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Abstract 
 

To prepare images for better segmentation, we need preprocessing applications, such as smoothing, to reduce 

noise. In this paper, we present an enhanced computation method for smoothing 2D object in binary case. Unlike 

existing approaches, proposed method provides a parallel computation and better memory management, while 

preserving the topology (number of connected components) of the original image by using homotopic 

transformations defined in the framework of digital topology. We introduce an adapted parallelization strategy 

called split, distribute and merge (SDM) strategy which allows efficient parallelization of a large class of 

topological operators. To achieve a good speedup and better memory allocation, we cared about task scheduling 

and managing. Distributed work during smoothing process is done by a variable number of threads. Tests on 2D 

grayscale image (512*512), using shared memory parallel machine (SMPM) with 8 CPU cores (2× Xeon E5405 

running at frequency of 2 GHz), showed an enhancement of 5.2 with cache success rate of 70%. 

 

 

1 Introduction 
 

Smoothing filter is the method of choice for image preprocessing and pattern recognition. For example, the 

analysis or recognition of a shape is often perturbed by noise, thus the smoothing of object boundaries is a 

necessary preprocessing step. Also, when warping binary digital images, we obtain a crenellated result that must 

be smoothed for better visualization. The smoothing procedure can also be used to extract some shape 

characteristics: by making the difference between the original and the smoothed object, salient or carved parts 

can be detected and measured.  

 

Smoothing shape has been extensively studied and many approaches have been proposed. The most popular one 

is the linear filtering by Laplacien smoothing for 2D-vector [1] and 3D mesh [2].  Other approach by 

morphological filtering can be applied directly to the shape [3] or to curvature plot of the object's contour [4]. 

Unfortunately none of these operators preserve the topology (number of connected components) of the original 

image. In 2004, our team introduced a new method for smoothing 2D and 3D objects in binary images while 

preserving topology [5]. Objects are defined as sets of grid points, and topology preservation is ensured by the 

exclusive use of homotopic transformations defined in the framework of digital topology [6]. Smoothness is 

obtained by the use of morphological openings and closings by metric discs or balls of increasing radius, in the 

manner of alternating sequential filters [7]. The authors' efforts have brought about two major issues such as 

preserving the topology and the multitude of objects in the scene to smooth out without worrying about memory 

management, latency or cadency of their filter. This paper describes an enhanced computation method of 

topological smoothing filter that assure better performance. We present also a new parallelization strategy, called 

Split Distribute and Merge (SD&M). Our strategy is designed specifically for topological operator’s 

parallelization on shared memory architectures. The new strategy is based upon the exclusive combination of 

two patterns: divide and conquer and event-based coordination.  

 

This paper is organized as follows: in section 2, some basic notions of topological operators are summarized; the 

original smoothing filter is introduced. In section 3, parallelization strategy, that has been adopted, is introduced. 

We define the class of operators that our strategy may cover. Motivations for using SMP machines are also cited. 

Threads coordination and tasks scheduling are discussed. In section 4, the new parallel smoothing method is 

introduced and evaluations of acceleration, efficiency and success rate of cache memory access are also 

presented and discussed. Finally, we conclude with summary and future work in section 5.  



2 | P a g e  

 

2 Theoretical background 
 

In this section, we recall some basic notions of digital topology [6] and mathematical morphology for binary 

images [8]. We define also the homotopic alternating sequential filters [5]. For the sake of simplicity, we restrict 

ourselves to the minimal set of notions that will be useful for our purpose. We start by introducing 

morphological operators based on structuring elements which are balls in the sense of Euclidean distance, in 

order to obtain the desired smoothing effect. 

 

We denote by ℤ  the set of relative integers, and by Ε the discrete plane
2
ℤ . A point x ∈ Ε is defined by 

1 2( , )x x with ix ∈ℤ . Let x ∈ Ε , r ∈ℕ , we denote by ( )rB x the ball of radius r  centred on x , defined by 

{ }( ) , ( , )
r

B x y E d x y r= ∈ ≤ , where d  is a distance on Ε . We denote by 
rB  the map which associates to 

each x  in Ε  the ball ( )rB x . The Euclidean distance d on Ε  is defined by: 
1/2

2 2( , ) A Bd x y  = −  with 

1 1A ( )x y= − and
2 2B ( )x y= − . 

 

An operator on E  is a mapping from ( )P E into ( )P E , where ( )P E denotes the set of all subsets of E . Let 

r  be an integer, the dilation by rB  is the operator rδ  defined by ( ) ( )r x X r
X B xδ ∈= ∪  ( )X P E∀ ∈ . The 

ball 
rB is termed as the structuring element of the dilation. The erosion by 

rB  is the operator 
rε defined by 

duality: 
r rε δ= ∗ . 

 

Now, we introduce notion of simple point which is fundamental for the definition of topological operators in 

discrete spaces. We give a definition of local characterization of simple points in
2E = ℤ . Let consider two 

neighbourhoods relations 
4Γ  and 

8Γ defined for each point x E∈ by: 

{ }4 1 1 2 2( ) ; 1x y E y x y xΓ = ∈ − + − ≤ , { }8 1 1 2 2( ) ;max , 1x y E y x y xΓ = ∈ − − ≤ . 

 

For general case, we define { }* ( ) ( ) \
n n

x x xΓ = Γ  with { }4,8n∈ . Thus y  is said n-adjacent to x  if 

* ( )
n

y x∈ Γ  . We say also that two points x and y of X are n-connected in X  if there is a n-path between 

these two points. The equivalence classes for this relation are n-connected components of X . A subset X  of 

E  is said to be n-connected if it consists of exactly one n-connected component. The set of all n-connected 

components of X  which are n-adjacent to a point x  is denoted by [ ],
n

C x X . In order to have a 

correspondence between the topology of X  and the topology of X , we use n-adjacency for X and n -

adjacency for X ,  with ( , )n n  equal to (8; 4) or (4; 8).  

 

Informally, a simple point p of a discrete object X  is a point which is inessential to its topology. In other 

words, we can remove p  from X  without changing its topology. A point x X∈ is said simple if each n-

component of X  contains exactly one n-component of { }\X x  and if each n -component of { }X x∪  

contains exactly one n -component of X . Let X E⊂ and x E∈ , two connectivity numbers defined as follows 

( # X = cardinality of X ): ( )*

8( , ) # ,nT x X C x x X = Γ ∩  ; ( )*

8( , ) # ,
n

T x X C x x X = Γ ∩  .  

 

The following properties allows us to locally characterize simple points [6][9] hence to implement efficiently 

topology preserving operators: x E∈ is simple for ( , ) 1X E T x X⊆ ↔ = and ( , ) 1T x X = . 
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The homotopic alternating sequential filter is a composition of homotopic cuttings and fillings by balls of 

increasing radius. It takes an original image X  and a control image C as input, and smoothes X  while 

respecting its topology and geometrical constraints implicitly represented byC . A simple illustration is given by 

figure 1. Smoothed image (b) is obtained using HAS filter with a radius equal to five and four connectedness        

(
4Γ ).More example can be found in [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                            (b) 

 
Fig.1: (a) Input image (b) Smoothed image  

 

Based on this filter, Authors [5] introduce a general smoothing procedure with a single parameter to control 

smoothing degree. Let C X⊆ , r ∈ℕ  and D X⊆ with X any finite subset of E . The homotopic alternating 

sequential filter ( )HASF of order n , with constraint sets C and D , is defined as follows: 

 
,

1 1...
C D D C D C

n n nHASF HF HC HF HC= � � �  

 

In the previous formula, 
C

nHC (i) refers to homotopic cutting of X  by nB with constraint set C and 
D

nHF (ii) 

refers to homotopic filling of X  by nB  with constraint set D . These two homotopic operators can be defined 

as follows:  

 

( ) ( ),C

n
HC X H Y V= ∗ With 

( )( )
( )( ){ , n

n

Y H X X C

V Y X

ε

δ

= ∪

= ∩
 (i)           ( ) ( ),D

n
HF X H Z W= With ( )

( )( ){ ,

( )

n

n

Z H X X D

W Y X

δ

ε

=∗ ∩

= ∪
(ii) 

 

We recall that ( ),H Z W is an homotopic constrained thinning operator. It gives the ultimate skeleton of Z

constrained byW . The ultimate skeleton is obtained by selecting simple point in increasing order of their 

distance to the background thanks to a pre-computed Euclidian distance map [10]. We recall also that 

( ),H Y V∗  is an homotopic constrained thickening operator. It thickens the set of Y by iterative addition of 

points which are simple for Y and belong to the set V until stability. 

 

We have provided, in this section, the theoretical underpinnings for studying topological transforms. We 

introduced also the homotopic alternating sequential filter which constitutes base for topological smoothing.    

 

3 Parallelization Strategy 
 

In this section, we start by defining the class of topological operators. We also present our motivation to 

parallelize these algorithms on parallel shared memory machines. Then, we will introduce different steps of our 

approach after making a brief classification over existing strategies.  We will focus especially on distribution 

phase and tasks scheduling over different processors. Scheduling and merging algorithms are presented and 

discussed. To illustrate both algorithms, scenarios are also introduced and discussed.   
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3.1 Class of topological algorithms 
 

In 1996, Bertrand and Couprie [11] introduced connectivity numbers for grayscale image. These numbers 

describe locally (in a neighborhood of 3x3) the topology of a point. According to this description any point can 

be characterized following its topology. They also introduced some elementary operations able to modify gray 

level of a point without modifying image topology. These elementary operations of point characterization 

present a fundamental link between large class of topological operators including, mainly, skeletonization and 

crest restoring algorithms [12]. This class can also be extended, under condition, to homotopic kernel and 

leveling kernel transformation [13], topological watershed algorithm [14] and topological smoothing algorithm 

[5] which is the subject of this article. All mentioned algorithms get also many algorithmic structure similarities. 

In fact associated characterizations procedures evolve until stability which induce common recursion between 

different algorithms. The grey level of any point can also be lowered or enhanced more than once.  Finally, all 

mentioned algorithms get a pixel’s array as input and output data structure. It is important to mention that, to 

date, this class has not been efficiently parallelized like other classes as connected filter of morphological 

operator which recently has been parallelized in Wilkinson’s work [15].  Parallelization strategy proposed by 

Seinstra [30] for local operators and point to point operators can also be cited as example. For global operators, 

Meijster strategy [16] shows also consistence. Hence the need of a common parallelization strategy for 

topological operators that offers an adapted algorithm structure design space. Chosen algorithm structure 

patterns that will be used in the design must be suitable for SMP machines. 

 

In reality, although the cost of communication (Memory-processor and inter-processors) is high enough, shared 

memory architectures meet our needs for different reasons: (i) These architectures have the advantage of 

allowing immediate sharing of data with is very helpful in the conception of any parallelization strategy (ii) They 

are non-dedicated architecture using standard component (processor, memory ...) so economically reliable (iii) 

They also offer some flexibility of use in many application areas, particular image processing. 

 

3.2 Split Distribute and Merge Strategy 

 

In practice, most effective parallel algorithm design might make use of multiple algorithm structures thus 

proposed strategy is a combination of the divide and conquer pattern and event-based coordination pattern, see 

figure 2. Hence the name that we have assigned: SD&M (Split Distribute and Merge) strategy. Not to be 

confused with mixed-parallelism approach (combining data-parallelism and task-parallelism), it is important to 

mention that our strategy (i) represents the last stitch in the  decomposition chain of algorithm design patterns 

and it provides a fine-grained description of topological operators parallelization while mixed-parallelism 

strategy provides a coarse-grained description without specifying target algorithm. (ii) It covers only the case of 

recursive algorithms, while mixed-parallelization strategy is effective only in the linear case. (iii) It is especially 

designed for shared memory architecture with uniform access. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2: SDM strategy classification 
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3.2.1 Split phase  

 

The Divide and Conquer pattern is applied first by recursively breaking down the problem into two or more 

sub-problems of the same type, until these become simple enough to be solved directly. Splitting the original 

problem take into account, in addition to the original algorithm’s characteristics (mainly topology preservation), 

the mechanisms by which data are generated, stored, transmitted over networks (processor-processor or memory-

processor), and passed between different stages of computation.  

 

3.2.2 Distribute phase  
 

Work distribution is a fundamental step to assure a perfect exploitation of multi-cores architecture’s potential. 

We'll start by recalling briefly some basic notion of distribution techniques then we introduce our minimal 

distribution approach that is particularly suitable for topological recursive algorithms where simple point 

characterization is necessary. Our approach is general and applicable to shared memory parallel machines. 

Critical cases are also introduced and discussed.  

 

Indeed there are two main types of scheduler. There are those designed for real-time systems (RTS). In this case, 

the most commonly approaches used to schedule real-time task system are: Clock-Driven, Processor-Sharing and 

Priority-Driven. Further description of different scheduling approaches can be found in [26,27,28]. According to 

[28] the Priority-Driven is far superior the other approaches. These schedulers must provide an operational RTS: 

completed work and delivered results on a timely basis. Other schedulers are designed for Non Real-time 

system. In this case, schedulers are not subject to the same constraints. Thus, "Symmetric Multiprocessing" 

scheduler distributes tasks to minimize total execution time without load balancing between processors, see 

figure 3 (a). On multi-core architectures, this can lead to high occupancy rate of one processor while the others 

are free. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 

Fig.3: (a) Non-real time symmetric task distribution (b) Task distribution based upon uniformity principle 

 

We propose a novel tasks scheduling approach to prevent improper load distribution while improving total 

execution time, see figure 3 (b). In literature, there are several schedulers that provide a balanced distribution of 

tasks such as RSDL “Rotating Staircase Deadline” [17] which incorporates a foreground-background descending 

priority system (the staircase) with run-queue managing minor and major epochs (rotation and deadline). Other 

scheduler, as CFS “Completely Fair Scheduler” [18], shows consistence. It handles resource allocation for 

executing processes, and aims to maximize overall CPU utilization while maximizing interactive performance. 

These schedulers are based on tasks uniformity principle. Through the tasks homogeneity, better distribution can 

be achieved and total execution time reduced. Unfortunately, these schedulers are not available in all operating 

system versions especially for small system. Based on the same principle of tasks uniformity, we propose a new 

scheduling algorithm, simpler to implement and more adapted to topological algorithm implementation. 
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Let be a basic non-preemptive scheduler ‘Basic-NPS’, { }1 2, ,...,
k

T t t t= is the set of all tasks, 

{ }1 2, ,...,
T i

T t t t= is the set of tasks to process with TT T⊂ , { }1 2, ,...,
n

P p p p= is the set of all processors 

and { }1 2, , ...,a jP p p p=  is the set of available processors with aP P⊂ .  

 

Basic-NPS (
x yT P⇒ ) is able to schedule a set of xT  tasks on 

yP  processor. Let { }p be the maximum of 

processors that 
yP will contain. Then { }p can be defined as the maximum of available processors already 

defined by the set aP  and { } max /j j ap p p P= ∈ . While [ ] [ ]( )a TP T≠ ∅ ∧ ≠ ∅ then :
x y

T P⇒  

;x TT T∈  
y a

P P∈ .  

 

In this scheduler, each processor will treat at maximum max / max( )i i j

T
m t t p

P
= → ≤ tasks with

{ }1, 2,...,j n∈ . Then, the worst case to process T is { }1
...

( ) max max ,..., maxT T k
i j i

K T T p T p
< <

= → → . As 

proof, let suppose that it exist a set ( )L T as ( ) ( )L T K T≥∑ ∑ . As ‘Basic-NPS’ manage ( )L T and ( )K T , 

so we can introduce the following: ( )L T m≤ and ( )K T m≤ . Thus, if ( ( ) ( ))L T K T≥∑ ∑ then it exists 

at least one task { }l , with ( )k K T∈ , such as: ( )A B C∧ ∧  with

( ( )), ( ( )), ( )A l L T B l K T C l k= ∈ = ∉ = > . This is impossible according to the definition of ( )K T  

which was defined as the worst case. 

 

Algorithm 1:  Scheduling policy 
 

1. T : Set of all tasks 

2. P : Set of all processors 

3. While ( )T ≠ ∅  repeat : 

4.      TN = Nbr_active_tasks() ; 

5. 
     PN = Nbr_ available_processors(); 

6.       If  ( 0)PN ≠ then 

7.          If ( TN < PN ) then  

8.                    For each processor PiN : 

9.                        Generate-new-process ( TiN ); 

10.                         Identify-class ( TiN , SCHED_FIFO); 

11.                     Endfor 

12.          Else :  DTN = Desable_tasks ( PN - TN ) ; 

13.                      Insert_desabled_tasks ( DTN ,T ); 

14.                      For each processor PiN : 

15.                              Generate-new-process ( TiN ); 

16.                              Identify-class ( TiN , SCHED_FIFO); 

17.                      Endfor 

18.           EndIf 

19.       EndIf 

20. EndWhile    
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Algorithm 1 describes ‘Basic-NPS’ policy. The first step consists on asking operating system to determine the 

number of available processor. Depending on this number, algorithm will generate process. One active process 

will be assigned for each available processor. These new processes will belong to the SHED_FIFO class in order 

to ensure preemption and especially to avoid context switching. Process will only stop running if work is 

complete or less frequently when another process, belonging to the same class, with higher priority requesting 

processor. The global execution will stop if there no more task to process. 

 

3.2.3 Merging phase  
 

The key problem of each parallelization is merging obtained results. Normally this phase is done at the end of 

the process when all results are returned by all threads what usually means that only one output variable is 

declared and shared between all fighting threads. But as we mentioned in section 3.1, we are dealing with a 

dynamic evolution and if we take into account different steps of simple point detection then pixel 

characterizations, we can plan the following: The original shared data structure, containing all pixels, is divided 

into n  research zones { }1 2, ...,
n

z z z  . We associate one thread from the following list { }1 2, ...,
n

T T T  to each 

zone. Each thread can browse freely its zone and if it detects target pixel types, it lowers characterized pixel and 

it pushes its eight neighbors in one of the available FIFO queues. A queue is said available if only one thread 

(owner) is using it. One queue cannot be shared by more than two threads so if no queue is available, threads can 

create a new one and become owners.   

  

Since two threads finished, they directly merge and a new thread is created and then same process is lunched 

again. New created thread will inherit queue shared between his parents. Thus it can restart research. It is also 

important to mention that there is no hierarchical order in thread merging, only criteria is finishing time. We 

mention also that one neighbor cannot be inserted twice. It is a precaution in order to minimize consumed cache. 

More formal description of merging techniques is given in by algorithm 2. 

It is important to highlight similarity and difference that may exist between our merging algorithm and KPN 

[29]. In effect, both are deterministic and do not depend on execution order. But KPN algorithm may be 

executed in sequentially or in parallel with the same outcome while our merging algorithm is designed only for 

parallel execution. KPN support recurrence and recursion while our merging algorithm support only recursion.  

In large scale application, KPN showed consistence. Examples include Daedalus project [31] where generated 

KPN models are used to map process into FPGA architecture. Ambric architectures [32] implement also a KPN 

model using bounded buffers to create massively DMP Machines based on structural object programming model. 

In a narrower framework limited to simple point characterization, the implementation of such a model will be 

very expensive and it would be better to find an easier and more specific algorithm. 

 

 

 

 

 

 

 

 

 

 

 

Fig.4: Illustration of merging phase with four threads 

 

In Figure 4, we give an illustration of the merging algorithm with four threads. The original shared data structure 

is divided into 4 research areas{ }1 2 3 4, , ,z z z z . Threads { }1 2 3 4, , ,T T T T  will start browsing different zones in 

parallel. 1T is the first to detect target point (constructible, destructible …) so it lowers characterized pixel (in 1z ) 
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and it pushes its eight (or four) neighbors in FIFO queue 1F  that it has created before continue browsing. Later,

3T will detect new target point so it will lower characterized pixel (in 3z ) then push neighbors in 1F before 

continue browsing. 3T don’t need to create new FIFO queue since 1F is available. 1T and 3T will repeat this 

procedure twice. Since they finish browsing, they merge and new thread 5T is born. 5T will start browsing only 

1F . Since it detect new target point so it will lower characterized pixel (in 5z = 1z + 3z ) then push neighbors in 

3F  that it has created before continue browsing. Similarly 2T  and 4T will generate the creation of 2F and 6T . 

Here 6T  will eventually merge with 5T  to give birth to 7T . Finally there will be a single thread 7T  which will 

brows 3F without detection any target points.  

 

Algorithm 2:  Merging technique 
1. Z : Set of research zones 

2. T : Set of threads 

3. _FIFO Q : Set of available FIFO queues  

4. TP  : Target pixel type ; DP : Detected pixel 

5. For all zones ( )i
Z Z∈ do: 

6.        Parallel_browsing ( iT , iZ ) ; 

7. EndFor 

8. For each thread ( )i
T T∈ do: 

9.      If (pixel_caract( iT , TP )==True) then 

10.           modify_value( DP ); 

11.           If ( ( _ )FIFO Q ≠ ∅ then  

12.                usedstatus( _ jFIFO Q ,true) ; 

13.                insert_neighbors(
iT ,

DP , _
j

FIFO Q ); 

14.           Else : add_new_fifo ( _FIFO Q ) 

15.                     usedstatus(
1_ jFIFO Q + ,False) ; 

16.                     insert_neighbors( iT , DP , 1_
j

FIFO Q + ); 

17.           EndIf ; 

18.       EndIf ; 

19. EndFor; 

 

We have introduced, in this section, three necessary steps to implement our parallelization strategy (SDM). It is 

important to mention that some similarity may exist between our split/merging phases and alpha-extension/beta-

reduction phases from structural perspective. Actually both approaches intended to put in place more guarantees 

that the parallelism will actually be met. But uses contexts are different. In effect, Jean Paul Sansonnet 

[33,34,35] team introduced alpha-extension (diffusion) and beta-reduction (merging) notions for stream 

manipulation in the framework of Declarative Data Parallel language definition and there techniques cannot be 

applied without a scalar function. While our proposal is restricted to topological characterization in the 

framework of topological operator’s parallelization and no scalar function is required during the application of 

these two phases. 

    

4 Parallel smoothing filter 
 

In this section we start by analyzing overall structure of original algorithm. Then we continue with the 

parallelization of Euclidean distance, thinning and thickening algorithm. We conclude by a performance analysis 

of the entire smoothing topological operator. Obtained execution time, efficiency, speedup and cache misses will 

be introduced and discussed.  
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Fig.5: Overall structure of the original smoothing algorithm 

 

As we have shown in Section 2, smoothing algorithm receives as input a binary image and maximum radius. It 

uses two procedures for homotopic opening and closing, see figure 5 (a) (b). The call is looped to ensure an 

ongoing relationship between input and output. The opening process is a consecutive execution of erosion, 

thinning, dilatation and thickening. While closure procedure ensures the same performance of the four 

consecutive functions with single difference: the erosion instead of dilatation. Thinning and thickening ensure 

the topological control of erosion and dilatation. This control is based on researching and removing of all 

destructible points. When destructible point is deleted, its neighbors are reviewed to ensure that they are not 

destructible either. 

 
 200x200 168x288 
 r=5 r=10 r= ∞  r=5 r=10 r= ∞  

EucDis 

(%) 
64.44 54.93 46.67 59.25 49.79 35.25 

TopCar 

(%) 
8.89 13.89 18.15 11.58 16.50 24.03 

Tab.1: Time execution rate of E.D and topological characterization functions 

 

A preliminary assessment of first implementation code, see Table 1, shows that Euclidean distance computing 

(EucDis) takes more time than topological point characterization (Topcar). For an image of (200*200), 

computation time of E.D with an infinite radius is 46.67% while point characterization of 2.4 million points 

occupies only 18.15%. If we limit radius between 5 and 10, computation time of E.D. continues to increase. It 

can reach 64.44% of total time with a radius equal to 5. However time for topological characterization is only 

8.89% for 1 million points. These finding remain the same if we increase image size. Beyond (512*512), 

computing time of point characterization becomes considerable. 
 

4.1 Euclidean distance computing 
 

4.1.1 Study on Euclidian Distance algorithms  
 

During previous evaluation, 4SED [10] algorithm was used for Euclidean distance computation. So we are 

looking for another algorithm that is faster, and parallelizable. New algorithm must have an Euclidean distance 

computation error less than, or equal to, that produced by 4SED in order to maintain homotopic characteristics of 

the image. In literature, several algorithms for Euclidean distance computing exist. Lemire [19] and Shih [20] 

algorithms are bad candidates because Lemire’s algorithm does not use Euclidean circle as structuring element. 

Then homotopic property will not be preserved. Shih’s algorithm has a strong data dependency which penalizes 

parallelization. In [21], Cuissenaire propose a first algorithm for Euclidian distance computing, called PSN 

"Propagation Using a Single Neighborhood" that uses the following element structure:  

Homotopic 

Alternating 
Sequential 

Filter 

Homotopic 

Closing 

(b) 

Homotopic 

Opening 

(a) 

Erosion 

Thinning 

Dilation 

Thickening 

Erosion 

Thinning 

Dilation 

Thickening 
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( ) ( )
22

4 ( ) 1x x y xd p q q p q p
 

= ∨ − + − < 
 

   (i) 

 

He also proposes a second algorithm, called PMN "Propagation Using Multiple Neighborhood” that uses eight 

neighbors. In [22], he also proposes a third algorithm with 
3/2( )nο complexity, which offers an accurate 

computation of the Euclidean distance. Only drawback of this third algorithm is computation time which is very 

important and goes beyond the two algorithms mentioned above. Even if computing error produced by PSN is 

greater than computing error produced by PMN, it is comparable to that produced by 4SED. Low data 

dependence and ability to operate on 3D images, makes PSN algorithm a potential candidate to replace 4SED.  

 

Meijster [23] proposes an algorithm to compute exact Euclidean distance. Algorithm complexity is ( )nο  and it 

operates in two independent, but successive, steps. First step is based on looking over columns then computing 

distance between each point and existing objects. Second step includes same treatment looking over lines. It is 

important to note that strong independence between different processing steps and computing error equal to zero 

makes Meijster algorithm another potential candidate to replace 4SED. Algorithm is also able to operate on 3D 

images. Theory analysis of Meijster and Cuissenaire algorithms can be found in Fabbri’s work [24].  

 

In the following, we propose first analysis based on different algorithms implementation in order to compare 

between them. We have implemented 4SED algorithm using a fixed size stack. This stack uses a FIFO queue 

and it has small size while 4SED algorithm does not need to store temporal image. Results are directly stored 

into the output image, we will retain this implementation because 4SED assessment serve only as reference for 

comparison. For PSN implementation, we used stacks with dynamic sizes. Memory is allocated using small 

blocks defined at stack creation. When an object is added to queue, algorithm will use available memory of last 

block. If no space is available, a new block is allocated automatically. Block size is proportional to image size (N 

x M / 100). Finally we used a simple memory structure to implement Meijster algorithm. A simple matrix was 

used to compute distance between points and object of each column and three vectors were used to compute 

distance in each line.  We recall that this comparison is done in order to select the best algorithm among three 

candidates.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6: Comparison between different EDT algorithms 

 

Figure 6 describes obtained results by different implementations on single processor architecture P4. During this 

evaluation we used binary test image (200x200). We have also varied ball radius. We used Valgrind software to 

evaluate different designs. Callgrind tool returns the cost of implementing of each program by detecting IF 

(Instruction Fetch). Results show that PSN algorithm is the most expensive in all cases (for any radius). Meijster 

algorithm is moderately faster than 4SED. The output images returned by Meijster algorithm hold the best visual 

quality while Euclidean distance computation error is almost zero thus our efforts will be brought on Meijster 

algorithm parallelization. 

 

 

4.1.2 Parallelization of Meijster algorithm 
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We denote by I  input image with m  columns and n  rows. We denote by B an object included in I . The 

idea is to compute, for each point p I p B∈ ∧ ∉ , separating distance between p and the closest point b with

b B∈  and (0 )b m∀ ≤ ≤ , ( , )x yb b b= . This amount to compute the following matrix: 

, ( )x ydt p p EDT p  =   with ( )EDT p =
2 2min( ) ( , )

y x x y
p b G p b− + .  

 

If we assume that minimum distance of an empty group K is ∞ and z K∀ ∈ , we have ( )yz + ∞ = ∞  then 

( )EDT p formula can be written as follow: xb n∀ < , ,
y

b m∀ ≤ 2 2
( ) min( ) ( , )y x x yEDT p p b G p b= − +

with ( , ) min : ( , )
x x x x

G p y p b b b y= − = . 

 

Thus we can split the Euclidian distance transform procedure into two steps. The first step is to scan columns 

and compute EDT for each column y . Second step consists on repeating the same procedure for each line. In 

the following we start by detailing these two steps: In the first step ( , )xG p y can be computed through the two 

following sub functions: ( , ) min : ( , )T x x x xG p y p b b b y= − = , ( , ) min : ( , )B x x x xG p y b p b b y= − =

with 0 xb n∀ ≤ ≤ . To compute ( , )T xG p y and ( , )B xG p y , we scan each column y  from top to bottom using 

the two following formula: ( , ) ( , 1) 1T x T xG p y G y p= − +  ( , ) ( , 1) 1B x B xG p y G y p= + + . Thus 

sequential algorithm of the first step can be written as follows. Complexity order is ( )n mο × . 

 

Algorithm 3: Meijster O.V [1
st
 Step] 

      Data : m:colums, n:lines, b:image 

1. Forall  [ ]1..0 −∈ my do 

2.       If ( ) By ∈,0 then [ ] 0..0 =yg  

3.                              else [ ] ∞=yg ..0  

4.       endif 

 

5.       /*  GT */ 

6.       for ( )1=x to ( )1−n do 

7.               if [ ] Byx ∈, then [ ] 0.. =yxg  

8.               else [ ] [ ] 1,1, ++= yxgyxg  

9.               endif 

10.       endfor 

 

11.       /*  GB */ 

12.       for ( )2−= nx downto ( )0 do 

13.               if [ ] [ ]yxgyxg ,,1 <+ then 

14.                   [ ] [ ] 1,1, ++= yxgyxg  

15.               endif 

16.      endfor 

17. endforall 

 

 

Let’s move to the second step. We start by defining
2 2

( , ) ( ) ( , )y xf p y p y G p y= − + .Then we can define

( ) min ( )EDT p f p y= − , 0 y m∀ ≤ ≤ . For each row u , we note that there is, for the same point p , the 

same value of ( , )f p y for different values of y , so we can introduce the concept of "region of column ". 
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Let S be the set of y points such that ( , )f p y is minimal and unique. The formula of S , 0 y u∀ ≤ ≤ , is

( ) m in : ( , ) ( , )
p

S u y f p y f p i= ≤ . 0 i u u m∀ ≤ ≤ ∧ ≤ . Let T be the set of points with 

coordinate greater than, or equal to, horizontal coordinate of the intersection with a region: 

( ) ( ( 1 ) , ) 1
xp p p

T u S e p S u u= − + . 

Let ( , )Sep i u  be the separation between regions of i and u , defined by:  

( , ) ( , )f p i f p u≤ 2 2 2 2( ) ( , ) ( ) ( , )y x y xp i G p i p u G p u⇔ − + ≤ − +  

2 2( , ) ( ) / 2( 1)
xp y

Sep i u u i Dif u p⇔ = − + − = With 
2 2( ( , ) ( , ) )

x x
Dif G p u G p i= − . 

 
Thus lines will be processed, from left to right then from right to left. During the first term, from left to right, 

two vectors S and T will be created. These two vectors will contain respectively all regions and all 

intersections. During the second treatment, from right to left, we compute f for each value of S . f  is also 

computed for each respective values of T . Algorithm 4 is associated to second step. For the first term, 

complexity order is 2( )q m u+ − whereas complexity order of the second term is only m . 

 

The independence of data processing between rows and columns is the key to apply of SDM parallelization 

strategy. In the first stage, column processing, we can define data interdependence by the following equation: 

 

{ }( , ) min ( , ), ( , )
x T x B x

G p y G p y G p y=  

{ }( , )0

( , )( , ) x

T x

if p y B

T x G p y elseG p y
∈⇔ = { }( , ) min ( 1, ), ( , )

B x B x T x
G p y G p y G p y⇔ = +  

It follows that values of each column y of G, depends only on lines:
xp , 1xp + and 1xp − . Similarly, at the 

second stage, we can introduce the following interrelationship: ( ) ( , ( ))
p

Edt p f p S q= . Then

(0 ), (0 ) ( )y u i u u m∀ ≤ ≤ ≤ ≤ Λ < , ( )pS u = min : ( , ) ( , )y f p y f p i≤ . Thus, if ( ( ))pu T q=  so 

( 1)q q= − which imply the following: ( ) ( ( ), ) 1
xp p p

T u Sep S q u= + .  

 

Algorithm 4: Meijster O.V [2
nd

 Step] 
      Data : b:image, g: G_Table, m: columns, n:lines 

      Result :  

1. Forall  [ ]1..0 −∈ nx do 

2.      0=q  

3.      [ ] 00 =s  

4.      [ ] 00 =t  

 

5.       /*  First part */ 

6.       for ( )1=u to ( )1−m do 

7.           [ ] [ ]( 0) (( , ), )A q f x t q s q = ≥ Λ    

8.           [ ](( , ), )B f x t q u=  

9.            while ( )A B> then ( 1)q q← +  

10.            end while 

11.  

12.             if ( 0)q < then ( 0)q ←  

13.                                       [ ]( 0 )s u←  

14.            else [ ]( , , ) 1w Sep s q u x← +  

15.                  if ( )w m< then ( 1)q q← +  

16.                                              [ ]s q u←  
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17.                                               [ ]t q w←  

18.                  endif 

19.             endif 

20.          endfor 

 

21.         /*  Second part */ 

22.         for ( )1u m= − to ( )0 do 

23.               [ ] [ ], (( , ), )Edt x u f x u s q=  

24.                if [ ]( )u t q= then ( 1)q q← −  

25.                endif 

26.           endfor 

27.    end forall 

 

According to this formalization, values of ( , )f p i  and ( , )xSep i u are independent of modified data. So using 

two vectors S andT , a private variable q for each line ensures complete independence in writing. We start 

applying the splitting step by sharing the columns and lines processing between multiple processors.  A thread 

can process one or more columns and the number of threads used will depend on the number of processors. The 

results returned by all threads in this first stage will be merged in order to start lines processing. In the following 

we introduce the parallel version of Meisjter algorithm for both steps. Associated algorithm complexity is

( )( ) /n m Nο × . ( )n m×  refers to image size and N refers to the number of processors. 

 

Algorithm 5: Meijster P.V [1
st
 step] 

1. For 
max( , , )y t y m y y t= < = + do 

2.       If ( ) By ∈,0 then [ ]0, 0g y ←  

3.                              else [ ]0,g y ← ∞  

4.       endif 

5.       /*  GT */ 

6.       for ( )1=x to ( )1−n do 

7.               if [ ] Byx ∈, then [ ], 0g x y ←  

8.               else [ ] [ ], 1, 1g x y g x y← + +  

9.               endif 

10.       Endfor 

 

11.       /*  GB */ 

12.       for ( )2−= nx downto ( )0 do 

13.               if [ ] [ ]( 1, , )g x y g x y+ < then 

14.                    [ ] [ ], 1, 1g x y g x y← + +  

15.               endif 

16.      endfor 

17. Endforall 

 

Proposed parallel version of Meijster algorithm was implemented in C using OpenMP directives. Speedup for 

numbers of threads equal to 1, 2, 4, 8, and 16 were determined. The efficiency measure Ψ ( n ) is given by the 

following formula with n  the number of processors: Ψ ( n ) = seq. time /( n *para. time) (ii) 

 

Times were performed on eight-core (2× Xeon E5405) shared memory parallel computer, on Intel Quad-core 

Xeon E5335, on Intel Core 2 Duo E8400 and Intel mono-processor Pentium 4 660. The minimum value of 5 

timings was taken as most indicative of algorithm speed. More information about architectures characteristics are 

given in Section 4. 
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Algorithm 6: Meijster P.V [2
nd

 Step] 

1. For 
max( , , )x t x n x x t= < = + do 

2.       0=q ;   [ ] 00 =s ; 

3.      [ ] 00 =t ; 

 

4.       /*  First part */ 

5.       for ( )1=u to ( )1−m do 

6.         [ ] [ ]( 0) (( , ), )A q f x t q s q ← ≥ Λ    

7.         [ ](( , ), )B f x t q u←  

8.          while ( )A B> do ( 1)q q← +  

9.          end while 

10.  

11.          if ( 0)q < then ( 0)q ←  

12.                                       [ ]( 0 )s u←  

13.          else [ ]( , , ) 1w Sep s q u x← +  

14.                  if ( )w m< then ( 1)q q← +  

15.                                             [ ]s q u←  

16.                                              [ ]t q w←  

17.                  endif 

18.             endif 

19.          Endfor 

 

20.         /*  Second part */ 

21.         for ( )1u m= − downto ( )0 do 

22.               [ ] [ ], (( , ), )Edt x u f x u s q←  

23.                if [ ]( )u t q= then ( 1)q q← −  

24.                endif 

25.         endfor 

26.    end forall 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7:  Instruction distribution (Meijster Alg) 
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      (a)                                                                                       (b)       

 
Fig.8:  (a) Performance evaluation of Meisjter Algo. (b) Efficiency evaluation of Meisjter Algo. 

 

The measurements were done on 2D binary image (512*512). If we can get a satisfactory outcome for this 

standard, it will be the same for smaller size images. View cache size limits, larger image will not be tested. 

Figure 7 shows that number of instructions to compute Euclidian distance drops from an average of 9.5x10
8
 

using 4SED algorithm down to 7.6x10
8
 ms with Meijster algorithm. Despite the passage from a sequential 

version running on single core to a parallel version running on 8 processors, acceleration is only multiplied by 

1.6 as shown in figure 8 (a).This can be explained by the choke point between columns processing and lines 

processing. Waiting time between these two treatments significantly penalizes acceleration. Figure 8 (b) shows 

that efficiency variation depends on the number of threads. It is also proportional to the number of processors. 

Moving to 3, 5 or 7 threads (odd number) decreases significantly the efficiency which reaches its maximum each 

time that the number of threads is equal the number of processors. 
 

4.2 Thinning and thickening computing  
 

Algorithms of thinning and thickening are almost the same. The only difference between them is the 

following: in thinning algorithm, destructible points are detected then their values are lowered. In thickening 

algorithm, constructible points, are detected then their values are increased. For parallelization, we will apply the 

same techniques introduced in [25]. We propose a similar version using two loops. Target points are initially 

detected then their value lowered or enhanced according to appropriate treatment. The set of their eight (or four) 

neighbors are copied into a "buffer" and rechecked. This treatment is repeated until stability. In the following, we 

present an adapted version of Couprie’s thinning algorithm. 
 

Algorithm 7: Adapted Version Thinning Algo. 

1. while ( [ ]input x is destructible) do 

2.      ( , 1)push x stack  

3.      1x x← +  

4.  endwhile 

5. output input←  

6. While ( 1 ) (max 0)
iter

stack ≠ ∅ ∧ > do 

7.      While ( 1 )stack ≠ ∅ do 

8.             ( 1)x pop stack←  

9.              if ( [ ]output x is destructible) then 

10.                  [ ] _ ( )output x reduce pt x←  

11.                  ( , 2)push x stack  

12.              endif 

13.      end while 

14.      While ( 2 )stack ≠ ∅ do 
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15.              ( 2)x pop stack←  

16.              ( )v neighbors x←  

17.              0i ←  

18.               While ( 8)i < do 

19.                    if [ ]( 1)v i stack∉  then 

20.                       [ ]( , 1)push v i stack  

21.                    endif 

22.               endwhile 

23.      endwhile 

24.     max max 1iter iter← −  

25.  Endwhile 
 

Unfortunately direct application of introduced parallel processing is not possible with the set of all points. Some 

points, called critical points, cannot be eliminated in parallel because initial topology of the image may be 

broken. Figure 9 illustrates this case: Critical points of an input image (a) are identified in (b). If these points are 

deleted in one iteration (c) topology necessary is broken (d). 

 

To resolve this problem, we propose that research areas assigned to each thread must be composed of at least six 

lines (of the image). Each thread will use two buffers to treat each three lines thus four buffers are used to treat 

six lines as shown in 9 (e). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9: (a) (b) (c) (d) Critical point illustration (e) Research Area Assignment 

 

Through this organization threads can start running in parallel on Z11, Z21 and Z31. Once processing is completed 

threads can restart running on Z12, Z22 and Z32. In some cases, a neighbor of a destructible point is detected on 

the border of a contiguous area. To prevent that such neighbor escape to recheck, it must be injected to buffer of 

the right thread. Let’s suppose that a point p ∈Z2 is considered as destructible by T2, so its value will be 

lowered and its four neighbors { }1 2 3 4, , ,v v v v  should be rechecked. Neighbors { }1 2 4, ,v v v  belong to Z2 so 

they will be push in T2 buffers. The neighbor { }3v  belongs to Z3 so it will stack T3 buffers. 

 

Performance evaluation of introduced adapted version of Couprie’s algorithm is shown in figure 10. On eight 

cores architecture, acceleration does not exceed 3.4. Such moderate result can be explained by critical borders 

processing.  Regarding efficiency, the best performance is achieved when the number of thread is equal to the 

number of processors. If this equality is not ensured, the efficiency decreases. The problem threads’ add number 

still persists.  

 
The next step is to combine the parallel version of Meijster algorithm and the adapted version of Couprie’s 

algorithm to build the parallel processing of topological smoothing. 
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Fig.10: (a) Performance Evaluation of Couprie’s Algorithm (b)Efficiency Evaluation of Couprie’s Algorithm. 

 

 

4.3 Global analyses  
 
      In this section, we present a global evaluation of the parallel smoothing operator. We start by presenting 

performance evaluations in terms of acceleration and efficiency. Then we evaluate cache memory consumption. 

 

4.3.1 Execution time  

 

     We implemented two versions of the proposed parallel topological smoothing algorithm, the first one using 

‘Symmetric Multiprocessing’ scheduler and the second one using ‘basic-NPS’ scheduler. Wall-clock execution 

times for numbers of threads equal to 1, 2, 4, 8, and 16 were determined. The minimum value of 2 timings was 

taken as most indicative of algorithm speed. The measurements were done on 2D binary image (512*512). 

Results of the second implementation on the eight-core are shown in the following figure.  

 

Fig. 11: Number of Instructions and tasks distribution using ‘Basic-NPS’ 

 

We note that number of instructions drops from an average of 1879 x108 FI with a single thread down to 1652 

x10
8
 ms with 8 threads. As expected, the speed-up for the second implementation using ‘basic-NPS’ scheduler is 

higher than for the one using "Symmetric Multiprocessing" scheduler, thanks to balanced distribution of tasks. A 

remarkable result about speedup is also shown in figure 12 (a). In fact, speed-up increases as we increase the 

number of threads beyond the number of processors in our machine (eight cores). In the first implementation, 

using "Symmetric Multiprocessing" scheduler, the speedup at 8 threads is 1.9 ± 0.01. However, for the second 

implementation, using our scheduler, the speedup has increased to 5.2 ± 0.01. Another common result between 

different architecture is stability of execution time on each n-core machine since the code uses n or more threads. 

(a) (b) 
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Fig. 12: (a) Global Performance improvement (b) Global efficiency improvement 

 

For better readability of our results, we tested also efficiency of our algorithm on various architectures (see 

figure 12(b)) using the ( )nψ formula introduced earlier. For parallel time ratio we used best obtained time with   

8 threads (‘basic-NPS’ scheduler). 

 

4.3.2 Cache Memory Evaluation 
 

As memory access is a principal bottleneck in current-day computer architectures, a key enabler for high 

performance is masking the memory overhead. If we starts from basic theory that two classic cache design 

parameters dramatically influence the cache performance: the block size and the cache associativity. So the 

simplest way to reduce the miss rate is to increase the block size even it increases the miss penalty. The second 

solution is to decrease associatively in order to decrease hit time thus to retrieve a block in an associative cache, 

the block must be searched inside of an entire set since there is more than one place where the block can be 

stored.  

 

Unfortunately, we are dealing with non-reconfigurable architectures with caches whose associativity and block 

size are predefined by the manufacturer. Nowadays, new approaches to reduce cache miss are developed such as 

taking advantage of locality of references to memory or using aggressive multithreading so that whenever a 

thread is stalled, waiting for data, the system can efficiently switch to execute another thread. Despite their 

power, the application of both approaches remains limited. In fact, applications of locality approach still 

experimental even with Larrabee technology introduced by Intel. And the aggressive multithreading approach 

has been specially designed for graphics processing engines, which manage thousands of in-flight threads 

concurrently. So it is not recommended for general SMP machines with limited number of processors and 

threads. With all these limitations, the most intuitive solution is to rely on the scheduling. Thanks to our basic-

NPS scheduler, we have balanced the charges then prevent context switching thus we minimize caches misses.  

 
 Intel P4 Intel Dual C. T1400 Intel C2 Quad Q9550 Intel Xeon E5405 

Num. of processor 1 2 4 2 x 4 

SMT Yes Yes Yes Yes 

Frequency 3,4 GHz 1,73 GHz 2,83  GHz 2,00 GHz 

L1 Instr. Cache 

Size 16Kb 32Ko 32Ko 32Ko 

Asso. 8-way 8-way 8-way 8-way 

Block size 32byte 32byte 32byte 32byte 

L1 Data Cache 

Size 16Kb 32Ko 32Ko 32Ko 

Asso. 8-way 8-way 8-way 8-way 

Block size 64byte 64byte 64byte 64byte 

L2 

Cache 

Size 2Mb 512Kb 6Mb 6Mb 

Asso. 8-way 8-way 8-way 8-way 

Block size 64byte 64byte 64byte 64byte 

RAM size 1Gb 2Gb 2Gb 8Gb 

Tab.2: Hardware configuration 
 

 

(a) (b) 
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                                       (A-1)                                                                                          (A-2) 

 
  Fig. 13: (A) Instruction - L1 misses 

 

In the following we present our experimental analysis. We consider a commonly used Intel processor 

configuration (More details are given by table 2). Number of processor varies from one to eight. The frequency 

varies between 1,73 GHz and 3,4 GHz. The L1 caches have at least a 32-byte block size, while capacity vary 

between 16 Kbytes and 32 Kbytes, and for the associativity, only eight ways is considered. The L2 caches have 

at least a 64-byte block size, while capacities vary between 512 Kbytes and 6 Mbytes, and the associativity 

varies between two and twenty four ways. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                        (A)                                                                                            (B) 

 

Fig. 14: (A) Data Read - L1 misses (B) Data Write - L1 misses 

 

The scheduler relies on our basic-NPS scheduling policy. As a result of this experiment, see figure 13 (A-1), we 

found that three performance regions are clearly evident: In the leftmost region, as long as the cache capacity can 

effectively serve the growing number of threads, increasing the number of  threads improves performance, as 

more processors are utilized. This area is generally identified as cache-efficiency zone. At some point, the cache 

becomes too small for the growing stream of access requests, so memory latency is no longer masked by the 

cache and instruction cache misses reduce more moderately. As the number of available threads again increases, 

the multithread efficiency zone (on the right) is reached, where adding more threads improves performance up to 

the maximal performance of the machine, or up to the bandwidth wall. Balanced workloads offer higher locality 

and better exploit the cache and hence expand the cache efficiency zone to the right and up. An outstanding 

example is given by the following table which summarizes number of L1 instruction misses on Intel Dual Core 

T1400 architecture using SMP scheduling policy and Basic-NPS scheduling policy. We note that number of instruction 

misses drops from an average of 18844 L1 Instr. misses (using SMP) with two threads down to 6030 L1 Instr. 

misses (using Basic-NPS) usually with two threads. Here success rate is largely above the average of 50%. The 

same rate will be practically maintained when increasing the number of threads.  
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Number of threads 1 2 3 4 5 6 7 8 

Instr. 

L1 misses 

Sym. Multi. Scheduler 10298 18844 19476 18638 19726 20058 20324 18946 

Basic-NPS scheduler 3307 6030 6262 6035 6437 7202 7804 7085 

 

Tab.3: L2 – Instructions Misses (Symmetric Multiprocessing scheduler vs. Basic-NPS scheduler) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                        (A)                                                                                            (B) 

 
Fig. 15: Instruction – L2 misses (B): zoom on (A) 

 

Moreover, the shape of the performance curve depends on how fast the cache hit rate degrades as a function of 

the number of threads. Any success access to L1 will eliminate an attempt to access to L2 thus performance 

curve, Fig. 15, will evaluate in the same way. By reducing the number of cache miss from instruction cache, 

processor or thread of execution has not to wait (stall) until the instruction is fetched from main memory which 

immediately impact execution time.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

                                    (B-1)                                                                                               (B-2) 
 

Fig. 16: (A) Data Read – L2 misses (B) Data Write – L2 misses 

 

(A-2) (A-1) 
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Figures 14 (A) and 16 (A-1)  show so much load balancing and implicitly context switching between processes 

can affect performance in terms of reading data from caches. However, improvement in writing data, see Fig. 14 

(B) and Fig. 16 (B-1), in two caches remains modest. When there are more computation instructions per memory 

access, performance climbs more steeply with additional threads. This is because as more instructions are 

available for each memory access, fewer threads are needed to fill the stall time resulting from waiting for 

memory. 

 

5 Conclusion 
 

Topological characteristics are fundamental attributes of an object. In many applications, it is mandatory to 

preserve or control the topology of an image. Nevertheless, the design of transformations which preserve both 

topological and geometrical features of images is not an obvious task, especially for parallel processing.   

 

In this paper, we have presented a new parallel computation method for topological smoothing through 

combining parallel computation of Euclidean Distance Transform using Meijster algorithm and parallel 

Thinning–Thickening processes using an adapted version of Couprie’s algorithm.  

 

We have also presented a new parallelization strategy called SDM (Split Distribute and Merge).  Proposed 

strategy is partially based on divide and conquers principle associated to event-based coordination techniques. 

Further than smoothing operator, SDM Strategy can be applied for a large class of topological operators as we 

shown in section 3.1. In addition to identified conditions during splitting step, we introduced an adapted 

scheduler called basic-NPS (Basic - Non Preemptive Scheduler) able to distribute in balanced way a set of active 

tasks on available processors.  Finally we introduced an adapted merging policy designed especially for dynamic 

system evolving until stability.  

 

Parallel topological operator computation poses many challenges, ranging from parallelization strategies to 

implementation techniques. We tackle these challenges using successive refinement, starting with highly local 

operators, which process only by characterizing points and then deleting target pixels, and gradually moving to 

more complex topological operators with non-local behavior.  In future work, we will study parallel computation 

of the topological watershed [14].   
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