming loss measure: k was varied from469
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Fig. 6. Hamming loss measure for EMLkNN on the edited Emotions training set as
a function of k′.

1 to 12, and γ from 0 to 1 with 0.01 steps. Note that the algorithm presented470

in Section 4.2 was repeated only once by taking the best value of t; i.e., the471

one that eliminates an important number of erroneous instances at once.472

For the Rank-SVM method, we used the Gaussian kernel with three tunable473

parameters: kernel scale parameter γr, penalty constant C, and maximal iter-474

ations M. By focusing on the Hamming loss measure, cross-validation via grid475

search was applied for parameter tuning as explained in [43]. The γR and C476

parameters took values from 27, 26, . . . , to 2−7 respectively. M was set to 50,477

100, 150 and 200.478

5.4 Results and Discussion479

In this section, we evaluate the performance of the editing algorithm by com-480

paring the results achieved by the EMLkNN and Rank-SVM methods before481

and after editing. Using the optimal parameter values obtained on the train-482

ing datasets, we studied the performance using independent test datasets.483

The experimental results on datasets are given in Tables 5-8. For the webpage484

dataset, the average performance out of the 11 different categorization prob-485

lems is reported in Table 9. The rank of each method is given, and the best486

value on each evaluation criterion is highlighted in bold letters. These results487

can be summarized as follows:488

• From the results in Tables 5-9, we can observe that EMLkNN applied on489

edited data improves the performance of the same method on the initial490

dataset for all prediction-based metrics except the Hamming loss measure.491
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The Hamming loss criterion is similar before and after edition.492

• Regarding the Rank-SVM method, results on editing datasets are better493

than those on initial datasets for all measures (prediction-based and ranking-494

based metrics).495

• The Rank-SVM applied on editing datasets gives the best performance ac-496

cording to the majority of evaluation measures for the Yeast, Medical, En-497

ron,and Webpage datasets. For the Emotions dataset, the best performance498

on the ranking-based measures was obtained by the Rank-SVM method499

applied to the edited dataset, while the best results according to predicted-500

based measures were obtained by the EMLkNN algorithm applied to the501

edited dataset.502

In order to show the effect of edition on data storage, Table 10 reports infor-503

mation about the used datasets: the number of instances of full and edited504

training datasets, and the time necessary to editing each of these datasets.505

The results indicate that the edited datasets require less storage space than506

do the initial datasets.507

In order to study the impact of edition on classification time, we compared508

the time used by each method (programmed in Matlab) applied to the ini-509

tial and edited datasets. Table 11 presents the total running time (learning +510

testing time) using the initial training and edited datasets. We can see that511

the running time of the two classifiers (EMLkNN and Rank-SVM) are signif-512

icantly reduced in our experiments, except for the Enron dataset. In general,513

EMLkNN is faster than Rank-SVM, due to the space complexity of the Rank-514

SVM method which is proportional to n ∗Q2. The machine used was Intel(R)515

Xeon(R) CPU at 2.67 GHz, 12 GB RAM with Matlab2012a.516

To statistically measure the significance of performance difference between517

results on initial datasets and those on edited datasets, two statistical in-518

dicators are carried out using ten-fold cross validation: the pairwise t-tests519

and the Friedman test [14]. The average results of different evaluation crite-520

ria using ten-fold cross validation are reported in Tables 12-16 in which we521

use the pairwise t-test. The significance is usually determined under a signif-522

icance level of α = 0.05. To be able to see the power of our conclusions, the523

p-values of Friedman test and t-test on the different datasets are indicated in524

Tables 17-21. Note that small values for the p-values indicate strong presump-525

tion against null hypothesis, which is the hypothesis saying that the results526

of the two methods are not different. For the chosen significance level, we can527

consider that the results of the two methods (before and after editing) are528

different if p-value < 0.05. We can see also from the tables that the results529

of the pairwise t-test and the Friedman test are correlated leading almost to530

similar conclusion about the significance of the difference between methods.531

20



The results presented in this section show the advantage of editing multi-label532

datasets to improve the performance of multi-label classifiers. By comparing533

the performance of multi-label classifiers (EMLkNN and Rank-SVM) before534

and after edition, we can conclude that editing initial multi-label datasets535

improve the performance evaluation of some classifiers. Furthermore, we may536

reduce the complexity of classifiers since we need to train less instances, which537

are distributed into more homogeneous clusters. We might deduce also that538

editing training datasets is a way to reduce the running time complexity of539

some multi-label classification methods. Even if we use the Hamming loss540

criterion to edit the training datasets, we can get better performance on other541

metrics.542

Note that we tested the use of the edited data set on other multi-label clas-543

sifiers, namely the C4.5 based on decision trees [6], and the MLMLP based544

on neural network [45]. The results we obtained show better performances of545

these methods on all the datasets, which follows the behavior of the previ-546

ous presented methods (EMLkNN and Rank-SVM). We are not showing the547

numerical results for a better readability of the paper.548

6 Conclusion549

In this paper, we have addressed the problem of prototype selection in the550

framework of multi-label learning. Although the extensive work in multi-label551

classification, to the best of our knowledge, the topic of prototype selection has552

not received any attention so far. The goal is not only to optimize performance553

of some classifiers, but also the size of the training dataset must be reduced554

as well as the computational time of learning algorithms.555

Edited Nearest Neighbor for Multi-Labelled data is an efficient editing method.556

The idea is, first, to classify all training instances using a k-NN rule, and, sec-557

ond, to eliminate erroneous instances based on a local criterion induced from558

the Hamming loss measure. The reduced set of instances is then used to classify559

unseen instances. We have demonstrated the effect of editing dataset on two560

learning algorithms: the EMLkNN and the Rank-SVM. This was illustrated561

through an example on synthetic data.562

We applied our algorithm of editing to five real-world datasets from different563

domains of application: multimedia classification, bioinformatics and text cat-564

egorization. Experimenting with these datasets, we observed that the learning565

algorithms (EMLkNN and Rank-SVM) with the editing datasets significantly566

outperformed the same algorithms on the initial datasets in terms of classi-567

fication performance and computational costs. The explanation is that the568

editing datasets are distributed in more homogeneous clusters by reducing the569
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number of irrelevant instances. Learning from these new instances is faster570

with better generalization ability.571

Note that the scalability of the presented approach depends on that of the572

k-NN algorithm. Several approaches exist to adapt the use of the k-NN on573

large datasets. For example, a simple approach is to use the idea of clustering574

in order to not to compute distances of a testing instance with respect to all575

training instances. It is clear that if the training data is very noisy, our method576

of edition may be a solution to reduce the number of training data by using577

only clean instances with a relatively small number with respect to the initial578

dataset.579

Future research should consider applying the existing algorithm to other appli-580

cation domains, e.g., audio, video and images and showing extensive results on581

several classifiers, including for example decision trees [6], neural networks [45]582

and classifier chains [26], to investigate better the merit of editing in these set-583

tings. A very interesting idea will be to apply the edition on the training set584

using another method than the k-NN based one. Surely, this idea will not be585

straightforward. For example, if we decide to use the Rank SVM, we have to586

edit instances that are misclassified (since these instances increase the Ham-587

ming Loss), but it is well known that these instances (with non zero Lagrange588

multipliers) are involved in the construction of decision boundaries.589

Table 5
Experimental results on the Emotions dataset.

EMLkNN Rank-SVM

Before Editing After Editing Before Editing After Editing

Hamming loss− 0.209(4) 0.204(2) 0.206(3) 0.194(1)

One-Error− 0.287(2) 0.297(3) 0.302(4) 0.277(1)

Coverage− 1.881(2) 2.010(4) 1.896(3) 1.847(1)

Ranking loss− 0.168(3) 0.220(4) 0.166(2) 0.158(1)

Average Precision+ 0.7994(2) 0.7959(4) 0.7993(3) 0.8080(1)

Accuracy+ 0.519(4) 0.569(1) 0.546(3) 0.561(2)

Precision+ 0.656(3) 0.705(1) 0.651(4) 0.690(2)

Recall+ 0.592(3) 0.657(1) 0.642(2) 0.642(2)

F1+ 0.596(4) 0.648(1) 0.621(3) 0.637(2)

+(-): the higher (smaller) the value, the better the performance.
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Table 6
Experimental results on the Yeast dataset.

EMLkNN Rank-SVM

Before Editing After Editing Before Editing After Editing

Hamming loss− 0.205(4) 0.202(3) 0.197(2) 0.193(1)

One-Error− 0.261(4) 0.249(3) 0.221(1) 0.238(2)

Coverage− 6.494(3) 6.577(4) 6.424(2) 6.269(1)

Ranking loss− 0.188(3) 0.201(4) 0.167(2) 0.165(1)

Average precision+ 0.751(3) 0.751(4) 0.767(2) 0.768(1)

Accuracy+ 0.515(4) 0.529(2) 0.522(3) 0.539(1)

Precision+ 0.685(4) 0.689(3) 0.697(2) 0.703(1)

Recall+ 0.599(4) 0.618(3) 0.625(3) 0.635(1)

F1+ 0.613(4) 0.627(3) 0.628(3) 0.641(1)
+(-): the higher (smaller) the value, the better the performance.

Table 7
Experimental results on the Medical dataset.

EMLkNN Rank-SVM

Before Editing After Editing Before Editing After Editing

Hamming loss− 0.018(3) 0.018(4) 0.012(2) 0.011(1)

One-Error− 0.285(2) 0.291(3) 0.141(1) 0.141(1)

Coverage− 3.541(3) 3.661(4) 1.135(1) 1.255(2)

Ranking loss− 0.124(3) 0.126(4) 0.015(1) 0.018(2)

Average precision+ 0.779(3) 0.776(4) 0.897(2) 0.898(1)

Accuracy+ 0.559(4) 0.585(3) 0.688(2) 0.726(1)

Precision+ 0.617(4) 0.647(3) 0.744(2) 0.781(1)

Recall+ 0.569(4) 0.594(3) 0.718(2) 0.754(1)

F1+ 0.581(4) 0.608(3) 0.716(2) 0.754(1)
+(-): the higher (smaller) the value, the better the performance.

A Evaluation measures590

As discussed in Section 3.2, Performance evaluation for multi-label learning591

systems differs from that of single-label classification. Let H : X → 2Y be a592

multi-label classifier that assigns a predicted label subset of Y = {ω1, . . . , ωQ}593

to each instance x ∈ X, and let f : X×Y → [0, 1] be the corresponding scoring594

function which gives a score for each label ωq which in turn is interpreted as595
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Table 8
Experimental results on the Enron dataset.

EMLkNN Rank-SVM

Before Editing After Editing Before Editing After Editing

Hamming loss− 0.057(3) 0.059(4) 0.055(2) 0.053(1)

One-Error− 0.437(3) 0.478(4) 0.287(2) 0.275(1)

Coverage− 21.959(3) 26.226(4) 13.758(2) 12.772(1)

Ranking loss− 0.261(3) 0.395(4) 0.099(2) 0.090(1)

Average precision+ 0.568(3) 0.509(4) 0.619(2) 0.647(1)

Accuracy+ 0.303(4) 0.318(3) 0.398(2) 0.436(1)

Precision+ 0.473(4) 0.484(3) 0.574(2) 0.587(1)

Recall+ 0.340(4) 0.359(3) 0.495(2) 0.556(1)

F1+ 0.372(4) 0.390(3) 0.511(2) 0.550(1)
+(-): the higher (smaller) the value, the better the performance.

Table 9
Experimental results on the Webpage dataset.

EMLkNN Rank-SVM

Before Editing After Editing Before Editing After Editing

Hamming loss− 0.065(4) 0.058(3) 0.043(2) 0.042(1)

One-Error− 0.589(4) 0.558(3) 0.417(2) 0.402(1)

Coverage− 12.164(3) 12.906(4) 5.080(2) 4.169(1)

Ranking loss− 0.506(3) 0.545(4) 0.128(2) 0.1000(1)

Average precision+ 0.471(3) 0.470(4) 0.651(2) 0.673(1)

Accuracy+ 0.338(4) 0.364(3) 0.402(2) 0.437(1)

Precision+ 0.393(4) 0.426(3) 0.465(2) 0.508(1)

Recall+ 0.387(4) 0.391(3) 0.435(2) 0.467(1)

F1+ 0.371(4) 0.392(3) 0.432(2) 0.469(1)
+(-): the higher (smaller) the value, the better the performance.

the probability that ωq is relevant. The function f(., .) can be transformed to a596

ranking function rankf (., .) which maps the outputs of f(x, ω) for any ω ∈ Y597

to {ω1, ω2, . . . , ωQ} so that f(xi, ωq) > f(xi, ωr) implies that rankf (xi, ωq) <598

rankf (xi, ωr).599

Given a set S = {(x1, Y1), . . . , (xm, Ym)} of m test examples, the evaluation600

metrics of multi-label learning systems are divided into two groups: prediction-601

based and ranking-based metrics. Prediction-based measures are calculated602

24



Table 10
Information about the used datasets.

Number of instances in
initial training data

Number of instances in
edited training data

Editing Time (seconds)

Emotions 391 113 2.4

Yeast 1500 832 30.8

Medical 645 624 6.2

Enron 1123 861 9.2

Webpage 22000 13693 435.3

Table 11
Running Time (in Seconds) for learning and testing for the two methods.

EMLkNN Rank-SVM

Before Editing After Editing Before Editing After Editing

Emotions 1.4 0.4 162.9 9.9

Yeast 12.4 10.1 1.1 ∗ 104 0.2 ∗ 104

Medical 7.3 3.7 1.6 ∗ 104 1.4 ∗ 104

Enron 18.8 8.2 1.0 ∗ 104 1.6 ∗ 104

Webpage 61.7 47.7 2.1 ∗ 104 s ' 14 h 8.6 ∗ 103 s ' 5.9 h

Table 12
Experimental results (mean±std) on the Emotions dataset.

EMLkNN Rank-SVM

Before Editing After Editing Before Editing After Editing

Hamming loss− 0.191± 0.019• 0.146± 0.064 0.192± 0.022• 0.148± 0.0474

One-Error− 0.266± 0.044• 0.188± 0.100 0.256± 0.081• 0.158± 0.0691

Coverage− 1.816± 0.198◦ 1.524± 0.402 1.702± 0.293◦ 1.505± 0.4016

Ranking loss− 0.173± 0.028◦ 0.131± 0.061 0.156± 0.039• 0.100± 0.0495

Average precision+ 0.799± 0.030• 0.864± 0.054 0.807± 0.044• 0.874± 0.0477

Accuracy+ 0.558± 0.045• 0.681± 0.119 0.541± 0.049• 0.658± 0.0946

Precision+ 0.688± 0.052• 0.774± 0.095 0.663± 0.065• 0.757± 0.0805

Recall+ 0.641± 0.051• 0.772± 0.086 0.654± 0.062• 0.768± 0.1017

F1+ 0.635± 0.045• 0.748± 0.095 0.626± 0.052• 0.735± 0.0850

•(◦): statistically significant (non-significant) difference of performance of the classification algorithm
applied on the initial and the edited dataset, based on two-tailed paired t-test at 5% significance.

based on the average difference of the actual and the predicted set of la-603

bels over all test examples. Ranking-based metrics evaluate the label ranking604

quality depending on the scoring function f(., .).605
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Table 13
Experimental results (mean±std) on the Yeast dataset.

EMLkNN Rank-SVM

Before Editing After Editing Before Editing After Editing

Hamming loss− 0.201± 0.010• 0.168± 0.041 0.195± 0.006• 0.157± 0.0384

One-Error− 0.242± 0.027• 0.170± 0.074 0.216± 0.032◦ 0.165± 0.0724

Coverage− 6.481± 0.263• 5.727± 0.800 6.336± 0.236• 5.496± 0.7416

Ranking loss− 0.186± 0.015• 0.139± 0.053 0.165± 0.007• 0.116± 0.0451

Average precision+ 0.757± 0.018• 0.813± 0.059 0.773± 0.013• 0.829± 0.0587

Accuracy+ 0.524± 0.021• 0.604± 0.074 0.529± 0.016• 0.611± 0.0763

Precision+ 0.682± 0.024• 0.734± 0.060 0.695± 0.016• 0.755± 0.0571

Recall+ 0.614± 0.023• 0.705± 0.076 0.633± 0.022• 0.713± 0.0795

F1+ 0.621± 0.021• 0.697± 0.068 0.634± 0.011• 0.707± 0.0692

•(◦): statistically significant (non-significant) difference of performance of the classification algorithm
applied on the initial and the edited dataset, based on two-tailed paired t-test at 5% significance.

Table 14
Experimental results (mean±std) on the Medical dataset.

EMLkNN Rank-SVM

Before Editing After Editing Before Editing After Editing

Hamming loss− 0.017± 0.003◦ 0.015± 0.002 0.011± 0.002◦ 0.010± 0.001

One-Error− 0.277± 0.068◦ 0.242± 0.028 0.137± 0.033◦ 0.118± 0.034

Coverage− 3.356± 1.164◦ 4.129± 0.881 1.070± 0.370◦ 0.864± 0.284

Ranking loss− 0.108± 0.034• 0.151± 0.027 0.014± 0.007◦ 0.011± 0.005

Average precision+ 0.784± 0.047◦ 0.796± 0.019 0.906± 0.022◦ 0.915± 0.021

Accuracy+ 0.592± 0.064• 0.642± 0.034 0.719± 0.042• 0.769± 0.030

Precision+ 0.654± 0.065• 0.705± 0.033 0.761± 0.049• 0.810± 0.034

Recall+ 0.611± 0.061• 0.668± 0.038 0.757± 0.041• 0.819± 0.032

F1+ 0.619± 0.063• 0.672± 0.034 0.746± 0.044• 0.799± 0.030

•(◦): statistically significant (non-significant) difference of performance of the classification algorithm
applied on the initial and the edited dataset, based on two-tailed paired t-test at 5% significance.

A.1 Prediction-based measures606

Hamming loss: The hamming loss metric for the set of labels is defined as607

the fraction of labels whose relevance is incorrectly predicted:608

HLoss(H,S) =
1

m

m∑
i=1

|Yi4Ŷi|
Q

, (A.1)

where 4 denotes the symmetric difference between two sets.609

Accuracy: The accuracy metric gives an average degree of similarity between610

the predicted and the ground truth label sets:611

Accuracy(H,S) =
1

m

m∑
i=1

|Yi ∩ Ŷi|
|Yi ∪ Ŷi|

. (A.2)
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Table 15
Experimental results (mean±std) on the Enron dataset.

EMLkNN Rank-SVM

Before Editing After Editing Before Editing After Editing

Hamming loss− 0.062± 0.010◦ 0.057± 0.004 0.056± 0.014◦ 0.049± 0.003

One-Error− 0.571± 0.098• 0.390± 0.075 0.294± 0.111◦ 0.215± 0.049

Coverage− 25.645± 6.323◦ 23.242± 2.423 13.937± 3.234• 11.476± 1.167

Ranking loss− 0.334± 0.086◦ 0.294± 0.058 0.098± 0.024• 0.072± 0.012

Average precision+ 0.467± 0.056◦ 0.577± 0.052 0.614± 0.087• 0.702± 0.035

Accuracy+ 0.165± 0.058• 0.366± 0.048 0.380± 0.125• 0.486± 0.040

Precision+ 0.334± 0.106• 0.542± 0.059 0.575± 0.097• 0.660± 0.038

Recall+ 0.184± 0.066• 0.421± 0.054 0.466± 0.110• 0.599± 0.044

F1+ 0.219± 0.075• 0.448± 0.054 0.494± 0.105• 0.602± 0.040

•(◦): statistically significant (non-significant) difference of performance of the classification algorithm
applied on the initial and the edited dataset, based on two-tailed paired t-test at 5% significance.

Table 16
Experimental results (mean±std) on the Webpage dataset.

EMLkNN Rank-SVM

Before Editing After Editing Before Editing After Editing

Hamming loss− 0.063± 0.001• 0.050± 0.007 0.042± 0.005 0.041 ± 0.004◦

One-Error− 0.564± 0.007• 0.523± 0.059 0.399± 0.036 0.394 ± 0.035◦

Coverage− 12.124± 0.149• 10.313± 1.531 5.253± 0.397 4.321 ± 0.687•

Ranking loss− 0.494± 0.006• 0.415± 0.064 0.132± 0.009 0.108 ± 0.015•

Average precision+ 0.485± 0.004• 0.532± 0.057 0.631± 0.031 0.678 ± 0.028•

Accuracy+ 0.359± 0.004◦ 0.372± 0.063 0.402± 0.028 0.440 ± 0.039•

Precision+ 0.417± 0.004◦ 0.425± 0.061 0.467± 0.032 0.500 ± 0.037•

Recall+ 0.402± 0.006◦ 0.396± 0.062 0.439± 0.030 0.486 ± 0.040•

F1+ 0.391± 0.005◦ 0.397± 0.062 0.434± 0.030 0.474 ± 0.039•
+(-): the higher (smaller) the value, the better the performance.

•(◦): statistically significant (non-significant) difference of performance of the classification algorithm
applied on the initial and the edited dataset, based on two-tailed paired t-test at 5% significance.

Precision: The precision metric computes the proportion of true positive612

predictions:613

Precision(H,S) =
1

m

m∑
i=1

|Yi ∩ Ŷi|
|Ŷi|

. (A.3)

Recall: This metric estimates the proportion of true labels that have been614

predicted as positives:615

Recall(H,S) =
1

m

m∑
i=1

|Yi ∩ Ŷi|
|Yi|

. (A.4)

F1-measure: F1 measure is defined as the harmonic mean of precision and616
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Table 17
P-values on the Emotions dataset.

t-test Friedman test

EMLkNN Rank-SVM EMLkNN Rank-SVM

Hamming loss− 0.048 0.016 0.058 0.206

One-Error− 0.037 0.009 0.527 0.011

Coverage− 0.054 0.225 0.206 1

Ranking loss− 0.061 0.011 0.058 0.206

Average precision+ 0.004 0.004 0.011 0.011

Accuracy+ 0.007 0.003 0.011 0.058

Precision+ 0.021 0.010 0.011 0.011

Recall+ 0.001 0.007 0.011 0.206

F1+ 0.003 0.003 0.011 0.058
+(-): the higher (smaller) the value, the better the performance.

Table 18
P-values on the Yeast dataset.

t-test Friedman test

EMLkNN Rank-SVM EMLkNN Rank-SVM

Hamming loss− 0.023 0.007 0.206 0.058

One-Error− 0.011 0.059 0.206 0.058

Coverage− 0.011 0.003 0.058 0.058

Ranking loss− 0.015 0.003 0.058 0.051

Average precision+ 0.010 0.008 0.206 0.058

Accuracy+ 0.004 0.004 0.058 0.058

Precision+ 0.020 0.005 0.206 0.011

Recall+ 0.002 0.007 0.508 0.058

F1+ 0.004 0.004 0.058 0.058
+(-): the higher (smaller) the value, the better the performance.

recall. It is calculated as:617

F1(H,S) =
1

m

m∑
i=1

2|Yi ∩ Ŷi|
|Yi|+ |Ŷi|

. (A.5)

Note that the smaller the value of the Hamming loss, the better the perfor-618

mance. For the other metrics, higher values correspond to better classification619

quality.620
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Table 19
P-values on the Medical dataset.

t-test Friedman test

EMLkNN Rank-SVM EMLkNN Rank-SVM

Hamming loss− 0.105 0.136 0.527 0.527

One-Error− 0.144 0.224 0.058 1

Coverage− 0.111 0.178 0.206 0.058

Ranking loss− 0.006 0.325 0.058 0.058

Average precision+ 0.476 0.336 1 1

Accuracy+ 0.043 0.007 0.206 0.058

Precision+ 0.04 0.021 0.058 0.527

Recall+ 0.022 0.002 0.206 0.011

F1+ 0.032 0.005 0.058 0.058
+(-): the higher (smaller) the value, the better the performance.

Table 20
P-values on the Enron dataset.

t-test Friedman test

EMLkNN Rank-SVM EMLkNN Rank-SVM

Hamming loss− 0.154 0.112 0.058 0.011

One-Error− 0 0.054 0.011 0.058

Coverage− 0.276 0.036 0.206 0.011

Ranking loss− 0.232 0.007 0.206 0.011

Average precision+ 0 0.008 0.011 0.011

Accuracy+ 0 0.019 0.002 0.011

Precision+ 0 0.018 0.011 0.011

Recall+ 0 0.002 0.002 0.011

F1+ 0 0.007 0.001 0.011
+(-): the higher (smaller) the value, the better the performance.

A.2 Ranking-based measures621

One-error: This metric computes how many times the top-ranked label is622

not in the true set of labels of the instance, and it ignores the relevancy of all623

other labels.624

OErr(f,S) =
1

m

m∑
i=1

〈[arg max
ω∈Y

f(xi, ω)] /∈ Yi〉, (A.6)
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Table 21
P-values on the Web dataset.

t-test Friedman test

EMLkNN Rank-SVM EMLkNN Rank-SVM

Hamming loss− 0 0.537 0.002 0.206

One-Error− 0.042 0.569 0.206 0.527

Coverage− 0.002 0 0.058 0.002

Ranking loss− 0.001 0 0.011 0.001

Average precision+ 0.018 0.028 0.206 0.058

Accuracy+ 0.500 0.117 0.058 0.058

Precision+ 0.675 0.281 0.206 0.206

Recall+ 0.744 0.054 0.011 0.058

F1+ 0.757 0.117 0.058 0.058
+(-): the higher (smaller) the value, the better the performance.

where for any proposition H, 〈H〉 equals to 1 if H holds and 0 otherwise.625

Note that, for single-label classification problems, the One Error is identical626

to ordinary classification error.627

Coverage: Coverage computes the average of how far we need to move down628

the ranked label list in order to cover all the labels assigned to a test instance.629

Cov(f,S) =
1

m

m∑
i=1

max
ω∈Yi

rankf (xi, ω)− 1. (A.7)

Ranking loss: This metric computes the number of times that an incorrect630

label is ranked higher than a correct label.631

RLoss(f,S) =
1

m

m∑
i=1

1

|Yi||Y i|
|(ωq, ωr) ∈ Yi × Y i\f(xi, ωq) ≤ f(xi, ωr)| (A.8)

where Y i is the complementary set of Yi in Y .632

Average precision: This metric evaluates the average fraction of labels633

ranked above a particular label ω ∈ Yi which are actually in Yi.634

AvPrec(f,S) =
1

m

m∑
i=1

1

|Yi|
∑

ωq∈Yi

|{ωr ∈ Yi}\rankf (xi, ωr) ≤ rankf (xi, ωq)|
rankf (xi, ωq)

.

(A.9)
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Note that AvPrec(f,S) = 1 means that the labels are perfectly ranked. For635

the other metrics, smaller values correspond to a better label ranking quality.636

B Multi-labeled dataset statistics637

Given a multi-labeled dataset D = {(xi, Yi), i = 1, . . . , n} with xi ∈ X and638

Yi ⊆ Y , this dataset can be measured by the number of instances (n), the639

number of attributes in the input space, and the number of labels (Q). In the640

following, we review some statistics about the multi-labeled dataset D [36].641

Label Cardinality: The Label Cardinality (LCard) of D is the average num-642

ber of labels per instance. Label cardinality is calculated as643

LCard(D) =
1

n

n∑
i=1

|Yi| (B.1)

Label Density: The Label Density (LDen) of D is defined as the average644

number of labels per instance divided by the total number of labels Q. Label645

density is calculated as:646

LDen(D) =
1

n

n∑
i=1

|Yi|
Q

(B.2)

Both metrics indicate the number of alternative labels that characterize the647

examples of a multi-labeled dataset. Label cardinality is independent of the648

total number of labels in the classification problem, while label density takes649

into consideration the total number of labels. Two datasets with the same label650

cardinality but with different label densities may present different properties651

that influence the performance of the multi-label classification methods.652

Distinct Label sets: The Distinct Label sets (DL) counts the number of653

label sets that are unique across the total number of examples. Distinct label654

sets is given by:655

DL(D) = |{Yi ⊆ Y|∃ xi ∈ X : (xi, Yi) ∈ D}| (B.3)

This measure gives an idea of the regularity of the labeling scheme.656

3 http://www.wormbook.org/chapters/www_genomclassprot/

genomclassprot.html
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