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Uniqueness m the Elastic Bounce Problem 

DANILO PERCIVALE 

Scuola Normale Superiore, 56100 Pisa, Italy 

INTRODUCTION 

In a recent paper (see [ 4]) the elastic bounce problem for a material 
point constrained to move on a Riemannian manifold ( V, < ; ) ) elastically 
bouncing against a submanifold V' = { q E V: f( q) = 0}, where f E C3( V) 
was studied. Given T> 0 we say that a pair (q, U) E Lip(O, T; V) x L 1(0, T; 
C3

( V)) solves the elastic bounce problem if 

(i) f(q(t)) ~0, 

(ii) there exists a bounded positive measure 11 on [0, T] such that q 
is an extremal for the functional 

F( v) = r u < v. v > _ U( t. v)} dt + r /( v) dJ1 (P) 

and spt Jl,£ {tE [0, T]:f(q(t))=O}, 

(iii) the function£: t-+ (q(t), q(t)) is continuous on [0, T]. 

Actually such a formulation applies to more complicated problems. For 
example, we may consider a rigid disk of radius R and unit mass which 
moves on the ( x, y) plane and is elastically reflected by the "wall" { y = 0}. 
In this case we define v = S 1 

X IR 2 (where S 1 is the one-dimensional torus) 
and aij = 0 if i # j, a 11 = R 2/2, a 22 = a 33 = l; denoting by (~ 1 , ~ 2 ) E IR 2 the 
coordinates of the center of mass of the disk and by () the coordinate on S 1

, 

we may define V' = {((), ~ 1 , ~ 2 ): ~ 2 - R = 0} and so this problem can be put 
in the previous form. 

In many recent papers uniqueness for the problem (P) has been studied 
and in [7] it was pointed out that even in the simple case V = IR with the 
Euclidean metric, f(q) = q, U(t, q) = -u(t) q with u E C00 [0, T], assigned 
the initial data q(O), q + (0), the Cauchy problem for (P) does not admit in 
general a unique solution. 

In [7] a counterexample to uniqueness was given when grad U(t, q) = 0, 



V = IR 2 with the Euclidean metric,fe C'''(IR2
) and the set Q = { q: f(q) ~ 0} 

is convex. 
Again in [7] a (remarkably simple) sufficient condition ensuring uni

queness for the problem (P) was proved: 

Let V = IR" with the Euclidean metric,JE C"'(IR") and grad 0(1, q) = 0 on IR". If the 
boundary of the set Q = { q: f( q);;. 0} has strictly negative Gaussian curvature, then 
when assigned the initial Cauchy data, the problem (P) admits a unique solution. 

The aim of this paper is to find some conditions, weaker than the preceding 
ones, sufficient to ensure uniqueness for the problem (P). In Section 2 we 
deal with the general case, i.e., we generalize, developing different techni
ques, the previous theorem (due to M. Schatzman) to Riemannian 
manifolds with less restrictive conditions on the potential U. In Section 3 
we confine ourselves to considering the case V = IR with the Euclidean 
metric, f( q) = q, and U( t, q) = u( t) q with u E L 1 (0, T); we look for a class of 
forces:? c L 1(0, T) such that for every u E:? and for every choice of initial 
data the Cauchy problem admits a unique solution. 

1. NOTATIONS AND STATEMENT OF THE PROBLEM 

Let ( V, <, ) ) be a C3 Riemannian manifold and let d be the metric 
induced on V by the scalar product. If X and Y are vector fields on V we 
denote by V x Y the covariant differentiation of Y with respect to X. Given 
feC3(V) such that df(q)-=1-0 on the set V'= {qe V:fiq)=O}, we want to 
study the bounce problem for a material point whose position at time t will 
be indicated by q(t). This point is subjected to a potential U(t, q) and 
moves in the region { q E V: f( q) ~ 0}, bouncing against the submanifold 
V'={qeV:f(q)=O}. Following [4] we shall say that a pair (U,q)E 
L 1(0, T; C2

( V)) x Lip(O, T; V) solves the bounce problem if 

(i) f(q(t)) ~ 0, 

(ii) there exists a positive bounded measure fJ on (0, T) such that q 
is an extremal for the functional 

F( V) = r {! ( v, v) - U( t, v)} dt + r /( v) dfJ ( 1.1) 

and spt fJ s { t E (0, T): f(q(t)) = 0 }, 

(iii) the function E: t-+ (tj(t), tj(t)) is continuous on [0, T], 

where tj +, tj _ denote, respectively, the right and left derivatives of q. 
In fact it can be easily checked that q is an extremal for the functional F 



if and only if we have in local coordinates (the summation convention is 
adopted), 

(1.2) 

where aiJ denote the components of the metric tensor and the equality 
holds in the sense of distributions. Then ( 1.2) implies that q E BV(O, T; V) 
and so q has right and left derivatives at each t E [0, T]. Moreover, by (iii) 
the functions ( q + , q + ) and ( q _ , q _ ) must coincide and we denote their 
common value by (q, q). 

Following [2-4] we introduce now the initial trace for the problem (P). 
Set 1 

E= { (U, q) E L 1 x Lip: (U, q) solves (P) }, 

Y= {qELip: UEL 1 with (U, q)EE}, 

IJ6 = ~ x TVx TVx TVx TV, 

we define the trace ff: [0, T] x Y; IJ6 as 

ff(t, q) = (! (q(t), q(t) ), q(t), q,(t0 ), f(q(t)) q(t), 0), 

where 

q, =(grad f(q), grad f(q)) q- (q, grad f(q)) grad f(q). 

It is easy to verify that ff is continuous with respect to t for every q E Y 
and we remark that, if f(q(t)) > 0, then to assign ff(t, q) is equivalent to 
assigning the Cauchy data at the point t. We put for every t E [0, T] 

d(t) = { (b, U, q)E 1]6 X L 1 
X Lip: (U, q) E E, ff(t, q) = b }; 

in [ 3, 4] it was pointed out that the relation .JOt ( t) does not uniquely 
characterize q as a function of (b, U), i.e., for a suitable choice of the poten
tial U and of the initial trace b, uniqueness for the problem (P) fails. Our 
goal is to find some sufficient conditions on U and on V' in such a way that 
q is completely determined as a function of the pair (b, U). 

For example, in Section 3, dealing with the particular case V = ~ with 
the Euclidean metric,f(q) = q and U(t, q) = -u(t) q, we obtain a very sim
ple result based on the regularity of u, namely, 

If uECk([O,T]),k?l and I:J~oluUl(t)I#O on [O,T], then 
there exists a unique q E Lip(O, T) such that (b, U, q) E d(t0 ) for 
every t0 E [0, T] and for every bE IJ6. 

1 Here we have denoted by L 1 the space L 1(0, T; C2( V)) and by Lip the space Lip(O, T; V). 



From this result we shall argue that there exists a class of functions 
!F c L 1(0, T), namely the analytic functions on [0, T], such that for every 
u E !F and for every choice of initial data the problem (P) admits a unique 
solution. 

2. THE GENERAL CASE 

Let t0 E [0, T], bE!JH, UEL 1(0, T; C2(V)), qELip(O, T; V); in the sequel 
we choose local coordinates (q 1 , ... , qn) on Vso that to say (b, U, q)Ed(t0 ) 

will be equivalent to saying that the following conditions are fulfilled: 

(i) f(q(t))~O, 

(ii) there exists a positive bounded measure J1. on (0, T) such that 

! (au(q)) i/) = 0~1 g ar.(q) ilit- U(t, q)} + J1. :; 

and sptJI.S {tE [0, T]:f(q(t))=O}, 

(iii) for every t 1 , t2 E [0, T] the energy relation 

1 . ·1 J'2 au . 2 aij(q) ij'iJ' :~ = It - Oqi (f, q) q'(f) df 

(iv) ff(t 0 , q)=b, 

where, as in the previous section, au(q) denote the components of the 
metric tensor. In addition to the hypothesis stated in Section 1 we shall 
assume throughout this section that the following properties hold: 

(H 1) There exist A- 1 , A- 2 > 0 and a collection of open charts 
(X~, cp~)ae.., such that for every x, yEX~ and for every rxEd we have 

A.,llcp~(x)- cp~(y)ll R" < d(x, y) < A.2llcp~(x)- CfJAY)II R"· 

(H 2 ) U E H 1(0, T; C2
( V)) and there exists k E L 1(0, T) such that 

sup (grad U(t, q), grad U(t, q)) < k(t). 
qE V 

Now, set 

G(t0 , U, b)= {qELip: (b, U, q)Ed(t0 )}, 

we prepare our main theorem with 

LEMMA 2.1. If G(t0 , U,b)=F0 and for every qEG(t0 , U,b) the set 



{ t E [0, T]: f(q(t)) = 0} has a finite number of connected components then 
G(t0 , U, b) is a singleton. 

Proof Without loss of generality we may assume that for every q E G 
(10 , U, b) there exists a unique interval Iqc [0, T] on whichf(q(t))=O and 
t0 E Iq. Using standard arguments we can easily check that if q1 and q2 

belong to G(t0 , U, b) then Iq
1 
= Iq

2 
=I. If I is reduced to a point the thesis 

follows easily; on the contrary, since f(q(t)) = 0 on I, we have 

··i of +..fl._ ·h·k=o 
q oqi oqhoqk q q · (2.1.11) 

for every t E I. It is not difficult to verify that the following equality holds 
on I in the sense of measures: 

. { i } h k .. au .. of ij'=- q q -a'1(q)-.+Jl.aY(q)-. 
hk oq' oq'' 

i= 1, ... , n, (2.1.12) 

where { ;k} denote the Christoffel symbols of second kind defined by 

{ 
i } = ~ li {oak/ oahl- oahk} 

hk 2 a oqh + oqk ol . 

Substituting (2.1.12) into (2.1.11) we obtain 

(2.1.13) 

(2.1.14) 

in the sense of measures (i.e., on I the measure J1. can be identified with an 
integrable function). From the above equality and from (2.1.12) we argue 
that q(t) solves, in local coordinates, the following system of ordinary dif
ferential equations on I, 

(2.1.15) 

and §"(t, b)= b. This fact is enough to guarantee that q, if it exists, is uni
que and so the lemma is proved. 

Now we can state 

THEOREM 2.2. If H 1 and H 2 hold then G( t, U, b) =F 0 for every t E [ 0, T] 
and bE f!l. Suppose that one of the following conditions holds: 



(i) Vv(df)(v)-df(q)(grad U(t, q))?:-Ofor every tE [0, T], 

qe V' and ve Tq V. 

(ii) Vv(df)(v)- df(q)(grad U(t, q)) < 0 for every t E [0, T], 

qe V' and ve Tq V. 

(iii) grad U(t, q) = 0 and Vv(df)q(v) < 0 for every q E V', 

v E Tq V, v :f. 0. 

Then G(t0 , U, b) is a singleton. 

Proof The first part of this theorem can be proved easily by using the 
methods developed in [ 4, Proposition 1.3, p. 11) taking into account (H d 
and (H 2 ). To prove uniqueness we may consider only the case f(b 2 ) = 0 
and <b 3 , b3 )- <gradf(b2 ), gradf(bz)) 2 b1 =0, where we have put 
b = (b~> b2 , b3 , b4 , 0). Now let qe G(t0 , U, b); set z(t) = f(q(t)). We observe 
that 

.. -(oY of{r})·i·· ij oUof 
z( t) - oq;oqi- oq' ij q (j- a ( q) oqi oq; 

;· of of 
+ Jlag(q) oq; oqi' (2.2.1) 

By using Proposition 1.5 of [ 4] we can build sequences q h ~ q in L oo, 

uh ~ u in L 1, and bh ~bin [Jl such that 

d
2 

( o
2
f of {r}) ·i • r ou of 

dt2 (f(qh(t)))= oqioqi- oq' ij qhtfl,-ag(qh) oqi ol 

ij of of 
+ r/Jh(f(qh)) a (qh) oqi oqi' (2.2.3) 

b (
1 . . 

h = 2 aiJ(qh(to) tiWo) tfJ.(to) 

+ ah(f(q h(to) ), qh(to), q h(to),J(q h(to)) qh(to), ~ qh(to)) (2.2.4) 

where r/Jh:IR~IR+, ah(x)=J~r/lh(y)dy and 

(i) r/Jh is continuous, r/Jh~O, r/Jh(x)=O if x?:-0, 

(ii) r/1 h ~ +oo uniformly on any compact subset of (- oo, 0), 

(iii) limh~ +w,x~o r/lh(x)/ah(x) = +oo. 



From (2.2.3) we argue 

l

d J
2 

Jd 1

2 

t {( 
02

f of {r}) ·; .. dtf(q,(t)) = dtf(q"(to)) + L oqiar~- aqr ij q"i{,, 

.. of of 
+ 1/Jh(f(qh)) aY(qh) Oqi oq 

.. au of} d 
-a''(q")-.-. -f(qh)ds. 

or{ oq' ds 

And so passing to the limit as h -+ + oo we have 

(2.2.5) 

(2.2.6) 

Now we examine the two cases which may occur. If (Vv(df))q(v)- df(q) 
(grad U( t, q)) ~ 0, i.e., in local coordinates 

we can easily see that there exists a neighborhood I of t0 such that the set 
{teJ:f(q(t))=O} has a finite number of connected components. This fact 
implies local uniqueness and then global uniqueness as we have proved in 
Lemma 2.1. 

Now let us suppose that hypothesis (ii) is fulfilled. Going back to (2.2.6) 
and integrating by parts we obtain 

where 

z ( . . .. au of) li(t)l =2 ..l;jq(t))tj'~(t)tj'_(t)-a"(q(t))oqoqi z(t) 

-r h(s) z(s) ds-r z(s) dy, 
to to 

..l;)q(t)) = (a;::if- :; {~}) (q(t)), 

d ( .. au of) 
h(t) = dt a"(q) oq oqi ' 

in the sense of distributions. 

(2.2.8) 



By a standard argument we can check that y = y1 + y2 , where y1 is 
absolutely continuous with respect to the Lebesgue measure with density 
g E L oo ( 0, T) and y 2 4, Jl.. Therefore ( 2.2.8) yields 

z ( . . .. au of) li(t)l = 2 A;;(q(t)) q'_ (t) tj'_ (t)-alf(q(t)) or/ oq; 

-f 2(g(s) + h(s)) z(s) ds. 
to 

(2.2.9) 

We claim that z(t) is identically zero in some neighborhood of t0 . In fact 
two cases may occur: 

(A) there exists J > 0 such that in [t0 , t0 + J] the following 
inequality holds: 

z2(t) ~ M r z2(s) ds 
to 

(2.2.8) 

for a suitable constant M > 0. Then Gronwall's lemma implies that 
z2(t) = 0 in [t0 , t0 + D] 

(B) For every J > 0 we have 

z2(t) 
sup J 2 = +oo, 

(to,to+O) ;0 z (s) ds 

then we may construct a sequence tn converging to t0 such that 

Taking into account (2.2.10), from (2.2.7) we argue 

li(tn)l 2 ~ 2 ( A;;(q(tn)) qi_ (tn) (/_ (tn)- aii(q(tn)) ~~ :;) 

X Z(tn) + [[h + glf L2 r Z 2(s) ds 
to 

(2.2.9) 

(2.2.10) 

(2.2.11) 

which is a contradiction since A;;(q(tn)) qi_iji_- aii(q(tn)(oUjoq;)(ofjoq) < 0 
for n large enough. 

Since the same arguments hold on the left of t0 we may conclude that 
there exists a neighborhood /,

0 
of t0 such thatf(q(t))=:O on it and so, by 

using Lemma 2.1 the thesis easily follows in case (ii). 
To prove the theorem in case (iii) we observe at first that if b1 = 0 and 

grad U( t, q) = 0, then uniqueness is obvious. On the contrary, if b 1 # 0 the 
proof proceeds as in the previous case. 



3. THE CASE n= 1 

In this section we deal with the one-dimensional bounce problem (see 
[2, 5]) whose formulation can be deduced from ( 1.1) setting V = IR with 
the Euclidean metric, f( q) = q and so V' = { 0}. We confine ourselves to 
considering the case U(t, q) = -u(t) q, where u E L 1(0, T), so that problem 
(P) can be rewritten as follows: 

(i) q(t)~O, 

(ii) ij- u ~ 0 in the sense of distributions, 

(iii) spt(ij- u) c {tE [0, T]: q(t) =0}, 

(iv) for every tt> t 2 E [0, T] we have 

In what follows we shall say that (b, u, q)Ed(t0 ) instead of (b, U, q)E 
d(t0 ) when the pair (q, u) solves (P) and fl(t 0 , q) =b. In [5] it is proved 
that ifuEL1(0, T) and bEfJI then tl).ere exists (at least one) qELip([O, T]) 
such that (b, u, q)Ed(t0 ); our aim is to show that some regularity 
assumptions on u are sufficient to ensure that this solution is unique. To 
this aim we recall the following results (see [ 5]): 

LEMMA 3.1. Let bE 91, t0 E [0, T], u E L 1(0, T) and u ~ 0 a.e. on [0, T]. 
Then there exists a unique qELip([O, T]) such that (b, u, q)Ed(t0 ). 

LEMMA 3.2. Let bEfJI, t0 E [0, T], uEL 1(0, T). If there exists qEd(t0 ) 

such that the set { t E [0, T]: q( t) = 0} is finite, then q is unique. 

Using Lemma 3.2 we shall show that it is possible to generalize 
Lemma 3.1 assuming more regularity on u. Indeed we have 

LEMMA 3.3. Let t0 E [0, T], bE 11, and u E H 1(0, T). If u ~ 0 or u < 0 on 
[0, T], then there exists a unique qELip([O, T]) such that (b, u, q)Ed(t0 ). 

The proof of this lemma is omitted, since it can be easily obtained by 
using the same techniques developed in the proof of Theorem 2.2. Now we 
state 

THEOREM 3.4. Let t0 E [0, T], bEiJI, and uECk([O, T]) k~ 1. !f"'f.J=o 
luU>(t)l #0 on [0, T], then there exists a unique qELip([O, T]) such that 
(b, u, q)Ed(t0 ). 

Proof We may consider only the case b1 = b 2 = 0; since "LJ=o 
luU>(t)l # 0 then there exists k such that lufcO(t0 )1 # 0. If k 0 = 0 we may apply 



Lemma 3.3; if k 0 =I= 0 we may confine ourselves to considering only the case 
u<f<OJ(t0 ) < 0. We have only to show that there exists J > 0 such that q(t) = 0 
on [t0 , t0 + J]. Let us choose b > 0 such that u(t) < 0 on (t0 , t0 + b] and 
suppose that there exists a sequence ~n E (10 , t0 + b] converging to t0 and 
such that q(~n)>O; then there exists a decreasing sequence tne(t0 , t0 +b] 
converging to t0 such that q(tn)=O lti(tn)l >0 and q(t)>O on (tn+l• tn) for 
every n EN. We have 

ij(t) = u(t) 

and therefore 

tn+ I- tn+2 u(an) 

tn- tn+ I U(O"n+ d 

for suitable O"nE(tn+l>tn) and O"n+IE(tn+2•tn+d· Since u<kol(to)<O we 
have u(crn)<u(crn+d<O for n large enough and so tn+ 1 -tn+ 2>tn-tn+l 
which is a contradiction. I 
Combining Theorem 3.4 with Lemma 3.1 we easily obtain 

THEOREM 3.7. Let u be real-analytic on an open interval[-:::::> [0, T]. Then 
for every t0 E [0, T] and for every bE fJI there exists a unique q E Lip(O, T) 
such that (b, u, q)ed(t0 ). I 
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