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Nested Abstract Syntax in Coq

André Hirschowitz
CNRS, UNS

Marco Maggesi
Univesitd degli Studi di Firenze

Abstract. We illustrate Nested Abstract Syntax as a high-level alternative rep-
resentation of langages with binding constructs, based on nested datatypes. Our
running example is a partial solution in the Coq proof assistant to the POPLmark
Challenge. The resulting formalization is very compact and does not require any
extra library or special logical apparatus. Along the way, we propose an original,
high-level perspective on environments.

Keywords: POPLmark, Abstract Syntax, Semantics, Nested Datatypes, Coq, Sys-
tem F..

1. Introduction

We present a partial solution to the POPLmark Challenge (Aydemir
et al., 2005) in the Coq proof assistant. Our formalization addresses
part (1A) of the Challenge, concerning the transitivity property of the
subtyping relation of System F... The specific feature of our solution is
the use of nested datatypes to encode the syntax of System F... Accord-
ingly, we propose an original “higher-order” encoding of environments,
as functions on the varying set of variables.

Nested datatypes, also called heterogeneous datatypes, have been
popularized by the work of Bird and Meertens (Bird and Meertens,
1998). It is a general technique to enforce certain invariants through
typing, which allows a high-level and perfectly natural representation
of variable binding, as was experienced already ten years ago (Al-
tenkirch and Reus, 1999; Bird and Paterson, 1999). We propose the
name “Nested Abstract Syntax” for this (old) approach, which we see as
an alternative in particular to Higher Order Abstract Syntax (Pfenning
and Elliott, 1988; Lee, Crary and Harper, 2007) and to Weak Higher
Order Abstract Syntax (Honsell, Miculan and Scagnetto, 2001).

Here are some advantages of using this technique:

— Typing is refined, taking into account the variation of the set of
free variables.
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— There is no a-equivalence, which makes life much simpler. It may
be considered as a kind of de Bruijn encoding enriched with an
enlightening typing discipline (Bird and Paterson, 1999).

— Substitution is perfectly understood in a high-level way, as the
main ingredient of the monadic structure (see, e.g., (Altenkirch
and Reus, 1999)).

Despite these advantages, nested datatypes seem to have been em-
ployed only sparsely in real formalizations of higher-order languages.
Besides the first achievements mentioned above, we may quote our ear-
lier (Hirschowitz and Maggesi, 2007) and the contributions of Matthes
(Matthes, 2008a; Matthes, 2008b; Matthes, 2009). In particular, we
are not aware of other implementations of System F.. based on nested
datatypes.

From our point of view, the main conclusions of our experience are

— Nested Abstract Syntax is perfectly suited for formalizations of
the present kind.

— Coq offers convenient support in order to program statements in
this style with a satisfactory level of readability.

— On the other hand, Coq does not yet offer sufficient support for
easy proving in this style, due to the systematic use of dependent-

types.

— The formalization of a computer language as designed by the
POPLmark Challenge has revealed to be an excellent benchmark
for the overall maturity and expressiveness of our favorite theorem
prover.

The complete source code of the formalization exposed in this paper
can be freely downloaded from the web page of the second autor:
http://www.math.unifi.it/ "maggesi/ .

2. The Option

The characteristic feature of the nested approach is best understood
through the typing, within the untyped lambda-calculus, of the ab-
straction operator:

abs : term "V — term V.
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Here, given the type V (V for variables), we consider a new type
"V which denotes V extended with a new distinguished element (the
“fresh” variable). This is realized by the option datatype that is defined
as follows.!

Inductive option (A:Type) : Type :=
| Some : A -> option A
| None : option A.

The option type comes equipped with a companion operator option_map
which gives its functor structure:

Definition option_map (A B:Type)
(f:A->B) (x:option A) : option B :=
match x with
| Some a => Some (f a)
| None => None
end.

The terms option and option_map are heavely used in this work,
thus we extend the Coq syntax with a special notation for them given
by a prefixed hat.?

Notation "~ f"
Notation "~ X"

(option_map f).
(option X) : type_scope.

3. Nested Encoding of F..
Here we describe our encoding of F..-types.

3.1. NESTED SYNTAX FOR F..

We recall that type expressions in F.. are constructed according to the
following grammar

T ::= types
Top mazimum type
X type variable
T —T type of functions
VX<:T.T universal type

! The definitions of option and option map that follows are taken from the Coq
Standard Library. The option datatype is also known as maybe in other contexts,
for instance in the Haskell community.

2 Coq’s extensible syntax uses a type driven scope mechanism which is able to
disambiguate the two notations.
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where in the universal type VX <: S.T the variable X is bound in 7.

We define an inductive type ftype V which represents the set of

type expressions over the context V as follows

Inductive ftype (V:Type) : Type :=

| Top : ftype V

| TVar : V -> ftype V

| Arr : ftype V -> ftype V -> ftype V

| Uni : ftype V -> ftype "V -> ftype V.

The occurrence of the option type ~V in the signature reveals the
presence of a binding construction, more precisely that a new variable
(the “freshest” one) is bound in the second argument of the constructor
Uni. For better readability, we introduce the syntactic sugar s -=> ¢
and all s, t to denote Arr s t and Uni s t respectively.

Let us discuss how far we stand from the specification:

Our ftype is stratified, hence, for instance, we have one term Top
for each context V. We would be happy to read Top, instead of
Top V, but this is not (yet?) possible in Coq.

For a “variable” v € V, TVar v is in ftype V while v itself is
not. So here we depart slightly from the specification. From the
theoretical point of view, this may be presented as a clarification.
On the other hand, from the pretty-print point of view, it would
have been fine to consider TVar as a coercion. Unfortunately, this
could not be performed smoothly in Coq.

In our syntax for Uni, the bound variable does not show up. As far
as meta-theory is concerned, this may be considered a good thing.

3.2. RECURSION AND THE LIKE

A crucial advantage of our encoding is that Coq provides for free the
recursion and induction principles which we need. Furthermore Coq
provides us with tactics dedicated to inductive types, notably

injection derives new equalities from old ones by applying the
injectivity of the constructions of our inductive type.

discriminate searches for an absurd assumption, claiming that two

structurally different terms (like Topy, and Topy, — Topy,) are
equal.
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Note that the fact that Coq handles such nested inductive types
is pretty recent (version 8.1). More general forms of inductive types,
involving for instance constructions like the explicit substitution:

expl_subst : term(term V) — term V

cannot yet be implemented so smoothly in Coq, and are the object of
active research (Matthes, 2008a; Matthes, 2008b; Matthes, 2009).

3.3. RENAMING

The assignment V +— ftype V is endowed with a structure of func-
tor through renaming. This is defined using the recursion principle
(Fixpoint) as follows:

Fixpoint ftype_map V W (£:V->W) (t:ftype V) : ftype W :=
match t with
| Top => Top W
| TVar X => TVar (f X)
| S =——>T=>%f S -—>%fT
| al1 S, T => all %f S, %#(Cf) T
end
where "% f" := (ftype_map f).

3.4. FUNCTORIALITY

The functoriality of our renaming can be easily stated (and proven):

Lemma ftype_map_id : forall V (t:ftype V) (f:V->V),
(forall x, f x=x) —> %f t=t.

Lemma ftype_map_comp : forall U t V (£:U->V) W (g:V->W),
%g bt t) = %(g o £) t.

3.5. SUBSTITUTION

The renaming functor can be upgraded into a monad, just in the way it
is done for the A-calculus e.g. in (Altenkirch and Reus, 1999). In fact,
this substitution and its main properties could be generated from the
signature, just as is the recursion principle.
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4. Stratified Environments for F_.

4.1. ENVIRONMENTS AS FUNCTIONS

As for type expressions, type environments are stratified over contexts.
We simply encode them as maps V' — ftype V.

Definition env V := V->ftype V.

This is slightly too simple, and we will introduce in the next section
an additional well-formedness condition RWF. On the other hand, thanks
to this encoding, the judgement TVar z <: t € I', which means that
the variable x is bound to the value ¢ in the environment I'; is readily
translated into the equation I' z = ¢, and thus need no programming.

4.2. ADDING A BINDING

The operation of adding a new binding in the environment is denoted
I'&t and is implemented by the following definition.?

Definition consenv V (G:env V) (t:ftype V) : env "V :=
fun x =>
match x with
| None => %(@Some V) t
| Some x => % (@Some V) (G x)
end.
Notation "G & t" := (consenv G t)
(at level 50, left associativity).

This can be pictorially represented by the following commutative
diagram:
ftype V——= ftype "V

FT Tp&t

4 @Some V 4

where the environment I' is extended to I' & ¢ by adding a binding for a
“fresh” type variable. Note that this commutative diagram has a lifting
property: it can be completed with a map h: "V — ftype V.

3 The prefix “@” disables the implicit arguments mechanism.
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4.3. EXTENDING ENVIRONMENTS

The concatenation of environments is a crucial operation in the proof
of the transitivity. The typing of this operation is slightly subtle: what
is the nature of A in the concatenation X =T, A?

Although this question can, of course, be answered in a satisfactory
way, our choice has been to avoid this problem. We take advantage of
the fact that the knowledge of I" and A is equivalent to the knowledge
of I and ¥, and formalize concatenation through extensions.

Given a commutative diagram

%f

ftypeV ftype W
FT TA
V 7 w

we say that A is a raw extension of I' along f.

We reserve the word extension for well-formed extensions. Indeed,
for extensions as for environments, we need a well-formedness predicate.
As a matter of fact, in the next section, we will define well-formedness
of environments in terms of well-formedness of extensions.

The environment expression

X = I, X<Q, A

is formalized as a sequence of two extensions

ftype V ftype "V ftype W
r re&Q by
V Vv w.

5. Well-Formedness

Our very simple notion of environment leaves room for exotic terms.
Indeed, in well-formed environments, each variable has to be bound
to a type which only depends upon “earlier” variables. For instance,
we have to rule out, for a non empty type V, the exotic environment
TVar : V — ftype V. We found it convenient to first introduce a
relative well-formedness predicate for extensions of environments. Our
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notion of well-formedness will allow us to merge the permutation lemma
and the weakening lemma (see section 7).

5.1. RELATIVE WELL-FORMEDNESS

We introduce a ternary predicate for relative well-formedness (RWF)
> extends I' along f

defined inductively through two introduction rules, corresponding to
the familiar nil4+cons scheme.
The nil rule roughly says that the “empty” extension is well-formed?:

RWF_refl : forall V (G G’:env V) (f:V->V),
==G’ -> (forall x, f x = x) -> G’ extends G along f

The cons rule says that the composition of two sequential extensions,
as pictured in the following diagram, is well-formed as soon as the left
hand square is well-formed and the right hand square is commutative:

% f1

ftypeV ftype W _Ah ftype X

| o] S

4 f1 w f2 X

This commutativity of the right hand side of the diagram expresses
that variables in X are bound to terms in ftype W. Note that, thanks
to the nil rule, the right hand square is a well-formed extension too, as
we will state formally below.

Altogether, our inductive declaration reads as follows:

Inductive RWF : forall W (D:env W) V (G:env V) (£f:W->V),
Prop :=
| RWF_refl : forall V (G G’:env V) (£f:V->V),
G==G’ -> (forall x, f x = x) -> G’ extends G along f
| RWF_append : forall V1 (Gl:emv V1) V2 (£f1:V1->V2) V3
(G3:env V3) (£2:V2->V3) (£f:V1->V3) (E:V3->ftype V2),
(forall x, G3 x = %f2 (E x)) ->
(forall x, f2 (f1 x) = f x) —>
E o f2 extends Gl along f1 -> G3 extends Gl along f
where "D ’extends’ G ’along’ f" := (RWF G D f).

Note that we made no injectivity assumption on the function f in
the judgment ¥ extends I' along f. In fact, there are basically two
classes of extensions that we are interested in.

4 The double equality == stands for the extensional equality of functions.
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— The first case is when the reindexing map f is a proper injection.
This is the case where the term eztension of environments is most
appropriate.

— The second case is when f is a bijection. Here we may think of
f as a permutation of the bindings of the environment, and the
judgement

A extends I' along f

may be interpreted as f is an allowed permutation transforming I’
into A. Note that the notion of permutation alluded to in the paper
version should be a change of order on the fixed set of variables,
rather than a permutation of this set in the usual sense.

5.2. REASONING WITH WELL-FORMED EXTENSIONS

The inductive declaration of the RWF predicate generates the desired
induction principle which allows to reason smoothly about it.

For instance, we prove easily that a well-formed extension is actually
an extension:

Lemma RWF_commute :
forall W (D:env W) V (G:env V) (f:W->V),
(G extends D along f) -> forall y, G (£ y) = %f (D y).

Similarly we prove that well-formedness is extensional:

Lemma RWF_extens : forall W (D D’:env W) (HD : D==D’)
V (G G’:env V) (HG : G==G’) (f f’:W->V) (Hf : f==f’),
G extends D along f -> G’ extends D’ along f’.

We also prove that the composition of two well-formed extensions is
well-formed again:

Lemma RWF_trans : forall V1 (Gl:env V1) V2 (G2:env V2)
(f1:V1->V2) V3 (G3:env V3) (£f2:V2->V3) (f:V1->V3),

G2 extends G1 along f1 -> G3 extends G2 along f2 ->
(forall x, f2 (f1 x) = f x) -> G3 extends Gl along f.

Finally we check that the consenv construction yields well-formed
extensions:

Lemma RWF_consenv : forall V (G:env V) (t:ftype V),
G&t extends G along Q@Some V.
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The proof is a direct application of the cons rule (RWF_append) In
the required diagram

ftype V ftype "V
FT ‘\\\\\\\\\\ TF&t
h
v @Some V v

h is given by

h (Some v) =T v forallv eV h None = %(@Some V) ¢

5.3. ABSOLUTE WELL-FORMEDNESS

Finally, we recover the absolute notion of well-formedness as follows.
An environment T' is well-formed, noted WF T, if it is well-formed with
respect to the empty environment (the obvious environment over the
empty context). We denote by empty the empty inductive type and by
empty_inc (V:Type), empty -> V the associated initial map.

Definition WF V (G:env V) :=
G extends @empty_inc along Q@empty_inc V.

As immediate corollaries of lemmas RWF_trans and RWF_consenv
we obtain the following two basic properties of WF:

Lemma WF_trans : forall W (D:env W) V (G:env V) (f:W->V),
WF D -> G extends D along £ —> WF G.

Lemma WF_consenv : forall V (G:env V) (t:ftype V),
WF G > WF (G & t).

6. Subtyping

6.1. THE SUBTYPING PREDICATE

We are now ready to define the subtyping judgement I' - s <: ¢ of
F_.. This is denoted G |~ s << t in the machine syntax and encoded
through an inductive predicate as follows:

Inductive sub : forall V (G:env V) (s t:ftype V), Prop :=
| SA_Top : forall V (G:env V) (s:ftype V),
WF G ->G |-- s << Top _
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| SA_Refl_TVar : forall V (G:env V) (x:V),

WF G -> G |-— TVar x << TVar x

| SA_Trans_TVar : forall V (G:env V) (x:V) t,
Gl-—-Gx <<t ->G |--—TVar x << t

| SA_Arrow : forall V (G:env V) (sl s2 tl1 t2:ftype V),
G |-- t1 << 81 => G |-- 82 << £2 ->
G |-- s1 —-—> 82 << t1 --> t2

| SA_A11l : forall V (G:env V) (t1 sl:ftype V)
(s2 t2:ftype “V),

G |-—- tl1 << 81 ->G & tl |-- 82 << t2 —>
G |-- all s1, s2 << all t1, t2
where "G |-- s << t" := (sub G s t).

This definition is pretty close to the paper specification, with one
constructor for each inference rule. Let us review the differences:

— In the Trans_TVar construction, we have only one premise, thanks
to the functional nature of our environments.

— We have two occurrences of the W F' predicate. We could easily
have been closer to the paper version by defining a type for well-
formed environments. We have preferred to make apparent that
the well-formedness assumption is useful only in the rules without
any premise (namely the first two ones).

6.2. REFLEXIVITY AND ADEQUACY

We can state the reflexivity statement as follows

Lemma sub_refl : forall V (G:env V) t,
WFG->G |-t <<t.

and its proof is straightforward.
Our adequacy statement for the subtyping, which says that subtyp-
ing entails well-formedness reads as follows:

Lemma sub_WF : forall V (G:env V) s t,
G |-- s <<t -> WF G.

and its proof is also straightforward.
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7. Merging Permutation and Weakening

7.1. THE PAPER VERSION

The F..-theory contains two lemmas respectively for weakening and
permutation. The permutation lemma reads as follows

Lemma 1. (Permutation) If A is a well-formed permutation of " then
'S <:T implies AFS <:T.

with a rather long and low-level definition of what is a well-formed
permutation.
On the other hand, the weakening lemma reads

Lemma 2. (Weakening) If ' = S <: T and dom(T") N dom(A) = 0,
then ' AF S <: T.

This formulation involves the concatenation operation on environ-
ments. As already mentioned, the typing of A in the concatenation I'; A
is not completely evident. For the present weakening lemma, a cautious
interpretation would be to understand A simply as an environment, just
as I'. But this would not cover the intended meaning of the lemma,
namely the case where values in A are allowed to involve variables in
I". For this case, a subtler typing of A is in order.

7.2. A MERGING INTERPRETATION

Our solution avoids this problem: when faced with 3 :=I', A, we type X
(instead of A), and just say that X is a well-formed extension of I'. This
approach offers a new perspective where our two lemmas can be merged.
The unified formulation is even more general than the conjunction of
the two lemmas, since non injective renamings are allowed:

Lemma sub_weakening : forall W (D:env W) (s t:ftype W),
D |-—-s <<t —>
forall V (G:env V) (f:W->V),
G extends D along f -> G |-- %f s << Uf t.

The case where f is a bijection accounts for the permutation lemma,
while the case where f is a (proper) injection accounts for the weakening
lemma. The proof of our sub_weakening lemma is straightforward.
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8. Transitivity and Narrowing

We now turn to the main results of part (1A) of the Challenge, that is,
the proof of the transitivity property for the subtyping relation. In this
proof, the transitivity property is coupled with the so-called narrowing

property.
8.1. STATEMENTS

We begin with the statement of the transitivity lemma which should
not give any surprise:

Lemma transitivity : forall V (G:env V) s q t,
G |l--s8<<qg->G|-—q<<t-=>G|[|--s<t.

The statement of the narrowing lemma is slightly more problematic.
Let us first recall the paper version:

Lemma 3. (Narrowing) U T'' X <: Q,AF M <: Nand ' P <: Q
then I' X <: P,AF M <: N.

The difficulty comes from the concatenated environments. As ex-
plained in section 4.3 we solve this problem by rephrasing the state-
ment in terms of well-formed extensions of environments. We introduce
two environments D and D’ over the context W, which are meant to
correspond to I', X <: P,A and I', X <: @, A respectively.

So we have an environment G over V and two extensions D and D’ of
G&p and G&q respectively, along the same map f: “V->W.

Our next task is to express that D and D’ come from the same A,
in other words that they agree outside f (“V'). As a matter of fact, we
define agreement outside a value instead of outside a map. Here is our
definition:

Definition agrees_outside V (D E:env V) x : Prop :=
forall y, y=x\/Dy=Ey.

Notation "D ’agrees’ ’with’ E ’outside’ x" :=
(agrees_outside D E x) (at level 70).

Now we can state our version of the narrowing lemma.

Lemma narrowing :
forall V (G:env V) W (D D’:env W) (£f:°V->W) p q m n,
D agrees with D’ outside f None ->
D extends G&p along f -> D’ extends G&q along f ->
G|l--p<<q->D" |--m<<n->D |--m << n.
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8.2. PROOFS

Following a scheme found in the formalization by Chargueraud® we
divide the common inductive proof of transitivity and narrowing in
two sub-lemmas, namely, transitivity_lemma and narrowing_lemma.
The results in which we are actually interested, i.e., transitivity and
narrowing, are easy consequences of these lemmas.

In view of the transitivity_lemma we introduce a variant of the
obvious property “q is transitive”. The latter reads:

Definition transitive : forall V (q:ftype V), Prop :=
forall (G:env V) s t,
Gl--s8<<qg->GI|l--g<<t-—>G|--s8<<t.

Our variant is the apparently stronger “q is universally transitive”:

Definition univ_trans : forall V (q:ftype V), Prop :=
forall W (£:V->W) G s t,
Gl-—-s<<%fq->G |--% q<<t ->G |--s << t.

Now we can state the transitivity_lemma:

Lemma transitivity_lemma : forall V (q:ftype V),
univ_trans q.

In a similar way, we have to somehow recast our narrowing lemmas:

Lemma narrowing_lemma :
forall V (q:ftype V) (trs:trans_prop q) W (D’:env W) m n
(Hg : D’ |-- m << n) (G:env V) (D:env W) (f:"V->W)
(Hf : D agrees with D’ outside f None) p
(RWFp : D extends G&p along f)
(RWFq : D’ extends G&q along f),
GIl-—-p<<q->D |--m<<n.

Note that the assumptions are arranged in a way better suited for our
planned induction. Note also that the assumptions are given names:
this is for easier proofs.

Our proof of this lemma is the most involved one in our code,
with around forty tactics. Our proof of our transitivity_lemma is
much simpler, with around twenty tactics. Of course, it invokes our
narrowing_lemma.

® http://www.chargueraud.org/arthur/research/2006/poplmark/
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9. Conclusions

This work aimed at positioning Nested Abstract Syntax (NAS) with
respect to the main approaches to the binding representation problem.
Here are our thoughts in this matter.

— With respect to first-order approaches, notably de Bruijn name-
less encoding, we hope to have demonstrated that NAS avoids
a-equivalence and related problems, like de Bruijn encoding, while
allowing statements with a high-level of readability.

— With respect to higher-order approaches like HOAS (Pfenning and
Elliott, 1988), WHOAS (Honsell, Miculan and Scagnetto, 2001),
Nominal Logic (Gabbay and Pitts, 2002), we insist on the fact
that NAS need no specific logical apparatus, and offers a high-level
point of view, perfectly compatible with our everyday logic.

Since at least we are convinced that NAS is a perfect solution to
the binding representation problem, the next question is whether it is
ready “for the masses”. Here is our answer:

— We have to admit that NAS requires a large amount of dependent
typing. This should not be a bad point. Unfortunately, it occurs
that dependent types easily bring Coq beyond its current capabil-
ities. This does not appear in our formalization just because each
time we were stuck, we have been able to find a better way to
avoid the problem. Nevertheless, in our opinion, this is the main
obstacle which will prevent the “masses” to use NAS.

— The second obstacle is probably the syntax allowed by Coq, which,
although fairly sophisticated, is still far from what is allowed for

instance by TEX.

— Finally, the “masses” would certainly appreciate a system generat-
ing more material, in particular the monadic and parallel substitu-
tions associated with a given signature and their main properties.
It is not yet clear to us how will develop our new approach to
environments through functions and extensions, but we antici-
pate that some material could be generated also concerning these
environments.

Let us end with a few more remarks:

— Concerning conciseness, we have elaborated a small test in order to
compare the various existing solution to Part 1A of the POPLmark
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Challenge. We estimate the total amount of the information con-
tained in our code by measuring the size of the compressed sources.
Thus we tried to compare the gzipped size of our code with some
other available formalizations written in Coq. The results obtained
are summarized in the following table.6

Contribution Part 1A Extras
B. Aydemir et al. 2.5 Kb 16.4 Kb
A. Chlipala 23Kb 2.6 Kb
A. Hirschowitz & M. Maggesi 4.2 Kb 0 Kb
X. Leroy 50Kb 1.0Kb
J. Vouillon 4.6 Kb 0 Kb

Some formalizations are built on top of some kind of general pur-
pose library, in which case we tried to evaluate the size of the
library (reported in the column FEztras) separately from the size
of the code specific for the solution of the Challenge.

— When formalizing a theory, possibly pushed by the limitations of
the system in use, one is often tempted to explore new defini-
tions and proofs. This is part of a general process: we anticipate
that computer proofs will more and more influence paper proofs.
Although the formulation of the POPLmark Challenge did not
leave much room for such exploration, we did not fully resist to
the temptation. In particular, we have coined a new approach to
environments through functions and extensions, allowing a nice
merge of the permutation and weakening lemma. We hope that
this approach will be fruitful again in the future.

— A word is in order to explain why we solved only part 1A of the
POPLmark Challenge. The answer is just a matter of priority, we
did not start yet to try the next part.
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