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Abstract

In this paper, we investigate ways to learn efficiently from uncertain data us-

ing belief functions. In order to extract more knowledge from imperfect and

insufficient information and to improve classification accuracy, we propose a

supervised learning method composed of a feature selection procedure and a

two-step classification strategy. Using training information, the proposed fea-

ture selection procedure automatically determines the most informative feature

subset by minimizing an objective function. The proposed two-step classification

strategy further improves the decision-making accuracy by using complemen-

tary information obtained during the classification process. The performance of

the proposed method was evaluated on various synthetic and real datasets. A

comparison with other classification methods is also presented.

Keywords: Dempster-Shafer theory, evidence theory, belief functions,

uncertain data, feature selection, classification

1. Introduction

According to whether prior probabilities and class conditional densities are

needed, supervised learning methods can be divided into two main categories,

namely, parametric (model-based) and nonparametric (case-based) methods [1].
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Because they do not need any prior knowledge other than training samples, case-5

based classifiers (e.g., K-nearest neighbor rule [2], multilayer perceptrons [3],

support vector machines [4] and decision trees [5]) are widely used in practice,

and have proved to very efficient. However, in the case of uncertain and im-

precise data, many samples may be corrupted with noise or located in highly

overlapping areas; consequently, it becomes difficult for these traditional meth-10

ods to obtain satisfactory classification results.

Learning effectively with partial knowledge is drawing increasing attention in

statical pattern recognition. Various theories from the uncertainty management

community (e.g., fuzzy set theory [6, 7], possibility theory [8], rough set the-

ory [9] and imprecise probability theory [10]) have been used to build learning15

methods dealing specifically with uncertain data. The theory of belief functions,

also known as Dempster-Shafer theory or Evidence theory, is an extension of

both probability theory and the set-membership approach [11, 12]. It has been

shown to be a powerful framework for representing and reasoning with uncertain

and imprecise information. A growing number of applications of belief function20

theory has been reported in unsupervised learning [13, 14, 15], ensemble learn-

ing [16, 17, 18], model parameter estimation [19, 20] and partially supervised

learning [21, 22].

Apart from the publications mentioned above, the use of belief functions

in pattern recognition has been firstly focused on supervised learning methods.25

In [23], an evidence-theoretic K-nearest neighbor classification (EK-NN) rule

was proposed. It provided a global treatment of imperfect knowledge regard-

ing training data, and was further optimized in [24]. In [25], a neural network

classifier based on belief functions was introduced as an adaptive version of the

EK-NN. Methods for building decision trees from imperfect data were presented30

in [26, 27]. Regression methods using belief functions were proposed in [28, 29].

Using the notion of credal partition introduced in [13], and in order to reflect

the imprecision degree of the classification, a belief-based K-nearest neighbor

(BK-NN) method was proposed by Liu et al. in [30]. To cope with the high

computational complexity of the nearest-neighbors strategy, a Credal Classifi-35
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cation Rule (CCR) was further developed by Liu et al. in [31], as a simplified

version of the BK-NN. The BK-NN and CCR methods assign objects not only

to specific classes, but also to the disjunction of specific classes (meta-classes).

This strategy allows a reduction of misclassification rate, at the cost of leaving

the class of some objects unspecified. However, in many applications, a specific40

decision has to be made.

In this paper, we explore two complementary ways to extract more useful

knowledge from the training data:

• It often happens that the dataset contains irrelevant or redundant features.

So as to efficiently learn from such imperfect training information, it is45

essential to find the most informative feature subset;

• Additional knowledge can be gained from the testing dataset itself to help

reduce the possibility of misclassification. The “easy to classify” objects in

the testing dataset can provide complementary evidence to help determine

the specific class of the “hard to classify” objects.50

To this end, a novel supervised learning method based on belief functions is

proposed in this paper. The proposed method is composed of a feature selection

procedure and a two-step classification strategy, both based on a specific mass

function construction method inspired by [32]. This method, called the “Demp-

ster+Yager” combination rule, uses features of Dempster’s rule, Yager’s rule [33]55

and Shafer’s discounting procedure [11] to achieve a better representation of un-

certainty and imprecision in the EK-NN classifier. Through minimizing a new

criterion based on belief functions, the proposed feature selection procedure

searches for informative feature subsets that yield high classification accuracy

and small overlap between classes. After feature selection, the proposed two-step60

classification strategy uses test samples that are easy to classify, as additional

evidence to help classifying test samples lying in highly overlapping areas of the

feature space.

The rest of this paper is organized as follows. The background on belief

functions and the traditional EK-NN classification rule is recalled in the next65
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section. The proposed feature selection procedure and two-step classification

strategy are discussed in Section 3. In Section 4, the proposed method is tested

on different synthetic and real datasets, and a comparison with other methods

is presented. Finally, conclusions are given in Section 5.

2. Background70

2.1. Belief functions

The theory of belief functions, also known as Dempster-Shafer or Evidence

theory, was introduced by Dempster and Shafer [34, 11] and further elaborated

by Smets [35, 12]. As a generalization of probability theory and set-membership

approaches, the theory of belief functions has proved to be an effective theoret-75

ical framework for reasoning with uncertain and imprecise information. In this

section, only the basic definitions will be recalled.

LetX be a variable taking values in the frame of discernment Ω = {ω1, · · · , ωc}.

Uncertain and imprecision knowledge about the actual value of X can be rep-

resented by a mass function, defined as a mapping m from 2Ω to [0,1] such that

m(∅) = 0 and ∑
A⊆Ω

m(A) = 1. (1)

The subsets A of Ω such that m(A) > 0 are called the focal elements of mass

function m. If all focal elements are singletons, m is said to be Bayesian; it is

then equivalent to a probability distribution. A mass function m with only one80

focal element is said to be categorical and is equivalent to a set.

For any subset A ⊆ Ω, the probability that the evidence supports A can be

defined as

Bel(A) =
∑
B⊆A

m(B), (2)

while the probability that the evidence does not contradict A is

Pl(A) =
∑

B∩A6=∅

m(B). (3)
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Functions Bel and Pl are called, respectively, the belief function and the plau-

sibility function associated to m. Belief and plausibility functions are in one-

to-one correspondence with mass functions. They can be regarded as providing

lower and upper bounds for the degree of belief that can be attached to each85

subset of Ω.

Two mass functions m1 and m2 derived from independent items of evidence

can be combined by Dempster’s rule [11] to obtain a new mass function m1⊕m2,

defined as

(m1 ⊕m2)(A) =
1

1−Q
∑

B∩C=A

m1(B)m2(C), (4)

for all nonempty A ⊆ Ω, where Q =
∑
B∩C=∅m1(B)m2(C) is the degree of

conflict between m1 and m2.

When the degree of conflict Q between m1 and m2 is large, the combination

result obtained by Dempster’s rule may become unreliable. To cope with this

problem, Yager [33] proposed to transfer the conflicting mass to the frame of

discernment Ω, yielding the following combined mass function,

m(A) =


∑
B∩C=Am1(B)m2(C) if A 6= ∅, A ⊂ Ω;

m1(Ω)m2(Ω) +
∑
B∩C=∅m1(B)m2(C) if A = Ω;

0, if A = ∅.

(5)

A mass functionm can be transformed into a probability function for decision-

making. In Smet’s Transferable Belief Model [12, 35], the pignistic probability

transformation transforms a mass function into the following probability distri-

bution:

BetP (ωq) =
∑

A⊆Ω:ωq∈A

m(A)

|A|
, (6)

for all ωq ∈ Ω.

2.2. Evidential K-NN classifier90

In [23], an evidence-theoretic K-nearest neighbor classification (EK-NN) rule

was proposed. In this rule, each neighbor of a sample to be classified is treated

as an item of evidence that supports certain hypotheses regarding the class label
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of this sample. The strength of this evidence decreases with the distance to the

test sample. Evidence from the K nearest neighbors is pooled using Dempster’s95

combination rule to make the final decision.

Let {(Xi, Yi), i = 1, · · · , N} be a collection of N training examples, in

which Xi = [x1, · · · , xm] is the ith training sample with m features and Yi ∈

{ω1, · · · , ωc} is the corresponding class label. Given an input test sample Xt,

the EK-NN classifier uses the following steps to determine its class label:100

• Let Xj be one of the K nearest neighbors of Xt with class label Yj = ωq.

Then the mass function induced by Xj , which supports the assertion that

Xt also belongs to ωq is

mt,j({ωq}) = α exp(−γqd2
t,j), (7a)

mt,j(Ω) = 1− α exp(−γqd2
t,j), (7b)

where dt,j is the distance between Xj and Xt. According to [23], param-

eter α can be heuristically set as 0.95, and γq > 0 (q ∈ {1, · · · , c}) can

be determined separately for each class as 1/d2
q, where dq is the mean

distance between two training samples belonging to class ωq. The value

of α and γq > 0 can also be optimized using the training data [24];105

• Dempster’s rule (4) is then used to combine all neighbors’ mass functions.

Test sample Xt is then assigned to the class with the maximum pignistic

probability (6).

Besides Dempster’s rule, some other methods were also proposed in recent

publications to combine neighbors’ mass functions. For instance, in the eviden-110

tial classifier method [32], a new combination rule was developed specifically for

outlier detection.

3. Proposed Method

Both the feature selection procedure and the two-step classification strategy

proposed in this paper need proper handling of the uncertainty and imprecision115
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in the data. To this end, a simple and specific mass function construction pro-

cedure will first be introduced in Section 3.1. The proposed feature selection

procedure and two-step classification strategy will then be presented, respec-

tively, in Sections 3.2 and 3.3.

3.1. Construction of mass functions120

We developed a specific combination rule to compute a mass function about

the class label of a test sample, based on the evidence of its K-nearest neighbors.

The proposed hybrid combination rule shares some features with Dempster’s

rule, Yager’s rule [33] and Shafer’s discounting procedure [11]. It will be referred

to as the ”Dempster+Yager” rule for short. In this rule, only singletons and125

the whole frame of discernment are considered as focal elements. Hence, all

the imprecision will be succinctly represented by masses assigned to the whole

frame of discernment.

As before, let {(Xi, Yi), i = 1, · · · , N} be the training data. For an input

instance Xt under test, the frame of discernment is Ω = {ω1, · · · , ωc}. Using the130

Dempster+Yager rule, the determination of Xt’s mass function can be described

as follows.

Step 1 As in the classical E-KNN method [23], the K-nearest neighbors of

Xt in the training set according to the Euclidean distance measure are

first found. Let Xj be the jth nearest neighbor of Xt with Yj = ωq.135

The evidence regarding Xt’s class label provided by Xj is quantified as

described by (7).

Step 2 Nearest neighbors with the same class label ωq are then grouped in a

set Γq (q = 1, . . . , c). As the mass functions in the same set Γq have the

same focal elements, there is no conflict between them. So, regardless of

outliers (a particular situation that is not considered in our approach),

Dempster’s rule is appropriate to combine the pieces of evidences in Γq.

As a result, the evidence provided by nonempty Γq is represented as a
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simple mass function,

m
Γq

t ({ωq}) = 1−
∏
j∈Γq

mt,j(Ω), (8a)

m
Γq

t (Ω) =
∏
j∈Γq

mt,j(Ω). (8b)

If Γq is empty, then m
Γq

t is defined as the vacuous mass function defined

by m
Γq

t (Ω) = 1;

Step 3 When most neighbors of a testing instance Xt belong to a specific class

(e.g., ωq), the degree belief that Xt also belongs to this class should be

large. Consequently, we can postulate that the reliability of the evidence

provided by each set Γq is increasing with its cardinality |Γq|. The mass

functions obtained in last step should thus be further discounted as

dm
Γq

t ({ωq}) =

(
|Γq|
|Γmax|

)η
m

Γq

t (ωq), (9a)

dm
Γq

t (Ω) = 1−
(
|Γq|
|Γmax|

)η
m

Γq

t (ωq), (9b)

where |Γmax| is the maximum cardinality within {|Γ1|, · · · , |Γc|}, and η ≥140

0 is a coefficient that controls the discounting level. A larger value of

η results in stronger discounting. In particular, when η = 0, there is

no discounting at all. The value of η can be determined by minimizing

the leave-one-out cross-validation error rate. Generally, good results are

obtained if we take η ∈ [0, 2].145

Step 4 After the discounting procedure described in the previous step, the

mass functions at hand may still be partially conflicting, especially when

there are similar numbers of nearest neighbors with different class labels.

Since Yager’s rule can have a better behavior that Dempster’s rule when

combining highly conflicting evidences [36, 33], it is chosen at this step to

fuse the probably conflicting mass functions in sets Γ1 to Γc obtained in

the previous step. As the result, the global mass function regarding the
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class label of object Xt is finally given by

mt({ωq}) = dm
Γq

t (ωq)
∏

h∈{1,...c}\q

dmΓh
t (Ω), q = 1, . . . , c, (10a)

mt(Ω) = 1−
c∑
q=1

dmΓq

t ({ωq})
∏

h∈{1,...c}\q

dmΓh
t (Ω)

 , (10b)

The focal elements of mt are singletons and the whole frame of discern-

ment. Consequently, the credibility and plausibility criteria (i.e., Belt and

Plt) will lead to the same hypotheses about Xt.

The mass function construction procedure discussed above is summarized as

a flowchart in Figure 1. It combines the advantages of Dempster’s and Yager’s150

rules. Hence, in classification applications, this specific procedure allows for

a more robust representation of uncertainty than that obtained using any of

the two classical combination rules. To better illustrate the performance of the

proposed Dempster+Yager rule, two examples are given below.

Example 1. To simulate a situation with conflicting pieces of evidence, we let155

the number of nearest neighbors be K = 3, and we assume that the test sample

Xt lies at the same distance to all the three nearest neighbors. The first two

neighbors of Xt belong to class ω1, and the third one belongs to class ω2. We

assume that Ω = {ω1, ω2} and η = 2. The three mass functions and the result

of their combination by Dempster’s rule, Yager’s rule and our Dempster+Yager160

rule are shown in Table 1. In this case, the Dempster+Yager rule is more

conservative than Dempster’s rule (it assigns a larger mass to Ω), while being

more specific than Yager’s rule.

Example 2. Table 2 illustrates an even more conflicting situation, in which

two neighbors belong to ω1 and two neighbors belong to ω2. We still assume that165

the test sample Xt is at the same distance to all nearest neighbors, and we take

η = 2. In this case, the Dempster+Yager rule yields the same result as Yager’s

rule. Both rules assign a large mass to the whole frame of discernment.
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3.2. Feature selection based on belief functions

In pattern recognition applications, the data may contain irrelevant or re-170

dundant features. Feature selection techniques are intended to cope with this

issue. They aim to select a subset of features that can facilitate data inter-

pretation while reducing storage requirements and improving prediction perfor-

mance [37]. Filter, wrapper and embedded methods are three main categories of

algorithms that are widely used for feature selection [38]. Filter methods such175

as described in [39, 40, 41], which use variable ranking as the principal selec-

tion mechanism, are simple and scalable. However, they may produce a sub-

optimal subset because they do not take into account the correlation between

features [37]. In contrast, wrapper and embedded methods, such as sequential

selection algorithms [42, 43] and direct objective optimization methods [44], use180

the prediction accuracy of given classifiers as the criterion for selecting feature

subset. They are more likely to find optimal feature subsets than filter methods.

However, up to now, none of the available wrapper or embedded methods were

designed to work for imperfect data with high uncertainty and/or imprecision.

Such a feature selection procedure, based on belief functions, is introduced in185

this section.

The proposed method tackles the feature selection issue from a novel per-

spective. It aims to meet the following three requirements:

1. The selected features should be informative regarding the class labels, i.e.,

they should not yield lower classification accuracy than the complete set190

of features;

2. The selected feature subset should have the ability to reduce the uncer-

tainty of the data, i.e., it should result in a small overlap between different

classes in the feature space;

3. The selected features should be as sparse as possible. A feature subset195

with smaller cardinality implies lower storage requirement and lower risk

of overfitting.

The above three requirements can be met simultaneously by minimizing an
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objective function derived from the training samples. In order to present this

objective function clearly, a simple form of weighted Euclidean distance should

be discussed at first. Depending on the values of a binary coefficient vector, this

weighted Euclidean distance will generate different sets of K nearest neighbors

for a sample under test. The weighted distance between a test sample Xt and

a training sample Xi with m features is defined as

dt,i =

√√√√ m∑
p=1

λp(d
p
t,i)

2, (11)

where dpt,i (1 ≤ p ≤ m) is the difference between the values of the pth compo-

nents of the two feature vectors and λp ∈ {0, 1} is the corresponding coefficient.

Obviously, the feature subset can be selected by changing the values of the co-200

efficient vector. As the result, the pth component of the feature vector will be

selected when λp = 1 and it will be eliminated when λp = 0.

Based on the weighted Euclidean distance measure (11), and using the mass

function construction procedure introduced in Section 3.1, we can propose an

objective function satisfying the above three requirements for a qualified feature

subset. Let {(Xi, Yi), i = 1, · · · , N} be a training set. The proposed three-term

objective function is

obj =
1

n

n∑
i=1

c∑
q=1

(Pli(ωq)− ti,q)2
+
ρ

n

n∑
i=1

mi(Ω) + δ

m∑
p=1

[1− exp(−µλp)]. (12)

In (12), the first term is a squared error corresponding to the first requirement

discussed above, Pli is the plausibility function of training sample Xi and ti,q

is the qth component of a c-dimensional binary vector ti such that ti,q = 1 if205

Yi = ωq and ti,q = 0 otherwise. The second term is the average mass assigned to

the whole frame of discernment. It penalizes feature subsets that result in high

uncertainty and imprecision, thus allowing us to meet the second requirement.

The last term, which is an approximation of the l0-norm as used in[45], forces

the selected feature subset to be sparse. Here, ρ and δ are two hyper-parameters210

in [0, 1], which influence, respectively, the number of uncertainty samples and

the sparseness of resulting feature subset. Their values should be tuned to
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maximize the classification accuracy. Coefficient µ is kept constant; according

to [45], it is often set to 5.

Using (7)-(10), the objective function (12) can be written as

obj =
1

n

n∑
i=1

c∑
q=1

1− ti,q −
∑
h6=q

Bih

2

+
ρ

n

n∑
i=1

(
1−

c∑
q=1

Biq

)

+ δ

m∑
p=1

[1− exp(−µλp)], (13)

with

Biq = Aiq
∏

s∈{1,...c}\q

(1−Ais) (14)

and

Aiq =

(
|Γiq|
|Γimax|

)η1−
∏
j∈Γi

q

[
1− α exp(−γq · d2

i,j)
] , (15)

where di,j is the distance between the training sample Xi and its jth nearest215

neighbor computed using (11) ,with coefficients {λ1, · · · , λc} to be optimized.

During the optimization process, the K nearest neighbors for each training

sample (Xi, Yi) are determined by the weighted distance measure (11) with the

current weights {λ1, · · · , λc}. The mass functions mi are computed using the

construction procedure presented in Section 3.1, followed by the calculation of220

the plausibility value Pli using (3). Mass and plausibility values change with

binary coefficients {λ1, · · · , λc}, which finally drives the decrease of the objective

function (12)-(13).

As a global optimization method, the integer genetic algorithm [46, 47] can

properly solve the integer optimization problem without gradient calculation.225

Hence, it is chosen in this paper to optimize {λ1, · · · , λc}, so as to find a good

feature subset.

3.3. Two-step classification

After selecting features using the procedure described in the previous section,

a two-step classification strategy allows us to classify unknown test samples230
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based on belief functions. For a test dataset T = {Sj , j = 1, . . . , nt}, this

two-step classification strategy can be described as follows:

1. Using the Dempster+Yager combination rule, the mass function mj of

each test sample Sj is first derived from training pairs (Xi, Yi), i =

1, . . . , N . Based on mj , the collection T is divided into two groups T1
235

and T2, where T1 = {Sj : maxA⊆Ωmj(A) 6= mj(Ω)} and T2 = {Sj :

maxA⊆Ωmj(A) = mj(Ω)};

2. Then, test samples in T1 are classified into the classes with highest masses.

For instance, if mj({ω1}) > mj({ωq}) for all q 6= 1, we label Sj as ω1;

3. After classifying the test samples in T1, we add these labeled test samples

to the training set {(Xi, Yi), i = 1, . . . , N}, and therefore obtain a larger

training set {(X ′i, Y ′i ), i = 1, . . . , N ′}. The center (or prototype) pj of each

class ωj is then defined by averaging the training samples corresponding

to this class,

pj =
1

cj

∑
Y ′
i =ωj

X ′i, (16)

where cj is the cardinality of the set {X ′i|Y ′i = ωj} of training patterns in240

class ωj , and j = 1, . . . , c.

4. To each test pattern in group T2 (i.e., uncertain samples with the largest

mass of belief on Ω), and taking into account the correlations of the given

dataset, the Mahalanobis distance measure is used to compute the dis-

tances of this test pattern to each class center. Let S0 be a test sample

within T2, the distance from it to center pj is

md(S0, pj) =

√√√√ m∑
q=1

(Sq0 − p
q
j)

2

(δqj )
2

, (17)

where Sq0 and pqj are, respectively, the qth dimension of S0 and pj , and δqj

is the standard deviation of the qth feature among training samples be-

longing to class ωj . Based on the distances {md(S0, p1), · · · ,md(S0, p1)},

S0 is finally allocated to the nearest class.245
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Using the procedure discussed above, test samples that are easy to classify

provide additional evidence to help classifying highly uncertainty test samples.

As will be shown in the next section, this strategy enhances the classification

accuracy of the EK-NN rule, especially in highly overlapping regions of the

feature space.250

4. Experimental Results

The presented experiments are composed of two parts. In the first part, the

feasibility of the proposed feature selection procedure was evaluated on two syn-

thetic datasets. In each synthetic dataset, the numbers of relevant, redundant

and irrelevant features were varied to assess the robustness of the method under255

different situations. In addition, to show the validity of the two-step classifica-

tion strategy, we compared it in detail with the EK-NN classifier [23, 24, 1] on

another synthetic dataset.

In the second part, we first compared the performance of the proposed fea-

ture selection procedure with some classical wrapper selection methods on seven260

real datasets. Then, on the same real datasets, the classification accuracy of the

proposed two-step classification strategy was compared with other well-known

classifiers after selecting features using different methods. Finally, we tried to

determine whether the proposed feature selection procedure can help to improve

classification performance of other classifiers. The classification performance of265

the proposed two-step procedure was further compared with other methods us-

ing the same feature subsets selected by the proposed procedure.

4.1. Performance on synthetic datasets

4.1.1. Feature selection

The feasibility of the proposed feature selection procedure was assessed on270

two different kinds of synthetic datasets. The generating mechanisms for the

two different datasets are described below.
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Synthetic Data 1: These data were generated using the procedure described

in [48]. The feature space contains nr informative features uniformly

distributed between -1 and +1. The output label for a given sample is

defined as

y =

ω1 if maxi(xi) > 21− 1
nr − 1,

ω2 otherwise,

(18)

were xi is the ith feature. Besides the relevant features, there are also ni

irrelevant features uniformly distributed between -1 and +1, without any

relation with the class label, and nc redundant features copied from the275

relevant features. The optimal discriminating surface for this synthetic

data is highly non-linear.

Synthetic Data 2: To generate these data, two informative features were first

obtained from four different two-dimensional normal distributions, N(m1, I)

and N(m2, I) for class 1; N(m3, I) and N(m4, I) for class 2. Here,280

m1 = [3, 3], m2 = [6, 6], m3 = [3, 6] and m4 = [6, 3]. In addition, there are

ni irrelevant features, all randomly generated from the normal distribution

N(4.5, 2), and nc redundant features copied from relevant features.

For both synthetic datasets, we set nr = 2, ni ∈ {6, 16, 26, 36, 46} and nc = 2

to simulate five different situations. In each case, we generated 150 training in-285

stances, and used the proposed procedure to search for the most informative

feature subset. Then, 150 test instances were generated. We used the EK-NN

classifier to classify these test instances with all features, and simultaneously

used the proposed two-step classification strategy to classify them with all fea-

tures and with the selected feature subset. In the five situations, we always set290

η = 0.5, ρ = 0.5, δ = 0.05 and K = 5. The results are shown in Tables 3 and

4. For both datasets, the selection procedure always found the two relevant fea-

tures. The two-step classification strategy resulted in higher accuracy than the

EK-NN classifier. The feature selection procedure brought further improvement

of classification performance, especially when the dimension of the initial fea-295

ture space was large. These results show the feasibility of the proposed feature
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selection procedure.

4.1.2. Two-step classification

In addition to the previous experiment, the performance of the proposed two-

step classification strategy was tested solely on another synthetic dataset con-300

structed from four normal distributions with means m1 = [3, 3], m2 = [3, 6.5],

m3 = [6.5, 3], m4 = [6.5, 6.5] and variance matrix Σ = 2I. Instances generated

from N(m1,Σ) and N(m2,Σ) with equal probabilities were labeled as ω1, while

other instances generated from N(m3,Σ) and N(m4,Σ) with equal probabilities

were labeled as ω2. Classes ω1 and ω2 had the same number of instances, and305

the sizes of training and testing datasets were both 500.

The classification results of the two-step classification strategy were com-

pared with those of the EK-NN classifier with K = 5 and η = 0.5. Figure 2(a)

shows the training samples and the corresponding test samples. Figures 2(b)

and (c) display the credal partitions (i.e., the mass functions for each of the test310

samples [13, 14]) obtained, respectively, using the EK-NN classifier and the

proposed method. The blue, green and black points represent instances with

highest mass function on {ω1}, {ω2} and Ω, respectively. When comparing Fig-

ures 2(b)-(c) with Figure 2(a), we can see that the proposed method results in

more imprecise mass functions for the test samples in overlapping regions. This315

is mainly because the proposed Dempster+Yager rule has better ability than

Dempster’s rule to deal with highly imprecise instances (such as the boundary

samples shown in Figure 2(c)).

Figures 2(d)-(f) show the classification results obtained, respectively, by

EK-NN, the Dempster+Yager rule and the two-step classification strategy; the320

magenta stars represent misclassified instances. These results show that the

proposed Dempster+Yager combination rule yields higher classification accu-

racy than EK-NN on these imprecise data and the two-step classification strat-

egy further improves the performance. The calculated error rates for EK-NN,

Dempster+Yager combination rule and two-step classification strategy are, re-325

spectively, 9.80%, 8.80% and 7.80%.
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In addition, we also estimated the influence of parameter η on our two-

step classification procedure, using this synthetic dataset. The value of η was

chosen in{0, 0.5, 1, 1.5, 2}, K was set to 5, and we evaluated the performance

50 times with each η. The average misclassification error rates are reported330

in Table 5. As can be seen, the value of η had some limited influence on the

classification accuracy, although the procedure appears not to be very sensitive

to this coefficient. The best performance was obtained with η = 0.5.

4.2. Performance on real datasets

In this section, the proposed feature selection procedure and two-step clas-335

sification strategy are compared with some classical wrapper selection methods

and usual classifiers. The comparison was performed on seven real datasets. Six

of them were downloaded from the UCI Machine Learning Repository [49], and

one (the lung cancer dataset) was obtained from real patients1. Some charac-

teristics of these datasets are summarized in Table 6. As in [31], “in the yeast340

dataset, three classes named as CYT, NUC and ME3 were selected, since these

three classes are close and difficult to discriminate”.

4.2.1. Feature selection performance

The proposed feature selection procedure was compared with three classical

wrapper methods: sequential forward selection (SFS), sequential backward se-345

lection (SBS) and sequential floating forward selection (SFFS) [42, 38]. We used

ten-fold cross validation for the six UCI datasets and the leave-one-out strategy

for the lung cancer data (since it has only 25 instances). For all datasets, we

iteratively chose one subset of the data as the test set, and treated the other

subsets of data as training samples. At each iteration, we used SFS, SBS, SFFS350

and the proposed procedure to select features from the training data, and then

executed the proposed two-step classification strategy to classify test instances

with the selected feature subsets. The average misclassification rates obtained

1This lung tumor dataset was provided by laboratory LITIS and Centre Henri Becquerel,

76038 Rouen, France.
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by different methods were calculated. In addition, based on feature frequency

statistics, the robustness of selected feature subsets was evaluated using the355

method introduced in [50].

The misclassification rate, robustness and average feature subset size for all

methods are summarized in Table 7. As can be seen, the proposed feature

selection procedure performed uniformly well on all datasets. It resulted in

more robust feature subsets than the other three classical wrapper methods,360

and simultaneously yielded higher classification accuracy.

4.2.2. Classification performance

Using the same seven real datasets as in the previous experiment, the classi-

fication performance of the proposed two-step classification was compared with

that of six other classifiers: Artificial Neural Networks (ANN) [51], Classifi-365

cation And Regression Tree (CART) [5], Support Vector Machine (SVM) [4],

EK-NN, Belief-based K-Nearest neighbor classifier (BK-NN) [30] and CCR [31].

The first three methods are classical classifiers, while the last three are either

well-known or recent evidential classifiers based on belief functions. We can re-

mark that, in BK-NN and CCR, the classification performance is assessed using370

two measures: the error rate Re = (Ne/T )× 100%, where Ne is the number of

misclassified samples assigned to wrong meta-classes, and T is the number of

test samples; and the imprecision rate RI = (NI/T ) × 100%, where NI is the

number of test samples with highest mass functions on non-singletons (i.e., on

meta-classes). The BK-NN and CCR methods do not make any direct decision375

for highly imprecise samples, but transfer them to the meta-classes. Hence, the

error rate Re of BK-NN and CCR is decreased.

Since the proposed method includes feature selection, a classical wrapper

selection method, sequential floating forward selection (SFFS), was used with

all the other classifiers, to make the classification results comparable. As in the380

previous experiment, we used ten-fold cross-validation for the six UCI datasets

and leave-one-out for the lung cancer data. The average misclassification rates

obtained by different classifiers are reported in Table 8. As can be seen, the
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proposed method has higher classification accuracy than those of ANN, CART,

SVM and EK-NN on all datasets, especially on the lung cancer data. BK-NN385

and CCR resulted in the lowest error rate on the Seeds and Wine data. However,

due to the fact that a nonspecific decision has been made for uncertain objects,

they also have large imprecision rates. Therefore, we can conclude that the

proposed classification method performed well on these real datasets.

4.2.3. Generality of the proposed method390

To evaluate the generality of the proposed feature selection method, we tried

to determine whether feature subsets selected by it can improve the classification

performance of other classifiers. To this end, the above classifiers were used

again to classify the same real datasets, using all the features and feature subsets

selected by the proposed method. We used the same protocol as in the previous395

experiment (ten-fold cross validation for the six UCI datasets and leave-one-

our for the cancer data). The average classification error rates are reported in

Table 9. In this experiment, a selected feature subset was regarded as feasible

for a testing classifier, if it results in no less classification accuracy than the

whole set of features. The notations to show whether selected feature subsets400

are feasible for given classifiers are also presented in Table 9.

Based on obtained results, we can see that the feature subsets selected by the

proposed method were feasible for testing classifiers in most cases. Especially,

on the Iris and Lung Cancer data, the selected feature subsets resulted in higher

accuracy for all classifiers; on the WDBC and Parkinsons data, they were not405

feasible only for ANN. To sum up, among the 49 classifier-dataset configurations,

the proposed feature selection procedure failed eight times, including three times

for ANN, twice for CART and CCR, and once for EK-NN. These results show

that the proposed feature selection procedure is, in some sense, general as it

can be used with other classifiers. However, it works better if it is used for410

the proposed two-step classification (it always resulted in large improvement of

classification accuracy), and other evidential classifiers based on belief functions

and K-nearest neighbor strategy (such as EK-NN and BK-NN). As shown in
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Table 9, the proposed two-step classification resulted in the lowest classification

error on most datasets using the selected feature subsets.415

Since the proposed feature selection procedure seems to be applicable to

other classifiers, using the same feature subsets selected by it, we further com-

pared the classification performance of the proposed two-step classification with

that of other classifiers. In order to make the comparison more comprehensive,

we used two-fold cross-validation for the six UCI datasets, so as to simulate a420

situation in which there are more test data but less training data. The compar-

ison was executed 200 times. The average error rates for the different classifiers

are reported in Table 10. As can be seen, all classifiers performed poorly on

the Yeast data. This dataset is actually very difficult to classify. The BK-NN

and CCR methods yielded lower error rates than did our method on these data.425

However, due to the fact that nonspecific decisions can be made for uncertain

objects, they also yielded large imprecision rates. Similar results can be found

on the Iris and Seeds data when comparing BK-NN with our method. On the

WDBC and Parkinsons data, EK-NN and the proposed two-step classification

had similar performance. On the Lung Cancer data, both SVM and our two-step430

classification lead to perfect prediction with the selected feature subset.

In summary, it appears from these results that the proposed two-step clas-

sification generally outperformed the other classifiers on the real datasets con-

sidered in these experiments. The proposed feature selection procedure has also

been found to yield better results when used jointly with the proposed two-step435

classification strategy.

5. Conclusions

In this paper, we addressed the problem of learning effectively from insuffi-

cient and uncertain data. The contribution of this paper is threefold. First, we

proposed a variant of the EK-NN method based on a hybrid Dempster+Yager440

rule, which transfers part of the conflicting mass to the frame of discernment.

This new mass construction method results in less specific mass functions than
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those obtained using the orignal EK-NN method introduced in [23]. The second

contribution is a feature selection method that finds informative feature subsets

by minimizing a special objective function using mixed integer genetic algo-445

rithm. This objective function is designed to minimize the imprecision of the

mass functions, so as to obtain feature subspaces that maximize the separation

between classes. Finally, the third contribution is a two-step classification strat-

egy, which was shown to further improve classification accuracy by using already

classified objects as additional pieces of evidence. These three improvements of450

the EK-NN method were assessed separately and jointly using several synthetic

and real datasets. The proposed procedures were shown to have excellent per-

formance as compared to other state-of-art feature selection and classification

algorithms.
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1 Flowchart of mass function construction. Mass functions mΓq ,

dmΓq for q = 1, . . . , c and mt are calculated by Equations 8 to 10. 32595

2 Test of the two-step classification strategy on a synthetic dataset;

(a) shows training and test samples; (b) and (c) are credal par-

tition obtained, respectively, by the EK-NN classifier and the

two-step classification rule. The blue, green and black points rep-

resent instances with highest mass function on {ω1}, {ω2} and600

Ω respectively; (d)-(f) are classification results obtained, respec-

tively, by EK-NN, the proposed Dempster+Yager combination

and the two-step classification strategy; the magenta stars rep-

resent misclassification instances. The calculated error rates for
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Table 1: Combination result with different rules in Example 1.

#1 #2 #3 Dempster’s rule Yager’s rule Dempster+Yager rule 

𝑚(*𝜔1+) 0.8 0.8 0 0.8276 0.1920 0.7680 

𝑚(*𝜔1+) 0 0 0.8 0.1379 0.0320 0.0080 

𝑚(Ω) 0.2 0.2 0.2 0.0345 0.7760 0.2240 

Table 2: Combination result with different rules in Example 2.

#1 #2 #3 #4 Dempster’s rule Yager’s rule Dempster+Yager rule 

𝑚(*𝜔1+) 0.8 0.8 0 0 0.4898 0.0384 0.0384 

𝑚(*𝜔1+) 0 0 0.8 0.8 0.4898 0.0384 0.0384 

𝑚(Ω) 0.2 0.2 0.2 0.2 0.0204 0.9232 0.9232 

Table 3: Cardinality of selected feature subsets for synthetic data 1, and comparison of clas-

sification error (in %) between selected feature subset (with fs) and all features (without

fs). Here nr, nc and ni represent the number of relevant, redundant and irrelevant features,

respectively.

𝑛𝑟  𝑛𝑐  𝑛𝑖 subset cardinality EK-NN error 
two-step classification error 

without fs with fs 

2 2 6 2 14.67 12.67 2.67 

2 2 16 2 17.33 12.00 1.33 

2 2 26 2 23.33 18.67 4.00 

2 2 36 2 28.67 26.67 5.33 

2 2 46 2 29.33 23.33 4.67 

Table 4: Cardinality of selected feature subsets for synthetic data 2, and comparison of clas-

sification error (in %) between selected feature subset (with fs) and all features (without

fs). Here nr, nc and ni represent the number of relevant, redundant and irrelevant features,

respectively. The number of relevant features here is two (i.e., nr = 2).

𝑛𝑐  𝑛𝑖 subset cardinality EK-NN error 
two-step classification error 

without fs with fs 

2 6 2 21.33 12.00 8.67 

2 16 2 34.67 26.00 14.67 

2 26 2 31.33 27.33 16.00 

2 36 2 52.67 37.33 11.33 

2 46 2 50.00 39.33 8.00 
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Table 5: Influence of parameter η on the proposed method.

𝜂 0 0.5 1 1.5 2 

error rate (%) 11.03 10.94 11.26 11.27 11.27 

Table 6: Briefly description of the seven real datasets used in our experiments.

data set number of classes number of features number of instances 

Iris 3 4 150 

Seeds 3 7 210 

Wine 3 13 178 

Yeast 3 8 1055 

WDBC  2 30 569 

Parkinsons 2 22 195 

Lung Cancer 2 52 25 

Table 7: Comparison of the proposed feature selection method with classical wrapper methods

on seven real datasets. The proposed two-step classification was used to obtain average

misclassify ratio. The robustness of selected feature subset is evaluated by the way proposed

in [50].

Iris Seeds 

Error(%) Robustness(%) Subset Size Error(%) Robustness(%) Subset Size 

All 2.67 n/a 4 7.62 n/a 7 

SFS 4.67 54.55 1 11.90 57.97 2 

SBS 5.33 21.05 2 10.95 23.88 3 

SFFS 5.33 21.62 3 5.24 54.93 2 

EFS* 2.00 100 3 4.76 81.18 3 

Wine Yeast 

Error(%) Robustness(%) Subset Size Error(%) Robustness(%) Subset Size 

All 13.04 n/a 13 38.87 n/a 8 

SFS 30.50 75 1 61.99 100 1 

SBS 6.24 42.47 5 48.35 100 1 

SFFS 7.29 57.58 4 36.21 40 5 

EFS* 5.13 91.89 3 32.51 100 2 

WDBC Parkinsons 

Error(%) Robustness(%) Subset Size Error(%) Robustness(%) Subset Size 

All 7.20 n/a 30 13.37 n/a 22 

SFS 14.44 80 1 15.82 33.33 1 

SBS 19.67 22.22 2 19.03 23.91 2 

SFFS 9.87 25 4 13.79 43.65 3 

EFS* 5.80 92.37 3 8.63 100 3 

Lung Cancer+ 

Error(%) Robustness(%) Subset Size 

All 32.00 n/a 52 

SFS 16.00 78.64 2 

SBS 36.00 32.76 9 

SFFS 28.00 94.27 2 

EFS* 0 97.92 4 
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Table 8: Misclassification rates (in %) of the proposed method and six other classifiers with se-

quential floating forward feature selection (SFFS). For BK-NN and CCR, Re and Ri represent,

respectively, the error and imprecision rates.

  Iris Seeds Wine Yeast WDBC Parkinson Lung Cancer+ 

S

F

F

S

 

 

+

 

ANN 8.00 7.62 9.64 32.57 9.15 9.63 16.00 

CART 8.00 7.14 9.09 37.55 10.04 11.21 16.00 

SVM 6.00 7.14 6.83 36.14 8.28 13.26 16.00 

EK-NN 5.33 6.67 6.18 35.07 9.70 16.39 24.00 

BK-NN  

(𝑅𝑒, 𝑅𝑖) 

4.00 

4.67 

2.38 

11.90 

6.74 

5.13 

16.31 

40.84 

7.22 

8.44 

9.18 

13.37 

24.00 

0 

CCR  

(𝑅𝑒, 𝑅𝑖) 

4.00 

4.67 

3.81 

18.57 

3.99 

15.33 

19.53 

36.11 

5.99 

15.83 

16.42 

12.26 

24.00 

4.00 

our method 2.00 4.76 5.13 32.51 5.80 8.63 0 
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Table 9: Evaluating the feasibility of proposed feature selection procedure (EFS) for different

classifiers. The classification error rate obtained by all features is compared with that obtained

by selected feature subsets.

  
Iris Seeds 

err without fs(%) err with fs(%) EFS feasibility  err without fs(%) err with fs(%) EFS feasibility  

ANN 6.00 5.33 √ 4.76 4.76 √ 
CART 7.33 7.33 √ 7.14 7.62 X 
SVM 6.00 4.67 √ 6.19 5.24 √ 

EK-NN 4.67 4.00 √ 10.00 5.71 √ 
BK-NN (2.67,5.33) (2.00,4.67) √ (4.76,13.33) (3.33,10.00) √ 

CCR (4.67,2.00) (2.67,3.33) √ (6.67,8.10) (10.48,6.19) X 
two-step 2.67 2.00 √ 7.62 4.76 √ 

  
Wine Yeast 

err without fs(%) err with fs(%) EFS feasibility  err without fs(%) err with fs(%) EFS feasibility  

ANN 3.34 6.18 X 36.42 33.84 √ 

CART 9.52 6.71 √ 36.32 36.78 X 

SVM 12.68 5.60 √ 34.33 32.71 √ 

EK-NN 25.75 4.45 √ 36.02 37.05 X 

BK-NN (26.30,17.61) (2.19,6.22) √ (15.71,42.09) (16.95,40.77) √ 

CCR (3.47,0) (3.93,5.07) X (21.68,32.29) (31.66,8.82) √ 

two-step 10.15 3.41 √ 37.34 33.08 √ 

  
WDBC Parkinsons 

err without fs(%) err with fs(%) EFS feasibility  err without fs(%) err with fs(%) EFS feasibility  

ANN 4.75 6.32 X 11.27 12.35 X 

CART 7.90 7.56 √ 15.07 11.82 √ 

SVM 10.03 6.33 √ 19.54 11.38 √ 

EK-NN 6.50 5.98 √ 14.37 10.69 √ 

BK-NN (10.70,20.22) (3.69,7.73) √ (17.88,18.95) (5.58,15.35) √ 

CCR (8.09,1.40) (4.19,15.01) √ (22.15,0) (17.49,8.58) √ 

two-step 7.01 5.28 √ 12.85 9.11 √ 

  
Lung Cancer+ 

err without fs(%) err with fs(%) EFS feasibility  

ANN 32.00 8.00 √ 

CART 24.00 12.00 √ 

SVM 24.00 0 √ 

EK-NN 28.00 4.00 √ 

BK-NN (50.00,28.00) (4.00,0) √ 

CCR (16.00,12.00) (4.00,20.00) √ 

two-step 32.00 0 √ 
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Table 10: Classification error rates of different methods using the same feature subsets selected

by the proposed selection procedure.

  Iris Seeds Wine Yeast WDBC Parkinsons Lung Cancer+ 

ANN 6.23 8.62 7.07 35.09 6.52 13.92 8.00 

CART 5,50 11.70 8.22 37.76 8.07 16.75 12.00 

SVM 3.78 9.72 5.71 33.68 6.47 13.53 0 

EK-NN 4.04 6.19 5.96 38.20 5.71 12.43 4.00 

BK-NN 

(𝑅𝑒, 𝑅𝑖)  

2.03 

5.67 

3.96 

7.44 

4.57 

6.67 

18.92 

40.03 

5.97 

7.19 

9.29 

16.03 

4.00 

0 

CCR 

(𝑅𝑒, 𝑅𝑖)  

3.49 

2.90 

5.79 

16.73 

5.01 

3.72 

20.88 

38.52 

6.83 

5.39 

19.28 

5.55 

4.00 

20.00 

two-step 2.52 4.94 4.42 32.97 5.86 12.37 0 

mass function 𝑑𝑚Γ𝑐  …… mass function 𝑑𝑚Γ1  

Discounting 

final mass function 𝑚𝑡 of 𝑋𝑡 

Yager’s rule 

(global fusion between groups) 

Testing 𝑋𝑡 

construct K-NNs’ mass functions 𝑚1, … ,𝑚𝐾 

Dempster’s rule 

(fusion within each group) 

mass function 𝑚Γ𝑐  for Γ𝑐 …… mass function 𝑚Γ1  for Γ1 

Figure 1: Flowchart of mass function construction. Mass functions mΓq , dmΓq for q = 1, . . . , c

and mt are calculated by Equations 8 to 10.
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(a) (b) (c) 

  
(d) 

  

  

  

(e) (f) 

𝜔1 

𝜔2 

Ω 

𝜔1 

𝜔2 
err 

𝜔1 

𝜔2 
err 

𝜔1 

𝜔2 
err 

𝜔1 

𝜔2 

Ω 

xapp1 
xapp2 
xtst1 
xtst2 

Figure 2: Test of the two-step classification strategy on a synthetic dataset; (a) shows training

and test samples; (b) and (c) are credal partition obtained, respectively, by the EK-NN classi-

fier and the two-step classification rule. The blue, green and black points represent instances

with highest mass function on {ω1}, {ω2} and Ω respectively; (d)-(f) are classification re-

sults obtained, respectively, by EK-NN, the proposed Dempster+Yager combination and the

two-step classification strategy; the magenta stars represent misclassification instances. The

calculated error rates for (d)-(f) are, respectively, 9.80%, 8.80% and 7.80% (color version is

suggested).
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