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Abstract 
 

Smoothing filter is the method of choice for image 
preprocessing and pattern recognition. We present a 
new concurrent method for smoothing 2D object in 
binary case. Proposed method provides a parallel 
computation while preserving the topology by using 
homotopic transformations. We introduce an adapted 
parallelization strategy called split, distribute and 
merge (SDM) strategy which allows efficient 
parallelization of a large class of topological 
operators including, mainly, smoothing, 
skeletonization, and watershed algorithms. To achieve 
a good speedup, we cared about task scheduling. 
Distributed work during smoothing process is done by 
a variable number of threads. Tests on 2D binary 
image (512*512), using shared memory parallel 
machine (SMPM) with 8 CPU cores (2× Xeon E5405 
running at frequency of 2 GHz), showed an 
enhancement of 5.2 thus a cadency of 32 images per 
second is achieved. 

 

1 Introduction 
 
Smoothing is a fundamental step to reduce noise and 
prepare the image for subsequent processing such as 
segmentation.  For example, the analysis or recognition 
of a shape is often perturbed by noise, thus the 
smoothing of object boundaries is a necessary 
preprocessing step. The smoothing procedure can also 
be used to extract some shape characteristics: by 
making the difference between the original and the 
smoothed object, salient or carved parts can be 
detected and measured. Smoothing shape has been 
extensively studied and many approaches have been 
proposed. The most popular one is the linear filtering 
by Laplacien smoothing for 2D-vector [1] and 3D mesh 
[2].  Other approach by morphological filtering can be 
applied directly to the shape [3] or to the curvature plot 
of the object's contour [4]. Unfortunately none of these 
operators preserve the topology (number of connected 
components) of the original image. In 2004, our team 
introduces a new method for smoothing 2D and 3D 
objects in binary images while preserving topology [5]. 

Objects are defined as sets of grid points and topology 
preservation is ensured by the exclusive use of 
homotopic transformations defined in the framework of 
digital topology [6]. Smoothness is obtained by the use 
of morphological openings and closings by metric discs 
or balls of increasing radius, in the manner of 
alternating sequential filters [7]. The authors' efforts 
have brought about two major issues such as 
preservation of the topology and the multitude of 
objects in the scene to smooth out without worrying 
about the latency of their filter. 
 
This paper describes a new parallel method for 
topological smoothing which provides real time image 
processing. We present also an adapted parallelization 
strategy, called Split Distribute and Merge (SD&M). 
Our strategy is designed specifically for topological 
operators parallelizing on shared memory architectures. 
The new strategy is based upon the excusive 
combination of two patterns: divide and conquer and 
event-based coordination.  
 
This paper is organized as follows: in section 2, some 
basic notions of topological operators are summarized; 
the original smoothing filter is introduced. In section 3, 
parallelization strategy, that has been adopted, is 
introduced. We define the class of operators that our 
parallelization strategy may cover. In section 4, 
concurrent computation method of topological 
smoothing is presented. Experimental analyzes results 
of different implementations are also presented and 
discussed. Finally, we conclude with summary and 
future work in section 5.   
 

2 Theoretical background 
 
In this section, we recall some basic notions of digital 
topology [6] and mathematical morphology for binary 
images [8]. We define also the homotopic alternating 
sequential filters [5]. For the sake of simplicity, we 
restrict ourselves to the minimal set of notions that will 
be useful for our purpose. We start by introducing 
morphological operators based on structuring elements 



which are balls in the sense of the Euclidean distance, 
in order to obtain the desired smoothing effect. 
 
We denote by ℤ  the set of relative integers, and by 

Ε the discrete plane 2
ℤ . A point x∈Ε is defined by 

1 2( , )x x with ix ∈ℤ . Letx∈Ε andr ∈ℕ , we 

denote by ( )rB x the ball of radius r  centred onx . 

( )rB x is defined by { }, ( , )y E d x y r∈ ≤ ,where d  

is a distance on Ε . We denote by rB  the map which 

associates to each x  in Ε  the ball ( )rB x . The 

Euclidean distance d on Ε  is defined by: 
1/22 2

1 1 2 2( , ) ( ) ( )d x y x y x y = − − −  . 

 
An operator in E  is a mapping from 

( )P E into ( )P E , where ( )P E denotes the set of all 

subsets ( )E⊂ . Let r  be an integer, the dilation 

( )rδ by rB  is defined by ( ) ( )r x X rX B xδ ∈= ∪ , 

( )X P E∀ ∈ . The ball rB is termed as the structuring 

element of the dilation. The erosion ( )rε  by rB is 

defined by duality: r rε δ= ∗ . 

 
Now, we introduce the notion of simple point witch is 
fundamental for the definition of topology preserving 
transformations in discrete spaces. We start by giving a 
definition of local characterization of simple points 

in 2E = ℤ . Let consider two neighbourhoods relations 

4Γ  and 8Γ defined by, for each pointx E∈ : 

{ }4 1 1 2 2( ) ; 1x y E y x y xΓ = ∈ − + − ≤ , 

{ }8 1 1 2 2( ) ;max , 1x y E y x y xΓ = ∈ − − ≤ . 

In the following we will denote by n  a number such 

that 4n = or 8n = thus we define:  

{ }* ( ) ( ) \n nx x xΓ = Γ .  

 
We say that a point y E∈  is n adjacent−  to 

x E∈  if * ( )ny x∈Γ . Thus we can generalize for two 

pointsx , y  belonging to X . They are n-connected in 

X  if there is a n-path in X between these two points.  
 
The equivalence classes for this relation are the n-
connected components of X . A subset X  of E  is 

said to be n-connected if it consists of exactly one n-
connected component. The set composed of all n-
connected components of X  which are n-adjacent to a 

point x  is denoted by [ ],nC x X . In order to have a 

correspondence between the topology of X  and the 

topology of X , we use ‘n-adjacency’ for X and ‘n -

adjacency’ for X with ( , )n n  equal to (8; 4) or (4; 8).  

 
Informally, a simple point p of a discrete object X  is 

a point which is ‘inessential’ to the topology of X . In 
other words, we can remove the point p  from X  

without changing the topology of X .  
 
The point x X∈ is said simple (forX ) if each n-

component of X  contains exactly one n-component of 

{ }\X x and if each n -component of { }X x∪  

contains exactly one n -component of X . Let 

X E⊂ andx E∈ , the two connectivity numbers are 

defined as follows (# X refers to cardinality of X ):  

( )*
8( , ) # ,nT x X C x x X = Γ ∩  ;

( )*
8( , ) # ,

n
T x X C x x X = Γ ∩  .  

The following property allows us to locally 
characterize simple points [6][9] hence to implement 
efficiently topology preserving operators:x E∈ is 

simple for ( , ) 1X E T x X⊆ ↔ = and ( , ) 1T x X =  

 
The homotopic alternating sequential filter is a 
composition of homotopic cuttings and fillings by balls 
of increasing radius. It takes an original image X  and 
a control image C  as input, and smoothes X  while 

respecting the topology of X  and the geometrical 
constraints implicitly represented by C , simple 
illustration is given by figure 1. Based on this filter, 
authors [5] introduce a general smoothing procedure 
with a single parameter which allows controlling the 
degree of smoothing.  
 
Let X be any finite subset of E , letC X⊆ , r ∈ℕ  

andD X⊆ . The homotopic alternating sequential 

filter ( )HASF   of ordernwith constraint setsC ; D  

is defined as follows: 
 

,
1 1...C D D C D C

n n nHASF HF HC HF HC= � � �  



 
 

 
 
 
 
 
 
 

 
 

 
(A)                                     (B) 

Fig.1. (A) Input image (B) Smoothed image 
 

In the previous formula, C
nHC (i) refers to the 

homotopic cutting of X  by nB with a constraint set 

C . D
nHF (ii) refers to the homotopic filling of X  by 

nB  with a constraint setD . These two homotopic 

operators can be defined as follows:  
 

( ) ( ),C
nHC X H Y V= ∗ With ( )( )

( )( ){ , n

n

Y H X X C

V Y X

ε
δ

= ∪
= ∩  (i) 

 

( ) ( ),D
nHF X H Z W= With ( )

( )( ){ ,

( )
n

n

Z H X X D

W Y X

δ
ε

=∗ ∩
= ∪ (ii) 

We recall that ( ),H Z W is an homotopic constrained 

thinning operator. It gives the ultimate skeleton of 
Z constrained byW . Ultimate skeleton is obtained by 
selecting simple point in increasing order of their 
distance to the background thanks to a pre-computed 
quasi-Euclidian distance map [10].   
 

( ),H Y V∗  is an homotopic constrained thickening 

operator. It thickens the set of Y by iterative addition 

of point witch are simple for Y and witch belong to the 
set V until stability.  
 
3 Parallelization Strategy 
 
In this section, we start by defining the class of 
topological algorithms. Then we present our motivation 
to parallelize it on parallel shared memory machines. 
Finally we will introduce different steps of our 
parallelization strategy. We will focus especially on 
distribution phase and tasks scheduling over different 
processors. 
 

3.1 Class of topological algorithms 
 
In 1996, Bertrand and Couprie [11] introduced 
connectivity numbers for grayscale image. These 
numbers describe locally (in a neighborhood of 3x3) 
the topology of a point. According to this description 
any point can be characterized following its topological 
characteristics. They also introduced some elementary 
operations able to modify gray level of a point without 
modifying image topology. These elementary 
operations of point characterization present the 
fundamental link of large class of topological operators 
including, mainly, skeletonization and crest restoring 
algorithms [12]. This class can also be extended, under 
condition, to homotopic kernel and leveling kernel 
transformation [13], topological watershed algorithm 
[14] and topological 2D object smoothing algorithm 
[5] which is the subject of this article. All mentioned 
algorithms get also many algorithmic structure 
similarities. In fact associated characterizations 
procedures evolve until stability with induce common 
recursively between different algorithms. Also the grey 
level of any point can be lowered or enhanced more 
than once.  Finally, all the mentioned algorithms get a 
pixel’s array as input and output data structure. It is 
important to mention that, to date, this class has not 
been efficiently parallelized like other classes as 
connected filter of morphological operator which 
recently has been parallelized in Wilkinson’s work 
[15].  Parallelization strategy proposed by Sienstra [16] 
for local operators and point to point operators can also 
be cited as example.  Hence the need of a common 
parallelization strategy for topological operators that 
offers an adapted algorithm structure design space. 
Chosen algorithm structure patterns that will be used in 
the design must be suitable for SMP machines. 
 
In reality, although the cost of communication 
(Memory-processor and inter-processors) is high 
enough, shared memory architectures meet our needs 
for different reasons: (i) These architectures have the 
advantage of allowing immediate sharing of data with 
is very helpful in the conception of any parallelization 
strategy (ii) They are non-dedicated architecture using 
standard component (processor, memory ...) so 
economically reliable (iii) They also offer some 
flexibility of use in many application areas, particular 
image processing. 

 



3.2 Split Distribute and Merge Strategy 
 
In practice the most effective parallel algorithm design 
might make use of multiple algorithm structures thus 
proposed strategy is a combination of the divide and 
conquer pattern and event-based coordination pattern 
hence the name that we have assigned: SD&M (Split 
Distribute and Merge) strategy. Not to be confused 
with the famous approach of mixed-parallelism 
(combining data-parallelism and task-parallelism), it is 
important to mention that our strategy (i) represents the 
last stitch in the  decomposition chain of algorithm 
design patterns and it provides a fine-grained 
description of topological operators parallelization 
while mixed-parallelism strategy provides a coarse-
grained description without specifying target algorithm. 
(ii) It covers only the case of recursive algorithms, 
while mixed-parallelization strategy is effective only in 
the linear case. (iii) It is especially designed for shared 
memory architecture with uniform access. 
 
3.2.1 Split phase  
 
The Divide and Conquer pattern is applied first by 
recursively breaking down a problem into two or more 
sub-problems of the same type, until these become 
simple enough to be solved directly. Splitting the 
original problem take into account, in addition to the 
original algorithm’s characteristics (mainly topology 
preservation), the mechanisms by which data are 
generated, stored, transmitted over networks 
(processor-processor or memory-processor), and 
passed between different stages of computation.  
 
3.2.2 Distribute phase  
 
Work distribution is a fundamental step to assure a 
perfect exploitation of multi-cores architecture’s 
potential. We'll start by recalling briefly some basic 
notion of distribution techniques then we introduce our 
minimal distribution approach that is particularly 
suitable for topological recursive algorithms where 
simple point characterization is necessary. Our 
approach is general and applicable to shared memory 
parallel machines.  
 
In effect, non-real-time system scheduler doesn’t know, 
in advance, necessary time to perform each task. Thus, 
"Symmetric Multiprocessing" scheduler distributes 
tasks to minimize total execution time without load 
balancing between processors. We propose a novel 

tasks scheduling approach to prevent improper load 
distribution while improving total execution time. In 
literature, there are several schedulers that provide a 
balanced distribution of tasks such as RSDL “Rotating 
Staircase Deadline” [17] and CFS “Completely Fair 
Scheduler” [18]. These schedulers are based on tasks 
uniformity principle. Through the tasks homogeneity, 
better distribution can be achieved and total execution 
time reduced. Unfortunately, these schedulers are not 
available in all operating system versions. Based on the 
same principle of tasks uniformity, we propose a new 
scheduler, simpler to implement and more adapted to 
topological algorithm processing. 

 
Let be a non-preemptive scheduler ‘NPS’, T is the set 

of all tasks, TT is the set of tasks to process 

with TT T⊂ , P is the set of all processors and DP  is 

the set of available processors with DP P⊂ . 

We define ‘NPS’, x yT P⇒ , as the scheduler of xT  

tasks on yP  processor and { }p the increase of p .  

 

If [ ] [ ]( )D TP T≠ ∅ ∧ ≠ ∅ then :x yT P⇒  ;x TT T∈  

y DP P∈ . In this scheduler, each processor will treat at 

maximum 
T

m
P

  =  
  

tasks. Let’s consider the 

following equation, with initial value 0max ( ) 0X = : 

1max ( ) max( \ max ( ))n nX X X−= . 

 
Then, the worst case to process T  will be: 

{ }1 2( ) max ( ),max ( ),...,max ( )mK T T T T= . 

 
To demonstrate that let suppose that exist a set 

( )L T as ( ) ( )L T K T≥∑ ∑ . As ‘NPS’ manage 

( )L T and ( )K T , so we can introduce the 

following: ( )L T m≤ and ( )K T m≤ .   

        

Now, If ( ( ) ( ))L T K T≥∑ ∑ then it exist at least 

one task { }l , with ( )k K T∈ , such as :  

( ( )) ( ( )) ( )l L T l K T l k∈ ∧ ∉ ∧ > . 

This is impossible according to the definition of 
( )K T . We remember that ( )K T  was defined as the 

worst case. 



3.2.3 Merging phase  
 
The key problem of each parallelization is merging 
obtained results. Normally this phase is done at the end 
of the process when all results are returned by all 
threads what usually means that only one output 
variable is declared and shared between all threads. In 
the case of topological operators, we are dealing with a 
dynamic evolution process so we can plan the 
following: since two threads finished, they directly 
merge and a new thread is created. In thread’s merging, 
there is no hierarchical order, the only criteria is finish 
time.  
 

4 Parallel smoothing filter 
 
In this section we start by analyzing overall structure of 
the original algorithm. Then we move to the 
parallelization of the Euclidean distance algorithm, 
thinning algorithm and thickening algorithm. We 
conclude by a performance analysis of the entire 
smoothing topological operator. 
 
As we have shown in Section 2, the algorithm receives 
as input a binary image and the maximum radius. It 
uses two procedures for homotopic opening and 
closing. The call is looped to ensure an ongoing 
relationship between input and output. The opening 
process is a consecutive execution of erosion, thinning, 
dilatation and thickening. The closure procedure 
ensures the same performance of the four consecutive 
functions with a single difference: the erosion instead 
of dilatation. 
 

 200x200 168x288 
 r=5 r=10 r= ∞  r=5 r=10 r= ∞  
EucDis 

(%) 
64.44 54.93 46.67 59.25 49.79 35.25 

TopCar 
(%) 

8.89 13.89 18.15 11.58 16.50 24.03 

Tab.1. Time execution rate 
 
Thinning and thickening ensure the topological control 
of erosion and dilatation. This control is based on 
researching and removing all destructible points. When 
a point is deleted, these neighbors are reviewed to 
ensure that they are not destructible, either. A 
preliminary assessment of the code, see Table 1, shows 
that Euclidean distance computing (EucDis) takes more 
time than topological point characterization (Topcar). 
For an image of 200x200, the computation time of the 
Euclidean distance with an infinite radius is 46.67% 
while point characterization of 2.4 million points 
occupies only 18.15%.    

If we limit the radius between 5 and 10, the 
computation time of the Euclidean distance continues 
to increase. It can reach 64.44% of total time with a 
radius equal to 5. However time for topological 
characterization is only 8.89% for 1 million points.  
 

4.1 Euclidean distance computing 
 
During previous evaluation, 4SED [10] algorithm was 
used for Euclidean distance computation. So we are 
looking for another algorithm that is faster, and 
parallelizable. The new algorithm must have an 
Euclidean distance computation’s error less than, or 
equal to, that produced by 4SED in order to maintain 
homotopic characteristics of the image. 
 
In literature, several algorithms for Euclidean distance 
computing exist. Lemire [19] and Shih [20] algorithms 
are bad candidates because Lemire’s algorithm does 
not use Euclidean circle as structuring element. Then 
homotopic property will not be preserved. Shih and al.  
algorithm has strong data dependency which penalizes 
parallelization. In [21], Cuissenaire propose a first 
algorithm, called PSN "Propagation Using a Single 
Neighborhood" that uses the following structure 
element:  

( ) ( )22

4( ) 1x x y xd p q q p q p
 = ∨ − + − < 
 

.  

 
He also proposes a second algorithm, called PMN 
"Propagation Using Multiple Neighborhood”, which 
uses the eight neighbors. In [22], Cuissenaire proposes 

a third algorithm with 3/2( )nο complexity, which 

offers an accurate computation of the Euclidean 
distance. The only drawback of this algorithm is 
computation time witch is very important and goes 
beyond the two algorithms mentioned above. Even if 
computing error produced by PSN is greater than 
computing error produced by PMN, it is comparable to 
that produced by 4SED. The low data dependence and 
the ability to operate on 3D images, makes PSN 
algorithm a potential candidate for replacing 4SED. 
Meijster [23] proposes an algorithm to compute exact 
Euclidean distance. The algorithm complexity is ( )nο  

and it operates in two independent, but successive, 
steps. First step is based on looking over columns then 
computing distance between each point and existing 
objects. Second step includes same treatment for lines. 
It is important to note that strong independence 
between different processing steps and computing error 
equal to zero makes Meijster algorithm a potential 
candidate to replace 4SED. It is also able to operate on 



3D images. Theory analysis of Meijster and 
Cuissenaire algorithms can be found in Fabbri’s work 
[24]. 

 
In the following, we propose a first analysis based on 
different algorithms implementation in order to 
compare between them. We have implemented 4SED 
algorithm using a fixed size stack. It uses a FIFO queue 
and it has a small size while 4SED algorithm does not 
need to store temporal image. Results are directly 
stored into the output image. We will retain this 
implementation because 4SED assessment serves only 
as reference for comparison. For PSN implementation, 
we used stacks with dynamic sizes. The memory is 
allocated using small blocks defined at stack creation. 
When an object is added to the queue, the algorithm 
will use the available memory of the last block. If no 
space is available, a new block is allocated 
automatically. Block size is proportional to the image 
size (N x M / 100). Finally we used a simple memory 
structure for the implementation of Meijster algorithm. 
A simple matrix was used to compute distance between 
points and object of each column. Three vectors were 
used to compute distance in each line. Figure 2 
describes obtained results by the different three 
implementations. During this evaluation we used a 
binary test image (200x200). We have also modified 
ball radius. We used Valgrind software to evaluate 
different designs. Callgrind tool returns the cost of 
implementing of each program by detecting IF 
(Instruction Fetch).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2. Overall structure of the original algorithm 

Results show that PSN algorithm is the most expensive 
in all cases (for any radius). Meijster algorithm is 
moderately 5x faster than 4SED. The output images 
returned by Meijster algorithm hold the best visual 
quality while Euclidean distance computation error is 
almost zero. So our efforts will be brought on Meijster 
algorithm parallelization. 
 
We denote by I  the input image with m columns and 
n  rows. We denote by B an object included inI . The 

idea is to compute, for each pointp I p B∈ ∧ ∉ , the 

separating distance between p and the closest point 

b withb B∈ . This amounts to compute the following 

matrix: , ( )x ydt p p EDT p  =  With ( )EDT p =
2 2min( ) ( , )y x x yp b G p b− + and, (0 )b m∀ ≤ ≤ ,

( , )x yb b b= . If we assume that minimum distance of 

an empty groupK is∞ and z K∀ ∈ , we have 

( )yz + ∞ = ∞  then ( )EDT p formula can be written 

as follow: xb n∀ < , ,yb m∀ ≤  

2 2( ) min( ) ( , )y x x yEDT p p b G p b= − + with

( , ) min : ( , )x x x xG p y p b b b y= − = . 

 
Thus we can split the Euclidian distance transform 
procedure into two stages. The first step is to scan 
columns and computeEDT for each column y  .  The 

second step consists on repeating the same procedure 
for each line. In the following we start by detailing 

these two steps: In the first step( , )xG p y can be 

computed through the two following sub functions:  

( , ) min : ( , ) 0T x x x x xG p y p b b b y b n= − = ∀ ≤ ≤
( , ) min : ( , ) 0B x x x x xG p y b p b b y b n= − = ∀ ≤ ≤

To compute ( , )T xG p y and ( , )B xG p y , we scan each 

columny  from top to bottom using the two following 

formula:  

( , ) ( , 1) 1T x T xG p y G y p= − +  

( , ) ( , 1) 1B x B xG p y G y p= + + .  

 
Let’s move to the second step, we start by 

defining 2 2( , ) ( ) ( , )y xf p y p y G p y= − + .Then we  

can define ( ) min ( )EDT p f p y= − , 0 y m∀ ≤ ≤ . 

For each row u , we note that there is, for the same 

point p , the same value of ( , )f p y even if y change 



its values, so we can introduce the concept of "region 
of column ". 
 
LetSbe the set of ally points such that ( , )f p y is 

minimal and unique. The formula of S , 0 y u∀ ≤ ≤ , 

will be ( ) min : ( , ) ( , )pS u y f p y f p i= ≤ . 

 
LetT be the set of all points having coordinates greater 
than, or equal to, horizontal coordinate of the 
intersection with a region. The formula of 
T , ((0 ) ( ))i u u m∀ ≤ ≤ ∧ ≤ , will be the following : 

( ) ( ( 1), ) 1
xp p pT u Sep S u u= − +  

 
Let ( , )Sep i u  be the separation between regions of 

i andu , defined by:  
 

( , ) ( , )f p i f p u≤  
2 2 2 2( ) ( , ) ( ) ( , )y x y xp i G p i p u G p u⇔ − + ≤ − +  

2 2( , ) ( ) / 2( 1)
xp ySep i u u i Dif u p⇔ = − + − =  

With 2 2( ( , ) ( , ) )x xDif G p u G p i= − . 

 
Thus lines processing will be, at the beginning, from 
left to right then from right to left. During the first 
term, from left to right, two vectors Sand T will be 
created. These two vectors will contain respectively all 
regions and all intersections. During the second 
treatment, from right to left, we compute f for each 

value of S . f  is computed also for each respective 

values of T .  
 
The independence of data processing between rows and 
columns is the key to apply SDM parallelization 
strategy. In the first stage, column processing, we can 
define data interdependence by the following equation: 
 

{ }( , ) min ( , ), ( , )x T x B xG p y G p y G p y= ; 

{ }( , )0
( , )( , ) x

T x

if p y B
T x G p y elseG p y ∈⇔ = ; 

{ }( , ) min ( 1, ), ( , )B x B x T xG p y G p y G p y⇔ = + . 

 
It follows that values of each column y of G, depends 

only on lines: xp , 1xp + and 1xp − . Similarly, at the 

second stage, we can introduce the following 

interrelationship: ( ) ( , ( ))pEdt p f p S q= . 

Then (0 ), (0 ) ( )y u i u u m∀ ≤ ≤ ≤ ≤ Λ < , 

( )pS u = min : ( , ) ( , )y f p y f p i≤  ; 

Thus, if ( ( ))pu T q=  so ( 1)q q= − which imply the 

following: ( ) ( ( ), ) 1
xp p pT u Sep S q u= + .  

 
According to this formalization, values of ( , )f p i  and 

( , )xSep i u are independent of modified data. So using 

two vectorsSandT , a private variable q for each line 

ensures complete independence in writing.  
 
We start applying the splitting step by sharing the 
columns and lines processing between multiple 
processors.  A thread can process one or more columns 
and the number of threads used will depend on the 
number of processors. The results returned by all 
threads in this first stage will be merged in order to 
start lines processing. In the following we introduce the 
parallel version of the algorithm Meisjter for both 
steps. Associated algorithm complexity is 

( )( ) /n m Nο × . ( )n m×  refers to image size and 

N refers to the number of processors. 
 
Algorithm 1: Parallel Version Meijster [1st step] 

1. For max( , , )y t y m y y t= < = + do 

2.       If ( ) By ∈,0 then [ ]0, 0g y ←  

3.                              else [ ]0,g y ← ∞  

4.       endif 
 

5.       /*  GT */ 
6.       for ( )1=x to ( )1−n do 

7.               if [ ] Byx ∈, then [ ], 0g x y ←  

8.               else [ ] [ ], 1, 1g x y g x y← + +  

9.               endif 
10.       endfor 

 
11.       /*  GB */ 
12.       for ( )2−= nx downto ( )0 do 

13.               if [ ] [ ]( 1, , )g x y g x y+ < then 

14.                    [ ] [ ], 1, 1g x y g x y← + +  

15.               endif 
16.      endfor 
17. endforall 

 



Algorithm 2: Parallel Version Meijster [2nd Step] 

1. For max( , , )x t x n x x t= < = + do 

2.          0=q  

3.      [ ] 00 =s  

4.      [ ] 00 =t  

 
5.       /*  First part */ 
6.       for ( )1=u to ( )1−m do 

7.         [ ] [ ]( 0) (( , ), )A q f x t q s q ← ≥ Λ    

8.         [ ](( , ), )B f x t q u←  

9.          while ( )A B> do ( 1)q q← +  

10.          end while 
11.  
12.          if ( 0)q < then ( 0)q ←  

13.                                       [ ]( 0 )s u←  

14.          else [ ]( , , ) 1w Sep s q u x← +  

15.                  if ( )w m< then ( 1)q q← +  

16.                                             [ ]s q u←  

17.                                              [ ]t q w←  

18.                  endif 
19.             endif 
20.          endfor 
 
21.         /*  Second part */ 

22.         for ( )1u m= − downto ( )0 do 

23.               [ ] [ ], (( , ), )Edt x u f x u s q←  

24.                if [ ]( )u t q= then ( 1)q q← −  

25.                endif 
26.         endfor 
27.    end forall 

 

4.2 Thinning and thickening computing  
 

Algorithms of thinning and thickening are almost 
the same. The only difference between them is the 
following: in thinning algorithm, destructible points are 
detected then their values are lowered. In thickening 
algorithm, constructible points, are detected then their 
values are increased. For parallelization, we will apply 
the same techniques introduced in [25]. We propose a 
similar version using two loops. Target points are 
initially detected then their value lowered or enhanced 
according to appropriate treatment. The set of their 
eight neighbors are copied into a temporary "buffer" 

and rechecked. This process is repeated until stability. 
In the following, we present an adapted version of 
Couprie’s thinning algorithm. 
 
Algorithm 3: Adapted Version Thinning Algo. 

1. while ( [ ]input x is destructible) do 

2.      ( , 1)push x stack  

3.      1x x← +  
4.  endwhile 
5. output input←  

6. While ( 1 ) (max 0)iterstack ≠ ∅ ∧ > do 

7.      While ( 1 )stack ≠ ∅ do 

8.             ( 1)x pop stack←  

9.              if ( [ ]output x is destructible) then 

10.                  [ ] _ ( )output x reduce pt x←  

11.                  ( , 2)push x stack  

12.              endif 
13.      end while 
14.      While ( 2 )stack ≠ ∅ do 

15.              ( 2)x pop stack←  

16.              ( )v neighbors x←  

17.              0i ←  
18.               While ( 8)i < do 

19.                    if [ ]( 1)v i stack∉  then 

20.                       [ ]( , 1)push v i stack  

21.                    endif 
22.               endwhile 
23.      endwhile 
24.     max max 1iter iter← −  

25.  endwhile 
 
4.3 Experimental analyses  
 

Proposed parallel version of topological smoothing 
algorithm was implemented in C using OpenMP 
directives. We implemented two versions, the first one 
using ‘Symmetric Multiprocessing’ scheduler and the 
second one using ‘non-preemptive’ scheduler. Wall-
clock execution times for numbers of threads equal to 
1, 2, 4, 8, and 16 were determined. The efficiency 
measure Ψ ( n ) is given by the following formula with 

n  the number of processors: Ψ ( n ) = st / ( n * pt ), 

st refers to the serial time and pt refers to parallel time. 

Times were performed on eight-core (2× Xeon E5405) 



shared memory parallel computer, on Intel Quad-core 
Xeon E5335, on Intel Core 2 Duo E8400 and Intel 
mono-processor Pentium 4 660. Each processor of the 
Xeon E5405 and E5335 runs at 2 GHz and both of the 
two machines have 4 GB of RAM. The E8400 
processor runs at 3GHz. The Pentium processor runs at 
3.6 GHz. The last two machines have 2 GB of RAM. 
The minimum value of 5 timings was taken as most 
indicative of algorithm speed. The measurements were 
done on 2D binary image (512x512). Results of the 
second implementation, using non preemptive 
schedule,  are shown in the following figure : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 3. Number of Instructions and tasks distribution 

using ‘NPS’ 
 

On the eight-core machine, Number of instructions 
in the second implementation drops from an average of 
1879 x106 FI with a single thread down to 202x106 ms 
with 8 threads. As expected, the speed-up for the 
second implementation using ‘non preemptive’ 
scheduler is higher than for the one using "Symmetric 
Multiprocessing" scheduler, thanks to balanced 
distribution of tasks. A remarkable result, shown in 
figure 4, is the fact that speed-up increases as we 
increase the number of threads beyond the number of 
processors in our machine (eight cores). In a first 
implementation, using "Symmetric Multiprocessing" 
scheduler, the speedup at 8 threads is 1.9 ± 0.01. 
However, for the second implementation, using our 
scheduler, the speedup has increased to 5.2 ± 0.01. 
Thus execution time is decreased from 0.16± 0.005s to 
0.03± 0.001s. This performance has allowed a cadency 
of 32 images per second (see Figure 5). This real-time 
performance confirms the interest of proposed 
parallelization strategy. Another common result 
between different architecture is stability of execution 
time on each n-core machine since the code uses n or 
more threads (see figure 4). 

 
 
 
 

 
 
 

 
 
 
 
 
 

FIG. 4. Performance improvement using ‘NPS’. 
 
 
 
 
 
 
 
 
 
 
 

 
FIG. 5. Summary of performance in term of cadency: 
(F. Imp. NC = First Implementation using  Symmetric 
Multiprocessing  scheduler on N processors. S. Imp. 
NC = Second Implementation using  Non Preemptive 
scheduler on N processors) 
 

For better readability of our results, we tested the 
efficiency of our algorithm on various architectures 
(see figure 5) using the Ψ ( n ) formula introduced 

earlier with st sequential time on mono-processor 

Pentium 4 660. For parallel time we use best parallel 
time obtained using 8 threads with Non Preemptive 
scheduler.  

 
 
 
 
 
 
 
 
 
 
 
 

 
FIG. 6. Efficiency improvement 



5 Conclusion 
 

Topological characteristics are fundamental 
attributes of an object. In many applications, it is 
mandatory to preserve or control the topology of an 
image. Nevertheless, the design of transformations 
which preserve both topological and geometrical 
features of images is not an obvious task, especially for 
real time processing.   

 
In this paper, we have presented a new parallel 

computation method for topological smoothing. We 
have also presented an adapted parallelization strategy. 
SDM-strategy was a conditional application of the well 
known principle of divide and conquers associated to 
event-based coordination techniques. First major 
contribution in this paper is the parallel computation 
method for image smoothing allowing real-time 
processing with topology preservation. Second 
contribution is the non-specific nature of proposed 
parallelization strategy. In fact it can be applied for a 
large class of topological operators as we shown in 
section 3.1. Third contribution concern tasks 
distributions. We presented a non-preemptive 
scheduler ‘NPS’, simpler to implement and more 
adapted to particular topological algorithm processing. 

 
Parallel computation of topological operators 

represents many challenges, ranging from 
parallelization strategies to implementation techniques. 
We tackle these challenges using successive 
refinement, starting with highly local operators, which 
process only by characterizing points and then deleting 
target pixels, and gradually moving to more complex 
topological operators with non-local behavior.  In 
future work, we will study parallel computation of the 
topological watershed [14].   
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