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Abstract Objects are defined as sets of grid points andlogyo
preservation is ensured by the exclusive use of
Smoothing filter is the method of choice for image homotopic transformations defined in the framewairk

preprocessing and pattern recognition. We present adigital topology [6]. Smoothness is obtained by tise
new concurrent method for smoothing 2D object in ©f morphological openings and closings by metrgrsli
binary case. Proposed method provides a parallel OF balls of increasing radius, in the manner of
Computation while preserving the top0|ogy by using alternating Sequential filters [7] The authordoe
homotopic transformations. We introduce an adapted have brought about two major issues such as
parallelization strategy called split, distributena  Preservation of the topology and the multitude of
merge (SDM) strategy which allows efficient objects in the scene to smooth out without worrying
parallelization of a large class of topological about the latency of their filter.

operators including, mainly, smoothing,

skeletonization, and watershed algorithms. To aghie This paper describes a new parallel method for
a good speedup, we cared about task scheduling.topological smoothing which provides real time imag
Distributed work during smoothing process is doge b processing. We present also an adapted paralletizat
a variable number of threads. Tests on 2D binary strategy, called Split Distribute and Merge (SD&M).

image (512*512), using shared memory parallel oy strategy is designed specifically for topolagic
machlne (S,[M?M) with 8 CfPUZCOE;eE' (2x X:on 55405 operators parallelizing on shared memory architestu
running at frequency o 2), showed an The new strategy is based upon the excusive

enhancement of 5.2 thus a cadency of 32 images per binati f - divid d d
second is achieved. combination of two patterns: divide and conquer an

event-based coordination.
1 Introduction This paper is organized as follows: in sectiondne

L . asic notions of topological operators are sumredriz
Smoothing is a fundamental step to reduce noise an - R .
he original smoothing filter is introduced. In ten 3,

prepare th_e image for subsequent processing suqh aEarallellzatlon strategy, that has been adopted, is
segmentation. For example, the analysis or retiogni | .
. . introduced. We define the class of operators that o

of a shape is often perturbed by noise, thus the S X

. . . . parallelization strategy may cover. In section 4,
smoothing of object boundaries is a necessary ) .

. . concurrent computation method of topological

preprocessing step. The smoothing procedure can als

be used to extract some shape characteristics: b);smoothlng is presented. Experimental analyzes teesul

making the difference between the original and the of different implementations are also presented and

smoothed object, salient or carved parts can bedlscussed. Finally, we conclude with summary and

detected and measured. Smoothing shape has beefrllJture work in section 5.

extensively studied and many approaches have bee .

proposed. The most popular one is the linear ifilger Ib Theoretical background

by Laplacien smoothing for 2D-vector [1] and 3D mes

[2]. Other approach by morphological filtering dae In this section, we recall some basic notions gftdi
applied directly to the shape [3] or to the curvatplot ~ topology [6] and mathematical morphology for binary
of the object's contour [4]. Unfortunately nonetldse ~ images [8]. We define also the homotopic altermatin
operators preserve the topology (number of condecte sequential filters [5]. For the sake of simplicitye
components) of the original image. In 2004, oumtea restrict ourselves to the minimal set of notioret hill
introduces a new method for smoothing 2D and 3D be useful for our purpose. We start by introducing
objects in binary images while preserving topol{&iy morphological operators based on structuring elésnen



which are balls in the sense of the Euclidean dista
in order to obtain the desired smoothing effect.

We denote byZ the set of relative integers, and by
E the discrete plan&?. A point X Eis defined by
(X, X)withx OZ. LetxOEandr ON, we

denote by B, (X)the ball of radiusr centred orX.
B, (X)is defined by{ yO E, d(x Y)< } whered
is adistance onE. We denote byBr the map which

associates to eackX in E the ballB (X). The
Euclidean distancel on E is defined by:

dix Y =[(x- W -(%- w2] "

An operator in E is a mapping from
P( E) into P( E) , where P( E) denotes the set of all

subsets (J E). Let r be an integer, the dilation
(3)by B, is defined byd, (X)=U, B (X,
X P( E) . The ball B, is termed as the structuring
element of the dilation. The erosiof€,) by B, is
defined by duality:g, = [, .

Now, we introduce the notion of simple point witish
fundamental for the definition of topology presexyi

transformations in discrete spaces. We start byngjia
definition of local characterization of simple ptsEn

in E = Z?. Let consider two neighbourhoods relations
I, and [ defined by, for each poix[] E:

r.)={yOE|y- %+ »- %<1,
o) ={yOEmax y- x| - <}

In the following we will denote byn a number such
that N =4 orn = 8thus we define:

re)=r,(9\{%.

We say that a pointyJE is n—adjacen to
xOE if yOI, (X). Thus we can generalize for two

pointsX, Y belonging to X . They are n-connected in
X if there is a n-path inX between these two points.

The equivalence classes for this relation are the n HASFC D _

connected components ok . A subset X of E is

said to be n-connected if it consists of exactlg on
connected component. The set composed of all n-

connected components of which are n-adjacent to a
point X is denoted bﬁn[x, X]. In order to have a

correspondence between the topology Xf and the
topology of X , we use ‘n-adjacency’ forX and ‘n-
adjacency’ forX with (n, n) equal to (8; 4) or (4; 8).

Informally, a simple pointp of a discrete objeciX is

a point which is ‘inessential’ to the topology of . In
other words, we can remove the poifx from X

without changing the topology oX .

The point X[ Xis said simple (foiX) if each n-
component of X contains exactly one n-component of

X \{ X} and if each F]-component of YU{ X}

contains exactly oneF\-component of Y Let
X O Eandx[J E, the two connectivity numbers are
defined as follows # X refers to cardinality ofX ):

T(x X)=#G [ x5 (3n X];
T(x, X)=#C%[xrg( )90_)(]
The following property allows us to locally

characterize simple points [6][9] hence to implemen
efficiently topology preserving operatodst] Eis

simple forX [0 E & T(Xx X) =1andf(x, X)=1

The homotopic alternating sequential filter is a
composition of homotopic cuttings and fillings bglls

of increasing radius. It takes an original ima¥e and

a control imageC as input, and smootheX while
respecting the topology ofX and the geometrical
constraints implicitly represented byC, simple
illustration is given by figure 1. Based on thi#efi,
authors [5] introduce a general smoothing procedure
with a single parameter which allows controlling th
degree of smoothing.

Let X be anyfinite subset ofE, letC 0 X,r ON

andD 0 X . The homotopic alternating sequential
filter (HASF) of ordemwith constraint set€; D

is defined as follows:
HFD HCf o... HEDo

HG



(A
Fig.1. (A) Input image (B) Smoothed image

(B)

In the previous formula, HC,? (i) refers to the
homotopic cutting of X by B, with a constraint set
C. HFnD (ii) refers to the homotopic filling oX by

B, with a constraint sdD. These two homotopic
operators can be defined as follows:

. Y=H(X,&,(X)0CQ .
HCE (X) = OH (Y, V)witn { Yat979

=(&(V)n X)

Z=0H(X,8,(X)nD) ..
w:(sn((v)m X) ) (in)

HFnD(X)=H(Z,W)With{

We recall thatH (Z,W) is an homotopic constrained

thinning operator. It gives the ultimate skeletoh o
Z constrained bWV . Ultimate skeleton is obtained by
selecting simple point in increasing order of their

distance to the background thanks to a pre-computecbe cited as example.

quasi-Euclidian distance map [10].

H (Y,V) is an homotopic constrained thickening

operator. It thickens the set of by iterative addition

of point witch are simple fo?? and witch belong to the
setV until stability.

3 Paralleization Strategy

In this section, we start by defining the class of
topological algorithms. Then we present our motorat

to parallelize it on parallel shared memory mackine
Finally we will introduce different steps of our
parallelization strategy. We will focus especiatip
distribution phase and tasks scheduling over differ
processors.

3.1 Classof topological algorithms

In 1996, Bertrand and Couprie [11] introduced
connectivity numbers for grayscale image. These
numbers describe locally (in a neighborhood of 3x3)
the topology of a point. According to this desdopt
any point can be characterized following its togidal
characteristics. They also introduced some elementa
operations able to modify gray level of a pointheitit
modifying image topology. These elementary
operations of point characterization present the
fundamental link of large class of topological agiers
including, mainly, skeletonization and crest reistgpr
algorithms [12]. This class can also be extendadeu
condition, to homotopic kernel and leveling kernel
transformation [13], topological watershed algarith
[14] and topological 2D object smoothing algorithm
[5] which is the subject of this article. All menitied
algorithms get also many algorithmic structure
similarities. In fact associated characterizations
procedures evolve until stability with induce commo
recursively between different algorithms. Also tirey
level of any point can be lowered or enhanced more
than once. Finally, all the mentioned algorithres g
pixel's array as input and output data structutes|
important to mention that, to date, this class has
been efficiently parallelized like other classes as
connected filter of morphological operator which
recently has been parallelized in Wilkinson’s work
[15]. Parallelization strategy proposed by Sienfti6]

for local operators and point to point operatons aso
Hence the need of a common
parallelization strategy for topological operatdhst
offers an adapted algorithm structure design space.
Chosen algorithm structure patterns that will beduis

the design must be suitable for SMP machines.

In reality, although the cost of communication
(Memory-processor and inter-processors) is high
enough, shared memory architectures meet our needs
for different reasons: (i) These architectures htnge
advantage of allowing immediate sharing of datawit
is very helpful in the conception of any parallation
strategy (ii) They are non-dedicated architectsiagi
standard component (processor, memory ..) SO
economically reliable (iii) They also offer some
flexibility of use in many application areas, peutar
image processing.



3.2 Split Distributeand Merge Strategy tasks scheduling approach to prevent improper load
distribution while improving total execution timén

In practice the most effective parallel algorithesgn ~ literature, there are several schedulers that PBOV’" _
might make use of multiple algorithm structuressthu balf?mced d'St”bgt'OP of tasks such af' RSDL Rngatl.

. L - Staircase Deadline” [17] and CFS “Completely Fair
proposed strategy is a combination of the dividd an

- Scheduler” [18]. These schedulers are based ors task
conquer pattern and event-based coordination patter uniformity principle. Through the tasks homogengity
hence the name that we have assigned: SD&M (Splitpetter distribution can be achieved and total etiecu

Distribute and Merge) strategy. Not to be confused time reduced. Unfortunately, these schedulers ate n
with the famous approach of mixed-parallelism available in all operating system versions. Basethe
(combining data-parallelism and task-parallelisin)s same principle of tasks uniformity, we propose & ne
important to mention that our strategy (i) représehe  scheduler, simpler to implement and more adapted to
last stitch in the decomposition chain of algarith topological algorithm processing.

design patterns and it provides a fine-grained

description of topological operators parallelizatio L€t be a non-preemptive scheduler ‘NP$'js the set
while mixed-parallelism strategy provides a coarse- of all tasks, T is the set of tasks to process
grained description without specifying target aityon. with T, O T, Pis the set of all processors am}, is

(ii) It covers only the case of recursive algorithm
while mixed-parallelization strategy is effectivelypin
the linear case. (iii) It is especially designed $bared We define ‘NPS’, T, = F’y as the scheduler of,
memory architecture with uniform access.

the set of available processors Wi P, .

tasks onR, processor an@ p} the increase ofp .

321 Split phase
it ([P, #0] O[T, #0])therT, = B,: T,OT,;
The Divide and Conquer pattern is applied first by
recursively breaking down a problem into two or mor B, [l B . In this scheduler, each processor will treat at
sub-problems of the same type, until these become |T|

S|mple enough to be. solved dlregtly. Sp!|ttlmbe maximum mMm=4— rtasks. Let's consider the

original problem take into account, in additionthe |p|

original algorithm’s characteristics (mainly topgjo
preservation), the mechanisms by which data arefollowing equation, with initial valuenax, (X )= G:
generated, stored, transmitted over networks —

(processor-processor or memory-processor), and max, (X)= max \ma%‘l &)

passed between different stages of computation.
Then, the worst case to proces$ will be:

322 Distribute phase K(T) ={max (T),max T ),....max T}

Work distribution is a fundamental step to assure a .
L . . . To demonstrate that let suppose that exist a set
perfect exploitation of multi-cores architecture’s

potential. We'll start by recalling briefly somesim  L(T)as ZL(T)ZZ K(T). As ‘NPS’ manage
notion of distribution techniques then we introdwce L(T)and K(T), so we can introduce the
minimal distribution approach that is particularly

suitable for topological recursive algorithms where following: |L(T)| < mand K (T)|< m.

simple point characterization is necessary. Our

approach is general and applicable to shared memoryNOW, It (Z L(T) ZZ K(T)) then it exist at least

parallel machines.

one task [} , with K[J K(T), such as :
In effect, non-real-time system scheduler doeamivk >
in advance, necessary time to perform each tasks,Th (I DL(T)) b DK ) D(l_ K). e
"Symmetric Multiprocessing” scheduler distributes TS IS impossible according to the definition of
tasks to minimize total execution time without load K(T). We remember thaK (T) was defined as the

balancing between processors. We propose a novelvorst case.



3.23 Merging phase If we limit the radius between 5 and 10, the
computation time of the Euclidean distance consnue

The key problem of each parallelization is merging to increase. It can reach 64.44% of total time with

obtained results. Normally this phase is done extettd radius equal to 5. However time for topological

of the process when all results are returned by allcharacterization is only 8.89% for 1 million points

threads what usually means that only one output

variable is declared and shared between all thréads 4.1 Euclidean distance computing

the case of topological operators, we are dealiitly a

dynamic evolution process so we can plan the During previous evaluation, 4SED [10] algorithm was

following: since two threads finished, they dirgctl used for Euclidean distance computation. So we are

merge and a new thread is created. In thread’singgrg  looking for another algorithm that is faster, and

there is no hierarchical order, the only critegdinish parallelizable. The new algorithm must have an

time. Euclidean distance computation’s error less than, o
equal to, that produced by 4SED in order to maintai

4 Paralld smoothing filter homotopic characteristics of the image.

In this section we start by analyzing overall stuue of In literature, several algorithms for Euclideantalice

the original algorithm. Then we move to the computing exist. Lemire [19] and Shih [20] algonith
parallelization of the Euclidean distance algorithm are bad candidates because Lemire’s algorithm does
thinning algorithm and thickening algorithm. We not use Euclidean circle as structuring elemenenTh

conclude by a performance analysis of the entire homotopic property will not be preserved. Shih ahd
smoothing topological operator. algorithm has strong data dependency which persalize

parallelization. In [21], Cuissenaire propose astfir
As we have shown in Section 2, the algorithm rezeiv algorithm, called PSN "Propagation Using a Single
as input a binary image and the maximum radius. It Neighborhood” that uses the following structure
uses two procedures for homotopic opening andelement:
closing. The call is looped to ensure an ongoin 2 2
relatio%ship between inpSt and output. The opgenin% d,(p) :{QD\/(CL_ R) +( q- 9) <1}-
process is a consecutive execution of erosionnittdy
dilatation and thickening. The closure procedure

ensures the same performance of the four consecutiv
functions with a single difference: the erosiontéasi

He also proposes a second algorithm, called PMN
"Propagation Using Multiple Neighborhood”, which
uses the eight neighbors. In [22], Cuissenaire @sep

of dilatation.
a third algorithm with o(n*?) complexity, which

200x200 168x288 offers an accurate computation of the Euclidean

r=5 | r=10 | ;=00 r=5 r=10 | r=00 . . . .

Eobs | o242 | 52931 4667 | S0 2976 35 distance. The only drawback of this algorithm is
(%) computation time witch is very important and goes
TopCer | 889 | 1389| 1815 | 115§ 165p  24.03 beyond the two algorithms mentioned above. Even if
06) computing error produced by PSN is greater than
Tab.1. Time execution rate computing error produced by PMN, it is comparable t

that produced by 4SED. The low data dependence and
Thinning and thickening ensure the topological owint  the ability to operate on 3D images, makes PSN
of erosion and dilatation. This control is based on a|gorithm a potentia| Candidate for rep'acing 4SED.
researChing and remOVing all destructible pOinthEW Meijster [23] proposes an a|gorithm to Compute exac
a point is deleted, these neighbors are reviewed tOg,,cjidean distance. The algorithm complexitydién)

ensure that they are not destructible, either. d it tes in two ind dent. but .
preliminary assessment of the code, see Tableolyssh and 1t operales in two independent, bul SUCCESSIVe,
steps. First step is based on looking over colutines

that Euclidean distance computirgudbis) takes more . , : -
PULIrg¢Dis) computing distance between each point and existing

time than topological point characterizationogcar). . . .
For an image of 200x200, the computation time ef th ObJ.eCtS' Second step includes same trea}tmentrfes.h
Euclidean distance with an infinite radius is 46467 It:etlseéT%o'lrftearrgnttorozgges'r:hzasttesg(;r;]% égcrilnepet_ndegfe
while point characterization of 2.4 million points W : P Ing step ) putirey er
occupies only 18.15%. equal to zero makes Meijster algorithm a potential
candidate to replace 4SED. It is also able to dpeva



3D images. Theory analysis of Meijster and
Cuissenaire algorithms can be found in Fabbri'skwor
[24].

Results show that PSN algorithm is the most expensi
in all cases (for any radius). Meijster algoriths i
moderately 5x faster than 4SED. The output images
returned by Meijster algorithm hold the best visual
In the following, we propose a first analysis based  quality while Euclidean distance computation erisor
different algorithms implementation in order to almost zero. So our efforts will be brought on My
compare between them. We have implemented 4SEDalgorithm parallelization

algorithm using a fixed size stack. It uses a Fti@ue

and it has a small size while 4SED algorithm doats N We denote byl the input image withm columnsand
need to store temporal image. Results are directly n rows. We denote b an object included ih . The

stored into the output image. We will retain this . .
implementation because 4SED assessment serves onllf/]Iea is to compute, for each poppt] | LIpLI B, the

as reference for comparison. For PSN implementation S€Parating distance betweep and the closest point

we used stacks with dynamic sizes. The memory is bwithb [ B. This amounts to compute the following

allocated using small blocks defined at stack taat .. _ [ : —
When an object is added to the queue, the algorithmmamx'dt[ Pe py:l =+ EDT( g with EDT(p) =

will use the available memory of the last blocknt min(p, — bx)z + G( R, b/)zand 00<bs<m)
y ) ) -_— _— L

space is available, a new block is allocated - _
automatically. Block size is proportional to theaige b=(k, l{,) If we assume that minimum distance of

size (N x M / 100). Finally we used a simple memory .
structure for the implementation of Meijster algjom. an empt_y groul iscoandLizLJ K, we hf';\ve
A simple matrix was used to compute distance beiwee (2, +00) =co then EDT( p) formula can be written
points and object of each column. Three vectorewer a5 follow: [1b, < n, (b, < m

used to compute distance in each line. Figure 2 X y
describes obtained results by the different three EDT(p) =min(p, - h)*+ q . Q)Zwith
implementations. During this evaluation we used a . .

binary test image (200x200). We have also modified G( B y) = m'n| S Q| t b= ( 91 y.
ball radius. We used Valgrind software to evaluate

different designs. Callgrind tool returns the caost
implementing of each program by detecting
(Instruction Fetch).

IF

x10f

[Number of processor instructions |

By 0 =
[Radius]
il 4SED == PSN ¥ Meijster

Fig.2. Overall structure of the original algorithm

Thus we can split the Euclidian distance transform
procedure into two stages. The first step is tonsca

columns and compufeDT for each columny . The

second step consists on repeating the same pracedur
for each line. In the following we start by detadi

these two steps: In the first st p,, y)can be
computed through the two following sub functions:
G (P, Y)=min - R :b=(h, Y0=< h= 1
Gg(p, yY)=minh - p:b=(h, yOO< b= 1
To computeG; (p,, Y) andG; (p,, ), we scan each

columny from top to bottom using the two following
formula:

G (poY)=G(y p—-D+1
Ge(Po ) =G(y p+D+1

Lets move to the second step, we start
defining f (p, y) = (R, = W+ QA R, Y.Thenwe
can definlEDT(p) =min f(p— y),00<y<m.
For each rowu, we note that there is, for the same
point p, the same value of (p, y) even if y change

by



its values, so we can introduce the concept ofidreg ThenO(0< y<u),(0< i< u)\ (U< m),
of column ". . .
S,(W=miny: f(p,y)< f(pi);
LetSbe the set of al points such thatf (p, y)is Thus, if (U=T,(d)) so g=(g—1)whichimply the
m.inimal and uniql'Je. The formula d6,[10< y<u, following: T, (u) = Sep ( $( 1 u+1.
willbe S, () =min y: f(p Yy< f( p).
According to this formalization, values df(p, 1) and

LetT be the set of all point_s having coor(_jinates greater Seg( i are independent of modified data. So using
than, or equal to, horizontal coordinate of the . ] ]
intersection with a region. The formula of WO vectorsSandT , a private variableq for each line

T,0(0<i<u)d(u< m)), will be the following : ensures complete independence in writing.

Tp(u): SeHL( §( tl), Wl We start applying the splitting step by sharing the
columns and lines processing between multiple
Let Sef{ i U be the separation between regions of ~ processors. A thread can process one or more aslum

i andu , defined by: and the number of threads used will depend on the
' ' number of processors. The results returned by all
. threads in this first stage will be merged in order
f(p,i)< f(p,u)

start lines processing. In the following we introdithe
= (p, =) +G(p,. i)’ < (p,~ U)*+ & B, U* parallel version of the algorithm Meisjter for both

0=(G-7 i)/ _ steps.  Associated  algorithm  complexity s
= Sep (19=(d- 1+ Dif/2(w-1)= p 0((n>< m)/ N). (nxm) refers to image size and
with Dif =(G(p,,u)’ - G(p,, )?).

N refers to the number of processors.

Thus lines processing will be, at the beginningnfr | Algorithm 1: Parallel Version Meijster [1¥ step]
left to right then from right to left. During therdt 1 For =t y<m y= do
term, from left to right, two vectorSand T will be (y=ty y= ¥ I"aX)

created. These two vectors will contain respeatiadl 2. If (0, Y) LBtheng [0, Y] <0
regions and aII. intersections. During the second 3 e g[O, y] "
treatment, from right to left, we computé for each .
value of S. f is computed also for each respective] 4 endif
values ofT . 5. I* Gp*l
_ _ 6. for (X = 1)to(n —1)do
The independence of data processing between raivs an _
columns is the key to apply SDM parallelization 7. if [X, y]DBthen g[X,Y] <0
strategy. In the first stage, column processing,cese
define data interdependence by the following equati 8. else g[x, y] - g[ x+1, 3]+ 1
9. endif
10. endfor

G(p, V=min{ G(p, Y. G( R %}:

- =[o if (px.y)OBY . 11. ¥ Gg*I
Gr(Pe ) { Grpo ) eloe } , 12, for (X =n —2)downto(0)do

G(Po Y) mm{Gs(px 1Ly, G(R, )} 13 it (g[x+1,y]< Q[X )])then
It follows that values of each column y of G, degen 14. g[)@ y] - g[ x+1, )]+ 1
only on lines:p, , p, +1andp, —1. Similarly, at the 15. endif
second stage, we can introduce the following 16.  endfor

interrelationship:Edt(p) = f(p S( 4). 17. endforall




Algorithm 2: Parallel Version Meijster [2™ Step] and rechecked. This process is repeated untillisgabi
1. For (X=t,Xx< n x= x+ t )do In the following, we present an adapted version of
' ' o Couprie’s thinning algorithm.
2. q=0
3. 5[0] =0 Algorithm 3: Adapted Version Thinning Algo.
4. t[O] =0 1. While(input[ X] is destructibleylo
2. push x stack)
5. [* First part*/ 3 X  X+1
6. for (u=L)to(m-1)do 4. endwhile
7 A (q= o)/\I: f((, t[ q])’ i (j):l 5. output — Inpul
6. While(stacklz [0)[J(max,, > O)o
8. B~ f((xt[d) u _
o hile (A> B) d o1 7. While(stackL# [1)do
' whtie (_ )doq — (q+1) 8. X — pop stack)
10. end while
11. 0. if (output ¥ is destructible}hen
12. it (q<0)then (q - 0) 10. outpuf ¥ — reduce [t )
13 (S[O] - 11. pusH x stack)
14, dsew — Seff $ ¢ u x+1 12. endif
: 13. end while
< «~ (g+
1> it (w<mthenq — (q+1) 14, While(stack2 # 0)do
16. s[q] — u 15. X — pop stack)
17. t{a] - w 16. Vv — neighbor$ X
18. endif 17. i 0
19. endif 18. While(i <8)do
20. endfor .
19. if (v[i] O stack) then
21. /* Second part */
" 20. push( { |, stack)
22. for (u =m 1) downto(O) do o1 endif
23. Edtfx u « f(x 1, § ¢ 22. endwhile
) 23.  endwhile
24, if (u=t[q])then g — (q-1) 24 max,  max, -
25. endif 25._endwhile
26. endfor
27. endforall

4.3 Experimental analyses

4.2 Thinning and thickening computing Proposed parallel version of topological smoothing

algorithm was implemented in C using OpenMP
directives. We implemented two versions, the finse
using ‘Symmetric Multiprocessing’ scheduler and the
second one using ‘non-preemptive’ scheduler. Wall-
clock execution times for numbers of threads edual
1, 2, 4, 8, and 16 were determined. The efficiency
measurel (N) is given by the following formula with

Algorithms of thinning and thickening are almost
the same. The only difference between them is the
following: in thinning algorithm, destructible pagare
detected then their values are lowered. In thigkgni
algorithm, constructible points, are detected ttiegir
values are increased. For parallelization, we apibly
the same techniques introduced in [25]. We profose
similar version using two loops. Target points are " the number of processor: (Nn) = ./ (nN* L)),

initially detected then their value lowered or emted t, refers to the serial time artd refers to parallel time.
according to appropriate treatment. The set ofrthei

eight neighbors are copied into a temporary "btffer 1imes were performed on eight-core (2x Xeon E5405)



shared memory parallel computer, on Intel Quad-core

Xeon E5335, on Intel Core 2 Duo E8400 and Intel | & j

mono-processor Pentium 4 660. Each processor of the g

Xeon E5405 and E5335 runs at 2 GHz and both of the | § 6

two machines have 4 GB of RAM. The E8400 | = i -
processor runs at 3GHz. The Pentium processoratuns o 4 -2
3.6 GHz. The last two machines have 2 GB of RAM. | § 3 — ety ¥4
The minimum value of 5 timings was taken as most g 2 s L "8
indicative of algorithm speed. The measurementgwer | 5 4 w1a
done on 2D binary image (512x512). Results of the | & ,

second implementation, using non preemptive { 2 3 4 5 6 7 8 16
schedule, are shown in the following figure : [Number of threads]

FIG. 4. Performance improvement using ‘NPS’.
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FIG. 5. Summary of performance in term of cadency:
(F. Imp. NC = First Implementation using Symmetric

FIG. 3. Number of Instructions and tasks distribution Multiprocessing scheduler on N processors. S. Imp.

using ‘NPS’ NC = Second Implementation using Non Preemptive
scheduler on N processors)
On the eight-core machine, Number of instructions

in the second implementation drops from an avedige For better readability of our results, we tested th
1879 x16 FI with a single thread down to 202X1@s  efficiency of our algorithm on various architectsire

with 8 threads. As expected, the speed-up for the(see figure 5) using th& (n) formula introduced
second implementation wusing ‘non preemptive’

scheduler is higher than for the one using "Symimetr ) )
Multiprocessing” scheduler, thanks to balanced Pentium 4 660. For parallel time we use best prall

distribution of tasks. A remarkable result, shown i time obtained using 8 threads with Non Preemptive
figure 4, is the fact that speed-up increases as wescheduler.
increase the number of threads beyond the number of

earlier with t sequential time on mono-processor

processors in our machine (eight cores). In a first 12

implementation, using "Symmetric Multiprocessing" '

scheduler, the speedup at 8 threads is 1.9 + 0.01 1.0

However, for the second implementation, using our | 08

scheduler, the speedup has increased to 5.2 + 0.01 & 06

Thus execution time is decreased from 0.16+ 0.805s |G

0.03+ 0.001s. This performance has allowed a cadenc | {5 Lo

of 32 images per second (see Figure 5). This neal-t T 02y

performance confirms the interest of proposed 0.0

parallelization strategy. Another common result 1 2 3 4 5 6 7 8 16
between different architecture is stability of extson [Number of threads]
time on each n-core machine since the code uses n

more threads (see figure 4). FIG. 6. Efficiency improvement



5 Conclusion

Topological characteristics are fundamental
attributes of an object. In many applications, gt i

[5] M. Couprie, G. Bertrand. “Topology preserving ati@ing
sequential filter for smoothing 2D and 3D objects”,rdali of
Electronic Imaging, Vol. 13, pp. 720-730, 2004.

[6] T. Yung Kong, A. Rosenfeld. “Digital topology:

mandatory to preserve or control the topology of an introduction and survey”, Computer Vision, Graphics émage
image. Nevertheless, the design of transformationsProcessing, Vol. 48, pp. 357-393, 1989.

which preserve both topological and geometrical
features of images is not an obvious task, espedml
real time processing.

[7] S. R. Sternberg. “Grayscale Morphology”, Compuiésion
Graphics and Image Understanding, Vol. 35, pp. 333-3986.

[8] J. Serra. “Image Analysis and Mathematical Morphgf,

In this paper, we have presented a new parallelVol. Il: Theoretical Advances, Chap. 10, AcademicsBre.988.

computation method for topological smoothing. We
have also presented an adapted parallelizatiotegira
SDM-strategy was a conditional application of thellw
known principle of divide and conquers associated t
event-based coordination techniques. First
contribution in this paper is the parallel compiatat
method for image smoothing allowing real-time
processing with topology preservation. Second
contribution is the non-specific nature of proposed
parallelization strategy. In fact it can be applfed a

[9] G. Bertrand. “Simple points, topological numbeasnd
geodesic neighborhoods in cubic grids”, Pattern Retiogn
Letters, Vol. 15, pp. 1003-1011, 1994.

Major [10] P.E. Danielsson, “Euclidean distance mappiGgmputer

Graphics and Image Processing 14, pp. 227-248, 1980.

[11] G. Bertrand, J. C. Everat, M. Couprie, “Topologica
approach to image segmentation”, In SPIE Vision Ge&gmé,
vol. 2826, pp. 65-76, 1996.

large class of topological operators as we shown in[12] M. Couprie, F. N. Bezerra, and G. Bertrand, “Tapital

section 3.1. Third contribution concern tasks
distributions. We presented a non-preemptive
scheduler ‘NPS’, simpler to implement and more
adapted to particular topological algorithm proaags

Parallel computation of topological operators
represents many challenges, ranging from
parallelization strategies to implementation teghes.
We tackle these challenges using
refinement, starting with highly local operatordigh
process only by characterizing points and thentidele
target pixels, and gradually moving to more complex
topological operators with non-local behavior. In
future work, we will study parallel computation thie
topological watershed [14].
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