
HAL Id: hal-01294106
https://hal.science/hal-01294106

Submitted on 30 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Real-time topological image smoothing on shared
memory parallel machines
Ramzi Mahmoudi, Mohamed Akil

To cite this version:
Ramzi Mahmoudi, Mohamed Akil. Real-time topological image smoothing on shared memory parallel
machines. Real-Time Image and Video Processing 2011, Jan 2011, San Francisco, United States.
�10.1117/12.872275�. �hal-01294106�

https://hal.science/hal-01294106
https://hal.archives-ouvertes.fr

Real Time Topological Image Smoothing On Shared Memory Parallel Machines

Ramzi MAHMOUDI1, Mohamed AKIL1

1IGM, Unité Mixte CNRS-UMLV-ESIEE UMR8049, University Paris-Est
Cité Descartes, BP99, 93162 Noisy Le Grand, France

{mahmoudr, akilm}@esiee.fr

Abstract

Smoothing filter is the method of choice for image
preprocessing and pattern recognition. We present a
new concurrent method for smoothing 2D object in
binary case. Proposed method provides a parallel
computation while preserving the topology by using
homotopic transformations. We introduce an adapted
parallelization strategy called split, distribute and
merge (SDM) strategy which allows efficient
parallelization of a large class of topological
operators including, mainly, smoothing,
skeletonization, and watershed algorithms. To achieve
a good speedup, we cared about task scheduling.
Distributed work during smoothing process is done by
a variable number of threads. Tests on 2D binary
image (512*512), using shared memory parallel
machine (SMPM) with 8 CPU cores (2× Xeon E5405
running at frequency of 2 GHz), showed an
enhancement of 5.2 thus a cadency of 32 images per
second is achieved.

1 Introduction

Smoothing is a fundamental step to reduce noise and
prepare the image for subsequent processing such as
segmentation. For example, the analysis or recognition
of a shape is often perturbed by noise, thus the
smoothing of object boundaries is a necessary
preprocessing step. The smoothing procedure can also
be used to extract some shape characteristics: by
making the difference between the original and the
smoothed object, salient or carved parts can be
detected and measured. Smoothing shape has been
extensively studied and many approaches have been
proposed. The most popular one is the linear filtering
by Laplacien smoothing for 2D-vector [1] and 3D mesh
[2]. Other approach by morphological filtering can be
applied directly to the shape [3] or to the curvature plot
of the object's contour [4]. Unfortunately none of these
operators preserve the topology (number of connected
components) of the original image. In 2004, our team
introduces a new method for smoothing 2D and 3D
objects in binary images while preserving topology [5].

Objects are defined as sets of grid points and topology
preservation is ensured by the exclusive use of
homotopic transformations defined in the framework of
digital topology [6]. Smoothness is obtained by the use
of morphological openings and closings by metric discs
or balls of increasing radius, in the manner of
alternating sequential filters [7]. The authors' efforts
have brought about two major issues such as
preservation of the topology and the multitude of
objects in the scene to smooth out without worrying
about the latency of their filter.

This paper describes a new parallel method for
topological smoothing which provides real time image
processing. We present also an adapted parallelization
strategy, called Split Distribute and Merge (SD&M).
Our strategy is designed specifically for topological
operators parallelizing on shared memory architectures.
The new strategy is based upon the excusive
combination of two patterns: divide and conquer and
event-based coordination.

This paper is organized as follows: in section 2, some
basic notions of topological operators are summarized;
the original smoothing filter is introduced. In section 3,
parallelization strategy, that has been adopted, is
introduced. We define the class of operators that our
parallelization strategy may cover. In section 4,
concurrent computation method of topological
smoothing is presented. Experimental analyzes results
of different implementations are also presented and
discussed. Finally, we conclude with summary and
future work in section 5.

2 Theoretical background

In this section, we recall some basic notions of digital
topology [6] and mathematical morphology for binary
images [8]. We define also the homotopic alternating
sequential filters [5]. For the sake of simplicity, we
restrict ourselves to the minimal set of notions that will
be useful for our purpose. We start by introducing
morphological operators based on structuring elements

which are balls in the sense of the Euclidean distance,
in order to obtain the desired smoothing effect.

We denote by ℤ the set of relative integers, and by

Ε the discrete plane 2
ℤ . A point x∈Ε is defined by

1 2(,)x x with ix ∈ℤ . Letx∈Ε andr ∈ℕ , we

denote by ()rB x the ball of radius r centred onx .

()rB x is defined by { }, (,)y E d x y r∈ ≤ ,where d

is a distance on Ε . We denote by rB the map which

associates to each x in Ε the ball ()rB x . The

Euclidean distance d on Ε is defined by:
1/22 2

1 1 2 2(,) () ()d x y x y x y = − − −  .

An operator in E is a mapping from

()P E into ()P E , where ()P E denotes the set of all

subsets ()E⊂ . Let r be an integer, the dilation

()rδ by rB is defined by () ()r x X rX B xδ ∈= ∪ ,

()X P E∀ ∈ . The ball rB is termed as the structuring

element of the dilation. The erosion ()rε by rB is

defined by duality: r rε δ= ∗ .

Now, we introduce the notion of simple point witch is
fundamental for the definition of topology preserving
transformations in discrete spaces. We start by giving a
definition of local characterization of simple points

in 2E = ℤ . Let consider two neighbourhoods relations

4Γ and 8Γ defined by, for each pointx E∈ :

{ }4 1 1 2 2() ; 1x y E y x y xΓ = ∈ − + − ≤ ,

{ }8 1 1 2 2() ;max , 1x y E y x y xΓ = ∈ − − ≤ .

In the following we will denote by n a number such

that 4n = or 8n = thus we define:

{ }* () () \n nx x xΓ = Γ .

We say that a point y E∈ is n adjacent− to

x E∈ if * ()ny x∈Γ . Thus we can generalize for two

pointsx , y belonging to X . They are n-connected in

X if there is a n-path in X between these two points.

The equivalence classes for this relation are the n-
connected components of X . A subset X of E is

said to be n-connected if it consists of exactly one n-
connected component. The set composed of all n-
connected components of X which are n-adjacent to a

point x is denoted by [],nC x X . In order to have a

correspondence between the topology of X and the

topology of X , we use ‘n-adjacency’ for X and ‘n -

adjacency’ for X with (,)n n equal to (8; 4) or (4; 8).

Informally, a simple point p of a discrete object X is

a point which is ‘inessential’ to the topology of X . In
other words, we can remove the point p from X

without changing the topology of X .

The point x X∈ is said simple (forX) if each n-

component of X contains exactly one n-component of

{ }\X x and if each n -component of { }X x∪

contains exactly one n -component of X . Let

X E⊂ andx E∈ , the two connectivity numbers are

defined as follows (# X refers to cardinality of X):

()*
8(,) # ,nT x X C x x X = Γ ∩  ;

()*
8(,) # ,

n
T x X C x x X = Γ ∩  .

The following property allows us to locally
characterize simple points [6][9] hence to implement
efficiently topology preserving operators:x E∈ is

simple for (,) 1X E T x X⊆ ↔ = and (,) 1T x X =

The homotopic alternating sequential filter is a
composition of homotopic cuttings and fillings by balls
of increasing radius. It takes an original image X and
a control image C as input, and smoothes X while

respecting the topology of X and the geometrical
constraints implicitly represented by C , simple
illustration is given by figure 1. Based on this filter,
authors [5] introduce a general smoothing procedure
with a single parameter which allows controlling the
degree of smoothing.

Let X be any finite subset of E , letC X⊆ , r ∈ℕ

andD X⊆ . The homotopic alternating sequential

filter ()HASF of ordernwith constraint setsC ; D

is defined as follows:

,
1 1...C D D C D C

n n nHASF HF HC HF HC= � � �

(A) (B)

Fig.1. (A) Input image (B) Smoothed image

In the previous formula, C
nHC (i) refers to the

homotopic cutting of X by nB with a constraint set

C . D
nHF (ii) refers to the homotopic filling of X by

nB with a constraint setD . These two homotopic

operators can be defined as follows:

() (),C
nHC X H Y V= ∗ With ()()

()(){ , n

n

Y H X X C

V Y X

ε
δ

= ∪
= ∩ (i)

() (),D
nHF X H Z W= With ()

()(){ ,

()
n

n

Z H X X D

W Y X

δ
ε

=∗ ∩
= ∪ (ii)

We recall that (),H Z W is an homotopic constrained

thinning operator. It gives the ultimate skeleton of
Z constrained byW . Ultimate skeleton is obtained by
selecting simple point in increasing order of their
distance to the background thanks to a pre-computed
quasi-Euclidian distance map [10].

(),H Y V∗ is an homotopic constrained thickening

operator. It thickens the set of Y by iterative addition

of point witch are simple for Y and witch belong to the
set V until stability.

3 Parallelization Strategy

In this section, we start by defining the class of
topological algorithms. Then we present our motivation
to parallelize it on parallel shared memory machines.
Finally we will introduce different steps of our
parallelization strategy. We will focus especially on
distribution phase and tasks scheduling over different
processors.

3.1 Class of topological algorithms

In 1996, Bertrand and Couprie [11] introduced
connectivity numbers for grayscale image. These
numbers describe locally (in a neighborhood of 3x3)
the topology of a point. According to this description
any point can be characterized following its topological
characteristics. They also introduced some elementary
operations able to modify gray level of a point without
modifying image topology. These elementary
operations of point characterization present the
fundamental link of large class of topological operators
including, mainly, skeletonization and crest restoring
algorithms [12]. This class can also be extended, under
condition, to homotopic kernel and leveling kernel
transformation [13], topological watershed algorithm
[14] and topological 2D object smoothing algorithm
[5] which is the subject of this article. All mentioned
algorithms get also many algorithmic structure
similarities. In fact associated characterizations
procedures evolve until stability with induce common
recursively between different algorithms. Also the grey
level of any point can be lowered or enhanced more
than once. Finally, all the mentioned algorithms get a
pixel’s array as input and output data structure. It is
important to mention that, to date, this class has not
been efficiently parallelized like other classes as
connected filter of morphological operator which
recently has been parallelized in Wilkinson’s work
[15]. Parallelization strategy proposed by Sienstra [16]
for local operators and point to point operators can also
be cited as example. Hence the need of a common
parallelization strategy for topological operators that
offers an adapted algorithm structure design space.
Chosen algorithm structure patterns that will be used in
the design must be suitable for SMP machines.

In reality, although the cost of communication
(Memory-processor and inter-processors) is high
enough, shared memory architectures meet our needs
for different reasons: (i) These architectures have the
advantage of allowing immediate sharing of data with
is very helpful in the conception of any parallelization
strategy (ii) They are non-dedicated architecture using
standard component (processor, memory ...) so
economically reliable (iii) They also offer some
flexibility of use in many application areas, particular
image processing.

3.2 Split Distribute and Merge Strategy

In practice the most effective parallel algorithm design
might make use of multiple algorithm structures thus
proposed strategy is a combination of the divide and
conquer pattern and event-based coordination pattern
hence the name that we have assigned: SD&M (Split
Distribute and Merge) strategy. Not to be confused
with the famous approach of mixed-parallelism
(combining data-parallelism and task-parallelism), it is
important to mention that our strategy (i) represents the
last stitch in the decomposition chain of algorithm
design patterns and it provides a fine-grained
description of topological operators parallelization
while mixed-parallelism strategy provides a coarse-
grained description without specifying target algorithm.
(ii) It covers only the case of recursive algorithms,
while mixed-parallelization strategy is effective only in
the linear case. (iii) It is especially designed for shared
memory architecture with uniform access.

3.2.1 Split phase

The Divide and Conquer pattern is applied first by
recursively breaking down a problem into two or more
sub-problems of the same type, until these become
simple enough to be solved directly. Splitting the
original problem take into account, in addition to the
original algorithm’s characteristics (mainly topology
preservation), the mechanisms by which data are
generated, stored, transmitted over networks
(processor-processor or memory-processor), and
passed between different stages of computation.

3.2.2 Distribute phase

Work distribution is a fundamental step to assure a
perfect exploitation of multi-cores architecture’s
potential. We'll start by recalling briefly some basic
notion of distribution techniques then we introduce our
minimal distribution approach that is particularly
suitable for topological recursive algorithms where
simple point characterization is necessary. Our
approach is general and applicable to shared memory
parallel machines.

In effect, non-real-time system scheduler doesn’t know,
in advance, necessary time to perform each task. Thus,
"Symmetric Multiprocessing" scheduler distributes
tasks to minimize total execution time without load
balancing between processors. We propose a novel

tasks scheduling approach to prevent improper load
distribution while improving total execution time. In
literature, there are several schedulers that provide a
balanced distribution of tasks such as RSDL “Rotating
Staircase Deadline” [17] and CFS “Completely Fair
Scheduler” [18]. These schedulers are based on tasks
uniformity principle. Through the tasks homogeneity,
better distribution can be achieved and total execution
time reduced. Unfortunately, these schedulers are not
available in all operating system versions. Based on the
same principle of tasks uniformity, we propose a new
scheduler, simpler to implement and more adapted to
topological algorithm processing.

Let be a non-preemptive scheduler ‘NPS’, T is the set

of all tasks, TT is the set of tasks to process

with TT T⊂ , P is the set of all processors and DP is

the set of available processors with DP P⊂ .

We define ‘NPS’, x yT P⇒ , as the scheduler of xT

tasks on yP processor and { }p the increase of p .

If [] []()D TP T≠ ∅ ∧ ≠ ∅ then :x yT P⇒ ;x TT T∈

y DP P∈ . In this scheduler, each processor will treat at

maximum
T

m
P

  =  
  

tasks. Let’s consider the

following equation, with initial value 0max () 0X = :

1max () max(\ max ())n nX X X−= .

Then, the worst case to process T will be:

{ }1 2() max (),max (),...,max ()mK T T T T= .

To demonstrate that let suppose that exist a set

()L T as () ()L T K T≥∑ ∑ . As ‘NPS’ manage

()L T and ()K T , so we can introduce the

following: ()L T m≤ and ()K T m≤ .

Now, If (() ())L T K T≥∑ ∑ then it exist at least

one task { }l , with ()k K T∈ , such as :

(()) (()) ()l L T l K T l k∈ ∧ ∉ ∧ > .

This is impossible according to the definition of
()K T . We remember that ()K T was defined as the

worst case.

3.2.3 Merging phase

The key problem of each parallelization is merging
obtained results. Normally this phase is done at the end
of the process when all results are returned by all
threads what usually means that only one output
variable is declared and shared between all threads. In
the case of topological operators, we are dealing with a
dynamic evolution process so we can plan the
following: since two threads finished, they directly
merge and a new thread is created. In thread’s merging,
there is no hierarchical order, the only criteria is finish
time.

4 Parallel smoothing filter

In this section we start by analyzing overall structure of
the original algorithm. Then we move to the
parallelization of the Euclidean distance algorithm,
thinning algorithm and thickening algorithm. We
conclude by a performance analysis of the entire
smoothing topological operator.

As we have shown in Section 2, the algorithm receives
as input a binary image and the maximum radius. It
uses two procedures for homotopic opening and
closing. The call is looped to ensure an ongoing
relationship between input and output. The opening
process is a consecutive execution of erosion, thinning,
dilatation and thickening. The closure procedure
ensures the same performance of the four consecutive
functions with a single difference: the erosion instead
of dilatation.

 200x200 168x288
 r=5 r=10 r= ∞ r=5 r=10 r= ∞
EucDis

(%)
64.44 54.93 46.67 59.25 49.79 35.25

TopCar
(%)

8.89 13.89 18.15 11.58 16.50 24.03

Tab.1. Time execution rate

Thinning and thickening ensure the topological control
of erosion and dilatation. This control is based on
researching and removing all destructible points. When
a point is deleted, these neighbors are reviewed to
ensure that they are not destructible, either. A
preliminary assessment of the code, see Table 1, shows
that Euclidean distance computing (EucDis) takes more
time than topological point characterization (Topcar).
For an image of 200x200, the computation time of the
Euclidean distance with an infinite radius is 46.67%
while point characterization of 2.4 million points
occupies only 18.15%.

If we limit the radius between 5 and 10, the
computation time of the Euclidean distance continues
to increase. It can reach 64.44% of total time with a
radius equal to 5. However time for topological
characterization is only 8.89% for 1 million points.

4.1 Euclidean distance computing

During previous evaluation, 4SED [10] algorithm was
used for Euclidean distance computation. So we are
looking for another algorithm that is faster, and
parallelizable. The new algorithm must have an
Euclidean distance computation’s error less than, or
equal to, that produced by 4SED in order to maintain
homotopic characteristics of the image.

In literature, several algorithms for Euclidean distance
computing exist. Lemire [19] and Shih [20] algorithms
are bad candidates because Lemire’s algorithm does
not use Euclidean circle as structuring element. Then
homotopic property will not be preserved. Shih and al.
algorithm has strong data dependency which penalizes
parallelization. In [21], Cuissenaire propose a first
algorithm, called PSN "Propagation Using a Single
Neighborhood" that uses the following structure
element:

() ()22

4() 1x x y xd p q q p q p
 = ∨ − + − < 
 

.

He also proposes a second algorithm, called PMN
"Propagation Using Multiple Neighborhood”, which
uses the eight neighbors. In [22], Cuissenaire proposes

a third algorithm with 3/2()nο complexity, which

offers an accurate computation of the Euclidean
distance. The only drawback of this algorithm is
computation time witch is very important and goes
beyond the two algorithms mentioned above. Even if
computing error produced by PSN is greater than
computing error produced by PMN, it is comparable to
that produced by 4SED. The low data dependence and
the ability to operate on 3D images, makes PSN
algorithm a potential candidate for replacing 4SED.
Meijster [23] proposes an algorithm to compute exact
Euclidean distance. The algorithm complexity is ()nο

and it operates in two independent, but successive,
steps. First step is based on looking over columns then
computing distance between each point and existing
objects. Second step includes same treatment for lines.
It is important to note that strong independence
between different processing steps and computing error
equal to zero makes Meijster algorithm a potential
candidate to replace 4SED. It is also able to operate on

3D images. Theory analysis of Meijster and
Cuissenaire algorithms can be found in Fabbri’s work
[24].

In the following, we propose a first analysis based on
different algorithms implementation in order to
compare between them. We have implemented 4SED
algorithm using a fixed size stack. It uses a FIFO queue
and it has a small size while 4SED algorithm does not
need to store temporal image. Results are directly
stored into the output image. We will retain this
implementation because 4SED assessment serves only
as reference for comparison. For PSN implementation,
we used stacks with dynamic sizes. The memory is
allocated using small blocks defined at stack creation.
When an object is added to the queue, the algorithm
will use the available memory of the last block. If no
space is available, a new block is allocated
automatically. Block size is proportional to the image
size (N x M / 100). Finally we used a simple memory
structure for the implementation of Meijster algorithm.
A simple matrix was used to compute distance between
points and object of each column. Three vectors were
used to compute distance in each line. Figure 2
describes obtained results by the different three
implementations. During this evaluation we used a
binary test image (200x200). We have also modified
ball radius. We used Valgrind software to evaluate
different designs. Callgrind tool returns the cost of
implementing of each program by detecting IF
(Instruction Fetch).

Fig.2. Overall structure of the original algorithm

Results show that PSN algorithm is the most expensive
in all cases (for any radius). Meijster algorithm is
moderately 5x faster than 4SED. The output images
returned by Meijster algorithm hold the best visual
quality while Euclidean distance computation error is
almost zero. So our efforts will be brought on Meijster
algorithm parallelization.

We denote by I the input image with m columns and
n rows. We denote by B an object included inI . The

idea is to compute, for each pointp I p B∈ ∧ ∉ , the

separating distance between p and the closest point

b withb B∈ . This amounts to compute the following

matrix: , ()x ydt p p EDT p  =  With ()EDT p =
2 2min() (,)y x x yp b G p b− + and, (0)b m∀ ≤ ≤ ,

(,)x yb b b= . If we assume that minimum distance of

an empty groupK is∞ and z K∀ ∈ , we have

()yz + ∞ = ∞ then ()EDT p formula can be written

as follow: xb n∀ < , ,yb m∀ ≤

2 2() min() (,)y x x yEDT p p b G p b= − + with

(,) min : (,)x x x xG p y p b b b y= − = .

Thus we can split the Euclidian distance transform
procedure into two stages. The first step is to scan
columns and computeEDT for each column y . The

second step consists on repeating the same procedure
for each line. In the following we start by detailing

these two steps: In the first step(,)xG p y can be

computed through the two following sub functions:

(,) min : (,) 0T x x x x xG p y p b b b y b n= − = ∀ ≤ ≤
(,) min : (,) 0B x x x x xG p y b p b b y b n= − = ∀ ≤ ≤

To compute (,)T xG p y and (,)B xG p y , we scan each

columny from top to bottom using the two following

formula:

(,) (, 1) 1T x T xG p y G y p= − +

(,) (, 1) 1B x B xG p y G y p= + + .

Let’s move to the second step, we start by

defining 2 2(,) () (,)y xf p y p y G p y= − + .Then we

can define () min ()EDT p f p y= − , 0 y m∀ ≤ ≤ .

For each row u , we note that there is, for the same

point p , the same value of (,)f p y even if y change

its values, so we can introduce the concept of "region
of column ".

LetSbe the set of ally points such that (,)f p y is

minimal and unique. The formula of S , 0 y u∀ ≤ ≤ ,

will be () min : (,) (,)pS u y f p y f p i= ≤ .

LetT be the set of all points having coordinates greater
than, or equal to, horizontal coordinate of the
intersection with a region. The formula of
T , ((0) ())i u u m∀ ≤ ≤ ∧ ≤ , will be the following :

() ((1),) 1
xp p pT u Sep S u u= − +

Let (,)Sep i u be the separation between regions of

i andu , defined by:

(,) (,)f p i f p u≤
2 2 2 2() (,) () (,)y x y xp i G p i p u G p u⇔ − + ≤ − +

2 2(,) () / 2(1)
xp ySep i u u i Dif u p⇔ = − + − =

With 2 2((,) (,))x xDif G p u G p i= − .

Thus lines processing will be, at the beginning, from
left to right then from right to left. During the first
term, from left to right, two vectors Sand T will be
created. These two vectors will contain respectively all
regions and all intersections. During the second
treatment, from right to left, we compute f for each

value of S . f is computed also for each respective

values of T .

The independence of data processing between rows and
columns is the key to apply SDM parallelization
strategy. In the first stage, column processing, we can
define data interdependence by the following equation:

{ }(,) min (,), (,)x T x B xG p y G p y G p y= ;

{ }(,)0
(,)(,) x

T x

if p y B
T x G p y elseG p y ∈⇔ = ;

{ }(,) min (1,), (,)B x B x T xG p y G p y G p y⇔ = + .

It follows that values of each column y of G, depends

only on lines: xp , 1xp + and 1xp − . Similarly, at the

second stage, we can introduce the following

interrelationship: () (, ())pEdt p f p S q= .

Then (0), (0) ()y u i u u m∀ ≤ ≤ ≤ ≤ Λ < ,

()pS u = min : (,) (,)y f p y f p i≤ ;

Thus, if (())pu T q= so (1)q q= − which imply the

following: () ((),) 1
xp p pT u Sep S q u= + .

According to this formalization, values of (,)f p i and

(,)xSep i u are independent of modified data. So using

two vectorsSandT , a private variable q for each line

ensures complete independence in writing.

We start applying the splitting step by sharing the
columns and lines processing between multiple
processors. A thread can process one or more columns
and the number of threads used will depend on the
number of processors. The results returned by all
threads in this first stage will be merged in order to
start lines processing. In the following we introduce the
parallel version of the algorithm Meisjter for both
steps. Associated algorithm complexity is

()() /n m Nο × . ()n m× refers to image size and

N refers to the number of processors.

Algorithm 1: Parallel Version Meijster [1st step]

1. For max(, ,)y t y m y y t= < = + do

2. If () By ∈,0 then []0, 0g y ←

3. else []0,g y ← ∞

4. endif

5. /* GT */
6. for ()1=x to ()1−n do

7. if [] Byx ∈, then [], 0g x y ←

8. else [] [], 1, 1g x y g x y← + +

9. endif
10. endfor

11. /* GB */
12. for ()2−= nx downto ()0 do

13. if [] [](1, ,)g x y g x y+ < then

14. [] [], 1, 1g x y g x y← + +

15. endif
16. endfor
17. endforall

Algorithm 2: Parallel Version Meijster [2nd Step]

1. For max(, ,)x t x n x x t= < = + do

2. 0=q

3. [] 00 =s

4. [] 00 =t

5. /* First part */
6. for ()1=u to ()1−m do

7. [] [](0) ((,),)A q f x t q s q ← ≥ Λ  

8. []((,),)B f x t q u←

9. while ()A B> do (1)q q← +

10. end while
11.
12. if (0)q < then (0)q ←

13. [](0)s u←

14. else [](, ,) 1w Sep s q u x← +

15. if ()w m< then (1)q q← +

16. []s q u←

17. []t q w←

18. endif
19. endif
20. endfor

21. /* Second part */

22. for ()1u m= − downto ()0 do

23. [] [], ((,),)Edt x u f x u s q←

24. if []()u t q= then (1)q q← −

25. endif
26. endfor
27. end forall

4.2 Thinning and thickening computing

Algorithms of thinning and thickening are almost
the same. The only difference between them is the
following: in thinning algorithm, destructible points are
detected then their values are lowered. In thickening
algorithm, constructible points, are detected then their
values are increased. For parallelization, we will apply
the same techniques introduced in [25]. We propose a
similar version using two loops. Target points are
initially detected then their value lowered or enhanced
according to appropriate treatment. The set of their
eight neighbors are copied into a temporary "buffer"

and rechecked. This process is repeated until stability.
In the following, we present an adapted version of
Couprie’s thinning algorithm.

Algorithm 3: Adapted Version Thinning Algo.

1. while ([]input x is destructible) do

2. (, 1)push x stack

3. 1x x← +
4. endwhile
5. output input←

6. While (1) (max 0)iterstack ≠ ∅ ∧ > do

7. While (1)stack ≠ ∅ do

8. (1)x pop stack←

9. if ([]output x is destructible) then

10. [] _ ()output x reduce pt x←

11. (, 2)push x stack

12. endif
13. end while
14. While (2)stack ≠ ∅ do

15. (2)x pop stack←

16. ()v neighbors x←

17. 0i ←
18. While (8)i < do

19. if [](1)v i stack∉ then

20. [](, 1)push v i stack

21. endif
22. endwhile
23. endwhile
24. max max 1iter iter← −

25. endwhile

4.3 Experimental analyses

Proposed parallel version of topological smoothing
algorithm was implemented in C using OpenMP
directives. We implemented two versions, the first one
using ‘Symmetric Multiprocessing’ scheduler and the
second one using ‘non-preemptive’ scheduler. Wall-
clock execution times for numbers of threads equal to
1, 2, 4, 8, and 16 were determined. The efficiency
measure Ψ (n) is given by the following formula with

n the number of processors: Ψ (n) = st / (n * pt),

st refers to the serial time and pt refers to parallel time.

Times were performed on eight-core (2× Xeon E5405)

shared memory parallel computer, on Intel Quad-core
Xeon E5335, on Intel Core 2 Duo E8400 and Intel
mono-processor Pentium 4 660. Each processor of the
Xeon E5405 and E5335 runs at 2 GHz and both of the
two machines have 4 GB of RAM. The E8400
processor runs at 3GHz. The Pentium processor runs at
3.6 GHz. The last two machines have 2 GB of RAM.
The minimum value of 5 timings was taken as most
indicative of algorithm speed. The measurements were
done on 2D binary image (512x512). Results of the
second implementation, using non preemptive
schedule, are shown in the following figure :

FIG. 3. Number of Instructions and tasks distribution

using ‘NPS’

On the eight-core machine, Number of instructions
in the second implementation drops from an average of
1879 x106 FI with a single thread down to 202x106 ms
with 8 threads. As expected, the speed-up for the
second implementation using ‘non preemptive’
scheduler is higher than for the one using "Symmetric
Multiprocessing" scheduler, thanks to balanced
distribution of tasks. A remarkable result, shown in
figure 4, is the fact that speed-up increases as we
increase the number of threads beyond the number of
processors in our machine (eight cores). In a first
implementation, using "Symmetric Multiprocessing"
scheduler, the speedup at 8 threads is 1.9 ± 0.01.
However, for the second implementation, using our
scheduler, the speedup has increased to 5.2 ± 0.01.
Thus execution time is decreased from 0.16± 0.005s to
0.03± 0.001s. This performance has allowed a cadency
of 32 images per second (see Figure 5). This real-time
performance confirms the interest of proposed
parallelization strategy. Another common result
between different architecture is stability of execution
time on each n-core machine since the code uses n or
more threads (see figure 4).

FIG. 4. Performance improvement using ‘NPS’.

FIG. 5. Summary of performance in term of cadency:
(F. Imp. NC = First Implementation using Symmetric
Multiprocessing scheduler on N processors. S. Imp.
NC = Second Implementation using Non Preemptive
scheduler on N processors)

For better readability of our results, we tested the
efficiency of our algorithm on various architectures
(see figure 5) using the Ψ (n) formula introduced

earlier with st sequential time on mono-processor

Pentium 4 660. For parallel time we use best parallel
time obtained using 8 threads with Non Preemptive
scheduler.

FIG. 6. Efficiency improvement

5 Conclusion

Topological characteristics are fundamental
attributes of an object. In many applications, it is
mandatory to preserve or control the topology of an
image. Nevertheless, the design of transformations
which preserve both topological and geometrical
features of images is not an obvious task, especially for
real time processing.

In this paper, we have presented a new parallel

computation method for topological smoothing. We
have also presented an adapted parallelization strategy.
SDM-strategy was a conditional application of the well
known principle of divide and conquers associated to
event-based coordination techniques. First major
contribution in this paper is the parallel computation
method for image smoothing allowing real-time
processing with topology preservation. Second
contribution is the non-specific nature of proposed
parallelization strategy. In fact it can be applied for a
large class of topological operators as we shown in
section 3.1. Third contribution concern tasks
distributions. We presented a non-preemptive
scheduler ‘NPS’, simpler to implement and more
adapted to particular topological algorithm processing.

Parallel computation of topological operators

represents many challenges, ranging from
parallelization strategies to implementation techniques.
We tackle these challenges using successive
refinement, starting with highly local operators, which
process only by characterizing points and then deleting
target pixels, and gradually moving to more complex
topological operators with non-local behavior. In
future work, we will study parallel computation of the
topological watershed [14].

6 References

[1] G. Taubin, “Curve and surface smoothing without
shrinkage”, Proceedings of ICCV'95, pp. 852-857, 1999

[2] X. Liu, H. Bao, H-Y. Shum, Q. Peng, “A novel volume
constrained smoothing method for meshes”, Graphical Models,
vol. 64, pp. 169-182, 2002.

[3] A. Asano, T. Yamashita, S. Yokozeki, “Active contour
model based on mathematical morphology”, ICPR 98, pp. 1455-
1457, 1998.

[4] F. Leymarie, M.D. Levine, “Curvature morphology”,
Proceedings of Vision Interface, pp. 102-109, 1989.

[5] M. Couprie, G. Bertrand. “Topology preserving alternating
sequential filter for smoothing 2D and 3D objects”, Journal of
Electronic Imaging, Vol. 13, pp. 720–730, 2004.

[6] T. Yung Kong, A. Rosenfeld. “Digital topology:
introduction and survey”, Computer Vision, Graphics and Image
Processing, Vol. 48, pp. 357-393, 1989.

[7] S. R. Sternberg. “Grayscale Morphology”, Computer Vision
Graphics and Image Understanding, Vol. 35, pp. 333-355, 1986.

[8] J. Serra. “Image Analysis and Mathematical Morphology”,
Vol. II: Theoretical Advances, Chap. 10, Academic Press, 1988.

[9] G. Bertrand. “Simple points, topological numbers and
geodesic neighborhoods in cubic grids”, Pattern Recognition
Letters, Vol. 15, pp. 1003-1011, 1994.

[10] P.E. Danielsson, “Euclidean distance mapping” Computer
Graphics and Image Processing 14, pp. 227-248, 1980.

[11] G. Bertrand, J. C. Everat, M. Couprie, “Topological
approach to image segmentation”, In SPIE Vision Geometry V,
vol. 2826, pp. 65-76, 1996.

[12] M. Couprie, F. N. Bezerra, and G. Bertrand, “Topological
operators for greyscale image processing”, Journal of Electronic
Imaging Vol. 10, pp. 1003-1015, 2001.

[13] G. Bertrand, J. C. Everat, M. Couprie, "Image segmentation
through operators based on topology," Journal of Electronic
Imaging, pp. 395-405, 1997.

[14] G. Bertrand, “On Topological Watersheds”, Journal of
Mathematical Imaging and Vision, V22, pp. 217-230, 2005.

[15] M. H. F. Wilkinson, H. Gao, W. H. Hesselink, J. Jonker, A.
Meijster. “Concurrent Computation of Attribute Filters on
Shared Memory Parallel Machines”. Transactions on Pattern
Analysis and Machine Intelligence, pp. 1800-1813, 2007.

[16] A. Meijster, J. B. T. M. Roerdink, W. H. Hesselink. “A
general algorithm for computing distance transforms in linear
time” Mathematical Morphology and its Applications to Image
and Signal Processing, Kluwer Acad. Publ., pp. 331-340, 2000.

[17] C. Kolivas, “RSDL completely fair starvation free 64
interactive cpu scheduler”, lwn.net, 2007.

[18] I. Molnar, “Modular Scheduler Core and Completely Fair
Scheduler”, lwn.net, 2007.

[19] D. Lemire, “Streaming Maximum-Minimum Filter Using
No More than Three Comparisons per Element”, Nordic Journal
of Computing, 13 (4), pp 328-339, 2006.

[20] F. Y. SHIH, Y. WU, “Fast Euclidean distance
transformation in two scans using a 3x3 neighborhood”,
Computer Vision and Image Understanding, no. 94, pp. 195-205,
2004.

[21] O. CUISENAIRE, B. MACQ, “Fast Euclidean Distance
Transformation by Propagation Using Multiple Neighborhoods”,
CVIU (76), No. 2, pp. 163-172, 1999.

[22] O. CUISENAIRE, B. MACQ, “Fast and exact signed
Euclidean distance transformation with linear complexity”, IEEE
Intl Conference on Acoustics, Speech and Signal Processing
(ICASSP99), p. 3293-3296 -1999.

[23] A. Meijster, J. B. T. M. Roerdink, W. H. HESSELINK, “A
general algorithm for computing distance transforms in linear
time”, Mathematical Morphology and its Applications to Image
and Signal Processing, pp. 331-340, 2000,

[24] R . FABBRI, L. F. COSTA, J. C. TORELLI, O M BRUNO,
“2D Euclidean distance transform algorithms: A comparative
survey”, ACM Computing Surveys V40, 2008.

[25] R. Mahmoudi, M. Akil, P. Matas, “Parallel image thinning
through topological operators on shared memory parallel
machines”, Signals, Systems and Computers Conference, pp.
723 – 730. 2009.

