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Exponential stabilization of language constrained
discrete-time switched linear systems: a geometrical approach

Mirko Fiacchini1, Marc Jungers2 and Antoine Girard3

Abstract— In this paper, the stabilizability of discrete-time
linear switched systems subject to constraints on the switching
law is considered. The admissible switching sequences are given
by the language generated by a nondeterministic finite state
automaton. An algorithm is proposed for computing contractive
sets defined in the space of the continuous and finite states that
induce recurrent exponential control Lyapunov functions for the
system. A necessary and sufficient condition for the existence
of recurrent control Lyapunov functions is given in terms of
finite termination of the algorithm.

I. INTRODUCTION

Switched systems are systems whose behavior evolves
among a finite class of different dynamics, [10]. Every
behavior is characterized by the active mode that is selected
by a function of time, the switching law. The interest in
switched systems increased in the last decades due to their
capability of modelling complex systems, such as embedded
and networked systems. On the other hand, the analysis and
control design for switched system might be rather involved,
also for linear switched systems, [10], [15].

A classification of the switched systems might be done
in terms of the assumptions on the switching law. It can be
considered either as an arbitrary function, leading to robust
stability analysis problems, or as a control function, leading
to the problem of stabilizability and switching control design.

In this paper we are considering the problem of stabi-
lizability of switched linear systems subject to constraints
on the switching law. In many practical cases, indeed, the
mode sequence might be required to satisfy some physical
conditions. Consider for instance the problems of safety
specifications, the tasks scheduling, the interaction between
control and software implementation and the constraints on
dwell-time switching. Several kinds of these constraints may
be modeled by a nondeterministic finite automaton, see [2].
Roughly speaking, the switching law belongs to the language
generated by such an automaton.
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Concerning the problem of stabilizability of switched
system, it is known that convex Lyapunov functions lead to
conservative results, and nonconvex ones must be considered,
see [5]. Nonconvex Lyapunov functions induced by the union
of ellipsoids are employed in [8], [18], [6], while more
general homogeneous functions have been considered in [7].

The idea of employing regular languages and automata to
impose constraints on the switching law has been recently ap-
plied to the problem of stability analysis for switched linear
systems. The problem of stability of constrained switched
linear system is addressed in [17], [16] using automata
properties while converse Lyapunov theorems, based the
joint spectral radius approach, are provided in [12]. Graph
Lyapunov functions and spectral radius are employed in [1]
and in [9] directed graphs are used to determine the switching
sequences under which the system is stable.

Nevertheless, the problem of determining stabilizing feed-
back control policies satisfying language constraints, dealt
with in this paper, has not been treated in the authors
knowledge. For this purpose, we consider the nonconvex
star-shaped sets, see [14], and their gauge functions as
Lyapunov candidates, as in [7], to provide a geometric
condition for stabilizability. An algorithm is provided whose
finite termination is proved to be necessary and sufficient
for the existence of a class of stabilizing control policy. This
class of control policies, and the related nonconvex Lyapunov
functions, are such that at least one state of the automaton
is attained recurrently. A preliminary comparative analysis
of the proposed stabilizability condition with respect to the
general one and the periodic stabilizability is presented.

The paper is organized as follows. The Section II presents
the problem; Section III provides the main results, concern-
ing the algorithm and the condition for the existence of
recurrent control Lyapunov functions. Examples are given
in Section IV and Section V draws the conclusions.

Notations: Denote with R+ the set on nonnegative real
numbers. Given n ∈ N, define Nn = {j ∈ N : 1 ≤ j ≤ n}.
Given Ω ⊆ Rn define the interior of Ω as int(Ω) and its
boundary as ∂Ω. The Euclidean-norm in Rn is ‖x‖ and the
unit ball is denoted Bn. The i-th element of a finite set of
matrices is denoted as Ai. The set of q switching modes is
I = Nq , all the possible sequences of modes of length N is
IN =

∏N
j=1 I and |σ| = N if σ ∈ IN .

II. PROBLEM FORMULATION

Consider the discrete-time switched linear system

xk+1 = Aσk
xk, (1)



with xk ∈ Rn the state at time k ∈ N; σ : N → I the
switching law and {Ai}i∈I , with Ai ∈ Rn×n for all i ∈ I.

Assumption 1: The matrices Ai, with i ∈ I, are nonsin-
gular.

We impose the constraint that σ has to belong to the
language specified by a nondeterministic finite automaton.

Definition 1: A nondeterministic finite automaton is a
tuple A = (S, I, δ,S0) where S is a finite set of states,
I = Nq is a finite alphabet, δ : S × I → 2S is a set-valued
transition map, and S0 ⊆ S is a subset of initial states.

A state s ∈ S is reachable from r ∈ S if s = r or if
there exists a finite sequence s0, s1, . . . , sN ∈ S such that
s0 = r, sN = s and for all k ∈ NN , there is ik−1 ∈ I such
that sk ∈ δ(sk−1, ik−1). A state s ∈ S is non-blocking if
there is i ∈ I such that δ(s, i) 6= ∅, it is blocking otherwise.
A switching law σ : N → I belongs to the language of A,
denoted L(A), if there is sσ : N→ S such that sσ0 ∈ S0 and
sσk+1 ∈ δ(sσk , σk) for all k ∈ N. Given Ω ⊆ Rn and s ∈ S,
we denote the set Ω×{s} as Ω× s to simplify the notation.

A control policy ν : Rn × S → I × S, is such that

ν(x, r) =
(
i(x, r), s(x, r)

)
∈ I × δ(r, i(x, r)),

with δ(r, i(x, r)) 6= ∅. (2)

Moreover we denote with (xνN (x0, r0), rνN (x0, r0)) ∈ Rn×
S the state of the system (1) and automaton A at time
N starting from (x0, r0) by applying the control policy ν.
Analogously, given σ ∈ L(A) we denote with xσN (x0) the
state of (1) at time N starting at x0 under the switching
sequence σ. The dependence of xνN , rνN and xσN on the
initial conditions will be dropped to simplify the notation.
We denote, with slight abuse of notation, ν ∈ L(A) if every
mode sequence σ generated by ν is in L(A). Finally σ ∈ IN
belongs to L(A) if it is the prefix of an element of L(A).

In the paper, we make the following assumptions on A:
Assumption 2: For all s ∈ S, s is non-blocking and there

exists s0 ∈ S0 such that s is reachable from s0.
The assumption above is not restrictive since it is al-

ways possible to build from A an automaton A′ satisfying
Assumption 2 and such that L(A) = L(A′). Indeed, A′
is obtained firstly by removing all the states not reachable
from an initial state and secondly by removing iteratively
all blocking states. Remark also that, rigorously speaking,
Definition 1 is not the classical definition of nondeterministic
finite automaton since we do not define a set of final states, as
we consider infinite sequences. Definition 1 actually defines
a subclass of nondeterministic Büchi automaton, see [2].

Remark 1: The stabilizability of the system (1) subject to
the language generated by A can be reduced to the that of
(1) subject to L(A′), with A′ = (S, I, δ,S). In fact, from
Assumption 2, they have the same trajectories and languages,
except an initial finite transient required to s0 ∈ S0 to reach
any s ∈ S. Then, in the paper we will consider that S0 = S.

We consider here the following notion of stabilizability:
Definition 2: The system (1) is globally exponentially

stabilizable relatively to the language L(A) if there are c ≥ 0
and λ ∈ [0, 1) and, for all x ∈ Rn, there exists a switching

law σ ∈ L(A), such that

‖xσk(x)‖ ≤ cλk‖x‖. (3)
We also give below the definition of exponentially stabiliz-

ing control Lyapunov function for switched systems, adapted
from that one formulated in [18].

Definition 3: A nonnegative continuous function V : Rn×
R → R+ is an exponentially stabilizing control Lyapunov
function (ECLF) of system (1) in R ⊆ S, with R non-empty,
if for every (x, r) ∈ Rn ×R, we have
(i) κ1‖x‖ ≤ V (x, r) ≤ κ2‖x‖ for some finite positive

constants κ1 and κ2;
(ii) V (x, r)− V (xν1 , r

ν
1 ) ≥ κ3‖x‖ for some constant κ3 >

0 and control policy ν(x, r) as in (2) and such that
δ(r, ν(x, r)) ∈ R.

The existence of an ECLF implies exponential stabiliz-
ability of the system (1).

Remark 2: Note that it is sufficient that the ECLF as well
as the control policy ν were defined on a subset of the
automaton states R, since every state is assumed in the set
of initial states, see Assumption 1 and Remark 1, provided
the automaton state is maintained in R under ν.

We consider the particular case when the stabilizing
switching law is such that the automaton reaches one state
s ∈ S every at most N steps. We will refer to this class of
switching sequences as recurrent.

Definition 4: The automaton trajectory rσ : N → S is
ultimately recurrent in s ∈ S under the switching sequence
σ ∈ L(A) if there exist m ∈ N, N ∈ N and a sequence lk :
N→ N such that l1 = m and rσlk = s, and 1 ≤ lk+1−lk ≤ N
for all k ∈ N. It is recurrent in s under σ if it is ultimately
recurrent with m = 0.

We are interested in the family of functions that are ECLF
under admissible automaton trajectories that are recurrent.

Definition 5: A nonnegative continuous function V : Rn×
R → R+ is a recurrent exponentially stabilizing control
Lyapunov function of system (1) in R ⊆ S if it is an
exponentially stabilizing control Lyapunov in R under a
control policy ν as in (2) such that ν ∈ L(A) and it generates
trajectories recurrent in a state s ∈ R.

The C-sets, i.e. compact, convex sets containing the origin
in their interior, and the induced gauge functions are widely
employed for robust stability and stabilizability of parametric
uncertain linear systems, [3], [4]. In this paper we employ
analogous geometrical concepts. For this we recall that a
compact set Ω is star-convex respect to z ∈ Ω if every convex
combination of x and z belongs to Ω for all x ∈ Ω, see [14].

Definition 6: A set Ω ⊆ Rn is a C∗-set if it is compact,
star-convex with respect to the origin and 0 ∈ int(Ω). The
gauge function of a C∗-set Ω ⊆ Rn is

ΨΩ(x) = min
α≥0
{α ∈ R : x ∈ αΩ}.

Some basic properties of the C∗-sets and their gauge
functions are listed below, see also [14].

Property 1: Every C-set is a C∗-set. Given a C∗-set Ω ⊆
Rn, we have that αΩ ⊆ Ω for all α ∈ [0, 1], and the gauge
function ΨΩ(x) is continuous; homogeneous of degree one,



i.e. ΨΩ(αx) = αΨΩ(x) for all α ≥ 0 and x ∈ Rn; positive
definite; defined on Rn and radially unbounded. For every
family of C∗-sets Ωi with i ∈ NI , also the sets Ω =

⋃
i∈I Ωi

and Ω =
⋂
i∈I Ωi are C∗-sets and ΨΩ(x) = mini∈NI

ΨΩi(x)
and ΨΩ(x) = maxi∈NI

ΨΩi(x). Moreover ΨBn(x) = ‖x‖
and Ωi ⊆ Ωj if and only if ΨΩj

(x) ≤ ΨΩi
(x) for all x ∈ Rn.

Finally, for every nonsingular matrix A ∈ Rn×n and C∗-set
Ω ⊆ Rn, also AΩ is a C∗-set in Rn.

The gauge functions induced by C-sets have been used
in literature as Lyapunov functions candidates, for linear
parametric uncertain systems, [13], [3], and switched systems
with arbitrary switching, [11]. On the other hand, the gauge
functions of C∗-sets are proved to be a universal class of
Lyapunov functions for switched systems with switching
control law, see [7], [6]. We will be searching, then, for
contractive C∗-sets such that the related gauge functions
could result to be recurrent ECLF for the switched systems
subject to the language constraints induced by A.

III. NECESSARY AND SUFFICIENT CONDITION

For every set Ω ⊆ Rn, state s ∈ S and mode i ∈ I, define
the one-step operator for the switched system (1) whose
switching law is specified by A as

Qsi (Ω) = {(x, r) ∈ Rn × S : Aix ∈ Ω, s ∈ δ(r, i)}.

Namely, given a set Ω, a state of the automaton s and a mode
i, the operator Qsi (Ω) gives

Qsi (Ω) =
⋃

r∈γ(s,i)

(A−1
i Ω× r)

where γ(s, i) are the automaton states that evolve to s by
applying the mode i, i.e. γ(s, i) = {r ∈ S : s ∈ δ(r, i)}.
Thus, intuitively, Qsi (Ω) is the pre-image through the mode
i ∈ I, in the space Rn × S, of the set Ω × s. Clearly, if
s /∈ δ(r, i) for all r ∈ S, then Qsi (Ω) = ∅. Moreover define:

Qs(Ω) =
⋃
i∈I

Qsi (Ω) =
⋃
i∈I

⋃
r∈γ(s,i)

(A−1
i Ω× r),

that is the set of the pre-images of the set Ω× s through all
the modes i ∈ I. Consider the Algorithm 1.

• Initialization: given the C∗-set Ω0 ⊆ Rn and a state
s ∈ S, define Λs0 = Ω0 × s and k = 0;
• Iteration for k ≥ 0:

Λsk+1 =
⋃

(Ω×r)⊆Λs
k

Qr(Ω),

Ωs,sk+1 = {x ∈ Rn : (x, s) ∈ Λsk+1},
(4)

• Stop if Ω0 ⊆ int
( ⋃
j∈Nk+1

Ωs,sj

)
; denote Ns = k + 1

and
Ωs =

⋃
j∈NNs

Ωs,sj . (5)

Algorithm 1: Computation of a contractive C∗-set for
the system (1), satisfying Assumption 1, recurrent in s.

The geometrical interpretations of the sets Λsk+1 and Ωs,sk+1

follow, their dependence on Ω0 is avoided. First notice that
the sets Λsj lie in the space Rn×S , then they have the form

Λsj =
⋃
r∈S

(
Ωr,sj × r

)
, ∀j ∈ N,

with Ωr,sj possibly empty. In particular one has

Ωr,sj = {x ∈ Rn : (x, r) ∈ Λsj}, Ωr,s=
⋃

j∈NNs

Ωr,sj . (6)

The index s denotes the initial automaton state. Given Λsk ∈
Rn×S, the points in Rn×S that can be steered in one step
in Λsk, by means of an admissible mode, are the set Λsk+1.
Thus, Λsk is the set of (x, r) ∈ Rn × S that can be steered
in Ω0 × s by means of admissible sequences of modes of
length k. The set Ωs,sk is, then, the set of states x ∈ Rn such
that, if the automaton state is s, a trajectory exists that steers
x in Ω0 in k steps, with the automaton state returning at s.

Lemma 1: The sets Ωr,sk are C∗-sets or empty, for all k ∈
NNs and r ∈ S.

Proof: The result comes directly from the properties of
C∗-sets, see Property 1.

The main result, providing a constructive method for
determining whether the system (1) can be stabilized by
means of a switching sequence in L(A), is now presented.

Theorem 1: There exists a non-empty set R ⊆ S and a
recurrent exponential control Lyapunov function in R if and
only if Algorithm 1 terminates in finite time for a state s ∈ S.

Proof: First we prove sufficiency, that is the fact that
the finite termination of the algorithm implies the existence
of a recurrent ECLF in R, with R non-empty. Suppose that
the algorithm terminates with finite Ns ∈ N and define R =
{r ∈ S : Ωr,s 6= ∅}, non-empty since at least s ∈ R, from
Ω0 ⊆ int(Ωs). From the geometrical meaning, Ωs is the set
of x ∈ Rn that can be driven to Ω0, with the automaton
initial and final states equal to s, by means of an admissible
switching sequence of length smaller or equal than Ns that
maintains the automaton state in R. Moreover, since Ω0 and
Ωs are C∗-sets, then there exists ρ ∈ (0, 1) such that

Ω0 ⊆ ρΩs ⊆ Ωs, (7)

from Ω0 ⊆ int
(
Ωs
)
. Define µ ∈ (ρ1/(Ns−1), 1) and the sets

Θr,s
j = µjΩr,sj , Θr,s =

⋃
j∈NNs

Θr,s
j , ∀r ∈ R, (8)

with Ωr,sj as in (4), (5) and (6). Consider the function

V (x, r) = ΨΘr,s(x) = min
j∈NNs

ΨΘr,s
j

(x) = min
j∈NNs

µ−jΨΩr,s
j

(x),

(9)
defined for all (x, r) ∈ Rn×R. Condition (i) in Definition 3
holds since Θr,s are C∗-sets and then there exist κr,s1 , κr,s2 >
0 such that κr,s2 Bn ≤ Θr,s ≤ κr,s1 Bn, which implies

κr,s1 ‖x‖ = κr,s1 ΨBn(x)≤ ΨΘr,s(x)≤ κr,s2 ΨBn(x) = κr,s2 ‖x‖.

To prove that also condition (ii) holds, consider (x, r) ∈
Rn×R and denote, for notational convenience, ΨΘr,s(x) =



α and (xν1 , r
ν
1 ) = (x+, r+). Define

jr,s(x) = min
σ∈I[1:Ns]

{
j = |σ| : ∃m ∈ Sj+1 s.t.

m1 = r, mj+1 = s, mk+1 ∈ δ(mk, σk) ∀k ∈ Nj ,
ΨΩ0

(xσj ) ≤ ΨΩr,s(x), σ ∈ L(A)
}
,

(10)
that is in NNs since by construction of Ωr,s there exists a
sequence of modes in L(A) of length smaller than or equal
to Ns that steers r in s and x ∈ Ω0, if x ∈ ∂Ωr,s. Note that
from the definition above we have that

x ∈ ∂
(
αΘr,s

jr,s

)
= ∂

(
αµj

r,s

Ωr,sjr,s
)
, (11)

where the dependence of jr,s on x has been avoided. Define
the control policy ν(x, r) as the elements (σ1, m2) with σ
and m a selection among the optimizers of the minimization
in (10) at (x, r). Therefore, jr

+,s(x+) ≤ jr,s(x)−1 if r+ 6= s,
which implies that s is attained every Ns steps at most.

Concerning jr,s in (10), either jr,s = 1 or 2 ≤ jr,s ≤ Ns.
Consider first the case jr,s(x) ≥ 2. By construction, for all
β ≥ 0 and 2 ≤ j ≤ Ns and every (x, r) ∈ Rn ×R we have

x ∈ ∂(βΩr,sj ) ⇒ ∃(i,m) ∈ I×δ(r, i) s.t Aix ∈ ∂(βΩm,sj−1).
(12)

Note that a possible choice for (i,m) is the value of the
control policy ν at (x, r), i.e. ν(x, r) = (i, m). As noticed
above, see (11) and (12), we have that x ∈ ∂

(
αµj

r,s

Ωr,sjr,s
)
,

and by applying the control ν(x, r), we have

x+ ∈ ∂
(
αµj

r,s

Ωr
+,s
jr,s−1

)
= ∂

(
αµΘr+,s

jr,s−1

)
.

Then we have
V (x+, r+) = ΨΘr+,s(x+) = min

j∈NNs
Ψ

Θr+,s
j

(x+)

≤ Ψ
Θr+,s

jr,s−1

(x+) ≤ αµ = ΨΘr,s(x)µ = µV (x, r),
(13)

with µ ∈ (0, 1), then V (x, r) decreases by applying ν(x, r).
Consider now jr,s(x) = 1, which means that x ∈

∂ (αΘr,s
1 ), see (11). In this case, and by construction of Ωr,s1 ,

the control is ν(x, r) = (j, s) and then the successor can be
in (αµΩ0)× s. Thus applying ν(x, r) we have r+ = s and

x+ ∈ ∂ (αµΩ0) ⊆ αµρΩs = αµ−N
s+1ρ

(
µN

s

Ωs
)

= αµ−N
s+1ρ

(
µN

s ⋃
j∈NNs

Ωs,sj

)
⊆ αµ−N

s+1ρ
⋃

j∈NNs

µjΩs,sj

= αρµ−N
s+1Θs,s

from (7), which implies

V (x+, r+) = ΨΘs,s(x+) ≤ ρµ−Ns+1α
= ρµ−N

s+1ΨΘr,s(x) = ρµ−N
s+1V (x, s).

Therefore V (x, r) decreases, since ρµ−N
s+1 < 1. Thus,

denoting λ = max{µ, ρµ−Ns+1}, we have that for every
(x, r) ∈ Rn × R there exists a ν(x, r) as in (2) such that
V (x+, r+) ≤ λV (x, r), with λ ∈ (0, 1). Finally defining

d = min
b>0
{b ∈ R : Θr,s ⊆ bBn, ∀r ∈ S}

which exists finite since Θr,s are non-empty C∗-sets, then
V (x, r) = ΨΘr,s(x) ≥ d‖x‖, for all x and r, it follows

V (x, r)− V (x+, r+) ≥ (1− λ)V (x, r) ≥ (1− λ)d‖x‖,

and then (ii) in Definition 3 holds with κ3 = (1− λ)d.
Concerning necessity, suppose that a recurrent ECLF in

R ⊆ S exists. This implies that the system is exponentially
stabilizable under a control policy ν : Rn × R → I × R
such that ν ∈ L(A) and the trajectories are recurrent in s
and maintained in R. Then, from Definition 2, we have that
there exists ν(x, r) recurrent in s, with cycle length bounded
by N ∈ N, such that ‖xνk‖ ≤ cλk‖x‖ for all (x, r) ∈ Rn×R.
Given the initial C∗-set Ω0, fix τ ∈ (0, 1) and define

αsm = max
a≥0
{α ∈ R : αBn ⊆ Ω0},

αsM = min
a≥0
{α ∈ R : Ω0 ⊆ ατBn},

and ρ = αsm/α
s
M . Note that ρ ∈ (0, 1). Defining also K =

mink∈N{k ≤ 1 : cλk ≤ ρ}, it follows that

‖xνK+i‖ ≤ cλK+i‖x0‖ ≤ ρ‖x0‖, ∀i ∈ NN ,

with r0 = s and rνK+i = s for at least a i ∈ NN , from
recurrence. This implies that there exists i ∈ NN such that

∀(x, s) ∈
(
ρ−1Bn

)
× s ⇒

(
xνK+i, r

ν
K+i

)
∈ Bn × s,

that is equivalent, from homogeneity, to

∀(x, s)∈
(
αsMBn

)
×s ⇒

(
xνK+i, r

ν
K+i

)
∈
(
αsmBn

)
×s. (14)

Initializing Algorithm 1 with Ω0, which is such that αsmBn ⊆
Ω0, and iterating K+N steps one obtains a set that contains
all the points (x, r) that can be stirred in αsmBn×s by means
of ν in K +N steps or less. Therefore, from (14), we have(

αsMBn
)
× s ⊆

⋃
j∈NN+K

(
Ωs,sj × s

)
,

which implies, from Ω0 ⊆ ταsMBn ⊆ int
(
αsMBn

)
, that the

stop condition (5) is satisfied.
The meaning of Theorem 1 is that there is a stabilizing

control policy ν(x, r) such that ν ∈ L(A) and the automaton
state gets the value s after N steps at most, if and only if
Algorithm 1 terminates in a finite number of iterations.

Remark 3: From (7) and the geometrical meaning of Ωs,
it follows that every state (x, s) ∈ Rn× s with x ∈ ∂Ωs can
be steered in ρΩs × s in Ns or less steps. This means that
there exists ns(x) ∈ NNs such that

ΨΩs(xνns(x)) ≤ ρΨΩs(x) (15)

and rνns(x) = s, for an admissible ν ∈ L(A). Note that (15)
holds for every x, not only those on ∂Ωs, from homogeneity.
Nevertheless, ΨΩs(x) does not necessarily decrease along the
trajectory at times k < ns(x), nor for every k > ns(x), and
then another gauge functional, the one of Θr,s, has been built
such that it is decreasing at every step.

Remark 4: If the Algorithm 1 terminates in finite time
then every initial state (x, r) ∈ Rn×R can be exponentially
stabilized. In fact, by Assumption 2 and Remark 1, the
automaton state s can considered as an initial state and the
recurrent ECLF, being the gauge function of a C∗-set, is
defined on the whole Rn, see Property 1.

Remark 5: Given a recurrent ECLF, different control
strategies can be designed for it to be decreasing along the



trajectories. The one employed in the proof of Theorem 1
assures that the automaton state reaches s every Ns steps at
most, by construction. Another classical approach consists in
minimizing the ECLF value, i.e. selecting

hr,s(x) = arg min
j∈N

ΨΘr,s
j

(x)

and applying the mode i and the state in m that generate
Θr,s
hr,s from the state Λshr,s−1 in the Algorithm 1. Note that

this control strategy does not assure the recurrence in s.
Thus, the existence of a stabilizing switching policy

generating recurrent automaton trajectories is sufficient for
stabilizability and can be obtained in finite time if it exists.

IV. EXAMPLES AND COUNTEREXAMPLES

In the previous section we proved that the existence of
a recurrent ECLF is sufficient for stabilizability. But what
about necessity? Is it possible to have an ECLF and a related
stabilizing switching control sequence that does not generate
trajectories, that pass through one automaton state every N
steps at most? If we could prove that such sequences do not
exist, necessity would result. But it is not the case.

Example 1: Consider a switching systems with two modes
and the automaton given in Figure 1, left. Note that, in prac-
tice, every state is associated to the last mode activated and
every possible sequence of modes is admissible. The matrices
associated to the two modes are equal and Schur, that means
that every switching sequence exponentially stabilizes the
system, trivially. On the other hand, a switching sequence
can be constructed such that no state is reached recurrently
with a period that is bounded. Consider for instance the mode
sequence {1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, . . .} generating the
automaton trajectory {a, a, b, a, a, b, b, a, a, a, b, b, b, a, . . .},
with initial state a. The sequence of delays for the tra-
jectory to reach the state a (and analogously for b) is
{1, 2, 1, 3, 1, 1, 4, . . .} whose upper bound is not bounded.

Therefore, there might exist stabilizing switching se-
quences generated by an automaton that do not provide
recurrent trajectories. On the other hand, this does not mean
that there is not another switching sequence generating
recurrent trajectories, as for the case in Example 1.

a b

2

1 2

1

a b

c

2

1

3
1

3
3

1

Fig. 1. Automata of Example 1, left, and Example 2, right.

Moreover, one may wonder if there is a relation between
the recurrent ECLFs and the periodic switching control
sequences, i.e. composed by a finite sequence of modes, not
dependent on the state, that repeats cyclically in time.

Example 2: To construct a counterexample, and to have
some insight on the problem, we considered the Example

17 in the paper [6]. Consider a switched system with three
modes and no constraints on the mode sequences. The
matrices are

A1 = AR(0), A2 = AR

(
2π

3

)
, A3 = AR

(
−2π

3

)
,

where

A =

[
a 0
0 a−1

]
, R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
,

with a = 0.6. Consider the set Ω0 = B2. As proved in
[6], the stabilizability geometric condition [6] holds at the
first step. Moreover, we know from [6] that no periodic
stabilizing switching law exists. This would not mean that
periodic sequences cannot be generated, but the fact that
there is not one periodic stabilizing switching law that does
not depend on the state. Roughly speaking, there is not
an open-loop (then periodic) stabilizing switching law for
this system. We consider now the deterministic automaton
given by three states, a, b and c, such that every mode can
be selected at every instant and the successor is a when
the mode 1 is applied, is b for 2 and c for 3. Thus, once
more, every possible sequence of modes can be generated
and every automaton mode represents the last mode applied.
Since no periodic switching law stabilizes the system, then,
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Fig. 2. Sets Ωr,s for all r, s ∈ I and Ns = 4. The set Ωr,s is depicted
in the line s column r. In blue the sets related to recurrent ECLF.

in principle, there is no need for a stabilizing sequence to
reach at least one state every N steps at most, with N ∈ N.
Note in fact that if a periodic sequence stabilizes the system
then, by its nature, it must pass through every state related
to the modes in the sequence with a delay smaller than or
equal to the cycle length. Then, in this case, the Algorithm 1
would terminate in finite time.

So, the question we would like to answer to is: provided
a periodic switching law does not exist, does there exist
a stabilizing sequence that pass through one state s with
bounded delay, hence recurrent, for every x? The answer is
yes. In fact by applying Algorithm 1 to every mode in I we
found that the stop condition holds. Moreover, we proved that
also by removing two arcs, i.e. forbidding two transitions,
see Figure 1 right, two different recurrent ECLF exist with



Ns = 4, one recurrent in the mode a, one in the mode c,
see Figure 2.

a c

d

b

e
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2

1 2

1

1

1

1

Fig. 3. Automaton of Example 3.

Example 3: Finally, we apply our algorithm to a 2-
dimensional switched system with 2 unstable modes

A1 =

[
1.2 0
0 0.5

]
, A2 = 1.1R(π/3),

and constraints determined by the 5-states automaton of
Figure 3. The Algorithm 1 has been applied for every s ∈ I.
No recurrent ECLF has been obtained after 5 steps, but
for Ns = 6 the stop condition holds for three automaton
states, i.e. for a, c and d. The resulting sets are drawn
in Figure 4. The control policy related to the mode s =
d has been applied, resulting in the state and automaton
trajectories shown in Figure 5. Note that, since we applied
a min-switching control strategy, sketched in Remark 5, the
recurrence in d is not assured every 6 steps or less, see the
instants between 17 and 24.
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Fig. 4. Sets Ωr,s for all r, s ∈ I and Ns = 6. The set Ωr,s is depicted
in the line s column r. In blue the sets related to recurrent ECLF.

V. CONCLUSIONS

In this paper we presented a constructive approach to char-
acterize a class of exponential control Lyapunov functions for
switched linear systems subject to constraints on the switch-
ing law. The method is based on an algorithm whose finite
termination provides a necessary and sufficient condition for
the existence of a recurrent ECLF. A preliminary analysis
of the relations between this class of ECLF and general
stabilizability is given.
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Time k
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Fig. 5. Evolutions of the systems states, top and middle, and automaton
state, bottom, where 1 denotes a; 2 b; 3 c; 4 d and 5 e.
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