A wave problem in a half-space with a unilateral constraint at the boundary - Archive ouverte HAL
Article Dans Une Revue Journal of Differential Equations Année : 1984

A wave problem in a half-space with a unilateral constraint at the boundary

Résumé

In this paper, we study the following problem: let $\Omega$ be a half-space of $\mathbb{R}^N$, defined by $\Omega = \{x = (x’, x_N) \in\mathbb{R}^/x_N > \}$ where $x’ = (x,\ldots, x_{N-1})$ is the usual notation, and let there be given functions $u_0\in H^1(\Omega)$ and $u_1 \in L^2(\Omega)$. We assume that $u_0|_{x_N=0}$ is nonnegative, and similarly $-(\partial u_0/\partial x_N)|_{x_N=0}$ (which is, a priori, an element of $H^{-1/2}(\mathbb{R}^{N-1})$) is nonnegative.
Fichier principal
Vignette du fichier
LebeauSchatzman.pdf (953.24 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01294216 , version 1 (28-03-2016)

Licence

Identifiants

Citer

Gilles Lebeau, Michelle Schatzman. A wave problem in a half-space with a unilateral constraint at the boundary. Journal of Differential Equations, 1984, 53 (3), pp.309-361. ⟨10.1016/0022-0396(84)90030-5⟩. ⟨hal-01294216⟩
351 Consultations
173 Téléchargements

Altmetric

Partager

More