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A CLASS OF NONLINEAR DIFFERENTIAL EQUATIONS
OF SECOND ORDER IN TIME

MICHELLE SCHATZMAN
Analyse Numerique t55-65, Universite P. et M. Curie, 4pl Jussieu, 75230 Paris Cedex 05, France
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1. INTRODUCTION

In WHAT follows, ¢ will denote a lower semicontinuous convex proper function from R* = H to
R U {+ o0}. Here proper means that ¢ # + oco. The effective domain of ¢ is the set dom ¢ =
{x e R¥/¢(x) < + oo}. We shall suppose that the interior of dom ¢ in R" is not empty, and
¢ = 0. These two assumptions do not restrict the generality. The scalar product in H is denoted

by (x, y)-
Let us recall that the subdifferential of ¢ is a (multivalued) operator defined on

D(0¢) = {x e H:3 z e H such that ¢(x + y) — ¢(x) = (z,y) for all ye H}

with valyes
0p(x) = {ze H: p(x + y) — ¢(x) = (z,y), Vye H}.

The set d¢(x) is closed convex in H and d¢ is a cyclically monotone operator, i.e. forallne N,
for all n-tuple (x,, ..., x,) of elements of D(3¢), for all y, € d(x,) (1 < i < n)

WXy = X))+, + X, = x) + (%, — %) 20

We define J, = (I + A0¢)™' on H; J, is a contraction, and d¢, = (I + J,)/4 is the Yosida
approxunatlon to 0¢; 09, is prschltzmn with Lipschitz constant 1/A and 0¢,(x) € dp(J x).
If ¢,(x) =inf{x — y|2/(24) + (¢/2)y)}, 8¢, is the subdifferential of ¢,. Explicitly, ¢ (x) =
$(J,x) + |x + J,x|*/(22) and ¢ (x) < ¢(x). Moreover, 11m ¢,(x) — ¢(x) if xe H. The general
references for these results are refs [1, 2].

Before we proceed to the existence theorem, it is of some interest to give an explicit example.
It will allow the reader to notice the difficulties of the problem.

Take H = R,K = R*, ¢ = ¢ the indicator function of K, i..

P(x) = + 0 ifx¢ K

d(x) =0 fxeK
Then

dd(x) = {0} ifx>0

0p(x) = (—o0;0] ifx=0
op(x) = & ifx < 0.
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Assume u, > 0; we shall seek a solution u, which is locally Lipschitzian in t. The interesting case
occurs when u;, < 0.Ift < uy/u,, the only solution of

d?u
'&t—z' + alllk(u) 30
isu(t) = x, + tu,. We must have u(t) > 0, for all t > 0. It is easy to check that any u of the form
u(t) =0 for ty = —up/u, <t <t
ut) = ot — t,) for t=t,

with v > 0 and —u/u, <t < oo is a solution. (see the figure below). If we assume that the
energy is conserved, then necessarily u’(t) = — u,(t + uolul)fort = — uy/u,. There is an

Fig. 1.

“optical reflection” in —u,/u,. The Yosida approximation gives, in the limit, the solution which
conserves the energy. In fact, the approximating equation is

2 —
d*u, u;,

Freaias 0, where r~ = — min(r, 0); its solution is
u,(t) = uy + tu, 0<t< —uluy =1,
u,(t) = /Au, sin [(¢ + t,)/\/7] tySt<t, +nfh
u,(t) = — u,(t — nfd — 1) to + A<t

Clearly, the u, converge to the energy conserving solution, u°.

2. THE EXISTENCE THEOREM

Definition 1. If f € I2(0, T; H) (T finite) and u,edomo, u, € H, we say that u is an energy-con-
serving solution of the problem (P)



(P) (d*u/dt?) + od(w) > f, “initial conditions”
when it satisfies the following requirements:

(Nue W' =((0, T); H)

(2 u(t)edom ¢, Vt [0, T]

(3) there exists a bounded measure u with values in H, such that
(d?u/dt?) + u = f in the sense of distributions,

and
(4) for any continuous v, with values in H, such that ¢(v)e L'(0, T), we have:

T
f () — ¢p)dt > (v — ud

0
(5) du/dt has left and right limits for any t € [0, T] (with the necessary modifications at 0 and T)
(6) energy is conserved:

d

tu o |? d u
i O + u®) = “at—(t)

2 t
T Bu(t) = Ju,|? + dlug) + f (i), /) ds
0

almost everywhere on [0, T7]; here # stands for du/d¢
(7) the initial conditions are satisfied in the following sense:

u(0) = u,

and if K, is the closure of dom ¢, ¥, the indicator function of K:

+

d*u
—u, + E—(O) + (?tpxo(uo)ao.

THEOREM 1. (a) For any f e I?(0, T; H), u, e dom ¢ and u, € H, the problem (P) has an energy-
conserving. solution in the sense of Definition 1. This solution is obtained as the strong limit in
H*((0, T); H) and the weak * limit in W!-*((0, T); H) of a subsequence of the sequence of solu-
tions of (B):
2

(P,) %+ 0¢,(u,) =0, u,(0) = u,, %(O) =u,.

(b) Moreover, if ¢ is Lipschitzian in a neighbourhood of u, with respect to K, and if —u,
belongs to C, the tangent cone to K, at u, (ie. C =r\>JOT(Ko — u,)), then

d*u

®) dt

where P, is the projection onto C.

(0) = 2P_u; — u,

Proof. Part (a)
1. Preliminary estimates
We have the energy equality for (P,)

9) Ui, + ¢, (u, (1) = Lfu, > + ¢,(uy) + j (t,(s), f(s)) ds

t
o



from which follows the inequality

%}ﬁ}_(t)lz < %J“xlz + dlu,y) + If ILZ(O, T;H}(j

T

i ()] ds)i

4]
H
<Hu,? + dlug) + %}flp(a, T (1 + j 9] ds)
4]
by therelation x < (1 + x%)/2.
Gronwall’s lemma implies:

¢, (u, @) + B0 < Glu,* + dlug) + 31 {I}(O, T, 1)) €XP (Tif ‘sz,r;m)
Set
(10} E*2 = Glu,|* + dlug) + 3 S |0, 7o) P (TS |, 721y
We may therefore extract a subsequence, still denoted by u,, such that
u, - uin C°([0, T]; H) strong

du, du. = _| *
E Eln I (0, T, H)Weak

¢ (u)—y in L°0, T)weak*
As §,(u,) < E, |ju, — J,u,] < J2AE and ¢(J u,) < E. We have
E > lim ¢(J,u,(6) > ¢(u(t)

and u(t) e dom ¢, for all z in [0, T']. Hence we obtain (1) and (2).

2. Main estimate
Let a be the center of a closed ball of radius p, contained in the interior of dom ¢. By general
theorems, we may suppose that ¢ is bounded on a + B , by a constant C. For an arbitrary con-
tinuous z such that |z(t)| < 1 for all ¢ in [0, T'], we may write

(00, (u(t), a + z(t) — u(t) < ¢,(a + pz(t)) — ¢,(u,(1).

Integrating from O to T, we have

T T /4%y
pj (00 ,(u,(2)), (D)) dt < CT + -[ (—&t—z—‘ - fia— ul)dt <
0 0
dux T T dulz T
SCT+<7d—t’a_u*) 0+L i O(f,a u,)de

< CT + EQla| + 2Jug| + TE) + TE* + |f| 20, 7.+ T{a] + |y + TE).

If we choose
) _ 1 0¢,(u,0)
P 10 ,(u,0)

we obtain the estimate



T
(11) j |6 ,(u,(1))] dt < C’ independent of A.
o

We may therefore extract a new subsequence, still denoted by u, such that 0¢,(u,) — u vaguely
in M'([0, T]; H), the set of bounded measures on [0, T'] with values in H. In the sense of distribu-
tions, d?u/dt? + u = f, which is precisely (3).

If v is an arbitrary element of C°([0, T']; H),

lim ¢,(0) = $(o)

Let v be such that ¢(v) e L'(0, T). Then ¢(v,) is also in L'(0, T). We have
T T

(12) f (#,(01) ~ &, (u, () dt > f (¢, (u,(2)), v(t) — u (1)) dt.
0

0
It is clear that the right-hand side tends to

<,l.l, v - u>
as A goes to infinity.
We have

T T T
lim f $,u,(t) >f ¢ () dt <f (u(v) dr.
1] ] 0

Hence, taking the upper limit in (12), we get

T
J (p(v(t) — du() dt = (p, v — u),ie. (4)

0

Interpretation of .
Let du = g.dt + du, be the decomposition of u with respect to the Lebesgue measure on [0, T'].
Then Corollary 5.A of ref. [ 5], gives us the following results:

(13)  g(t) € 0g(u(t)) almost everywhere (with respect to the Lebesgue measure) on [0, T].

Let N(t) be the normal cone to K, = dom ¢ at u(t). Let u, = h. |u | with h a p -integrable function.
Then

(14) h(tye N(t) |u| — almost everywhere on [0, T].
We shall often say in what follows that u is the measure associated with the solution u of (P).

3. The properties of du/dt

We know that the injection M*(0, T) s H1(0, T) is compact. As u, converges vaguely to u in
M0, T; H) =~ (M*(0, T))", u, converges strongly to win H~'(0, T: H) = (H~*(0, T))", and there-
fore

du, du . s

—2 T H).

T — & strongly in I*(0, T; H)
As |du ;/dtl < E, for all ¢ and 4, (du,/dt) - (du/dt) in IZ(0, T} H), for all p € (1, 0). On the other
hand, as d?u/dt? is a measure, du/dt has right and left limits in every point of (0, T), a right limit
in 0, and a left limit in 7, and we can write



d- T

E’f =u, + f fls)ds — ([0, T))
0

du_ 4 f " £)ds — [0, 7))

dt 0

4. Energy conservation
It is clear that

T 2
limj '-“Z-Iﬁ'—dmo,

A=0 (o]
because u, — J,u, — 0 in C°({[0, T]; H) and (4, — J,u,)/A = p in M*([0, T]; H). On the other
hand, (Ju, — J,u,|*)/4 is bounded in L*(0, T). Thus, (|, — J,u,|*)/A converges to 0 in L°(0, T)
weak*. As ¢,(u,) converges to a certain y, ¢(J,u,) — ¢,(u,) —|u, + J,u,|*/(24) has the same
limit in (0, T) weak*. We have the inequality

T
J (Pu) — &(J,u))dt = {uyu — J,u,> as p (t) € 0(J u,(t) forte [0, T].
o
Passing to the limit:

T
f (pw) — x) dt= 0.

(o]
But:

lim ¢(J,u,) > d(u).

This implies y > ¢(u), thus proving that y = ¢(u).
If u({t,}) = 0, we see from (9) that

lim ,u(t,)) = lim dut) = 4 |u,? + plug) + J () £(5) ds

hence:
Ha))? + o) = 3|u,|* + o) + J (t(s), £(5)) ds, almost everywhere on [0, T].
0

5. Initial conditions
It is quite clear that u(0) = u,,.
To finish the proof, we need only consider the interpretation (13), (14) of i.. In fact, N(t) =0y Kk (@)
If d*u/de(0) # u,, then u = (—u, + d*u/de0))d, + ji, and the conclusion of Part (a) of
Theorem 1 holds.

Part (b)
The case when u, e int K is quite simple. So we make the hypothesis u, € 0K ,. The idea of the
proof is to compare u, with the solution v, of
d?,
de?
(15) 0,(0) = u,

dv
@

+ () (v, —ug) =0



Notice that 0y (x) = (x — P.x)/A;
v, is given explicitly by
v,(8) = uy + tPeu, + /ZAsin(t/\/7) (u, — Pcu,) if0<t<nJ7
v,(t) = uy + tPou, + (t — n\/A) (u, — Pouy) ift > n2
We can check these formulas using the fact that the decomposition of an arbitrary element of
H into the sum of its projections onto C and C* = N is unique. This result is given in ref. [3],
Lemma 2.2. Knowing that (¢ ), is Lipschitzian, we can see that v, is the solution of (15). Let us
show now that d¢, is locally near (0 ), in an adequate sense.

ProposiTION 1. If ¢ is Lipschitzian in a neighbourhood of u,, there exists positive p and 4, such
that, for [x — uy| < pand A < 4,:

(16) (O ),(x) — 06,(x) = hx — up)/i + A,(x)
where: h(x — u) = Py (x) — Pc(x — U,);
|A(x)] < |x[e(|x]) and &(r) decreases to zero as r goes to zero;

h(x) = 0on K, — u,
|4,)] < k

Proof. 1.Let ¢ be Lipschitzian over dom ¢ n B_(u,) with Lipschitz constant k. Then
dom ¢ N B {u,) is closed: in fact, if (x,),, is a sequence of points of dom ¢ N B_{u,) converging
to x_, we have

P(x) < '}1_{1; Plx,) < }1_{3) (klx, = x,| + $(x,)) = plx,) + |x = x|,

which shows that x e dom ¢.
2. Lipschitzian extension of ¢| ;=
Denote by ¢ the convex function equal to ¢ in dom ¢ U B _(u,) and + oo elsewhere. Obviously ¢
is lower semicontinuous.
Define a convex function y by

x(x) = sup{(y) + (z,x — y):y e int dom ¢ and z € dB(y)}.
In fact y is a Lipschitzian extension of ¢|,, ;- x(x) is never infinite, thanks to the relation

2x) = y) + klx — y]
(clearly 8¢ is bounded by k on int dom ).
If xedom @, y(x) = @(x). On the other hand, given & > 0, there exists a y, €intdom # and a
z, € 0d(y,) such that
A1) < @y + (2, x — y) + &
Therefore
21x) < Bx) + &

As ¢ is arbitrary, we obtain y(x) = @(x). We can extend this equality to all of the domain of ¢,
by continuity. Let us show that y is Lipschitzian: let x and x' be given in H; we have

20x) = x(x) < B + (@, X' ~ y) + & — Py, x — )

=(z,,x' — x) + & < k|x' — x| + ¢,



if ¢ is arbitrary and y, and z are chosen adequately. We can bound from below x(x) — x(x) by the
same type of argument, and thus we have shown that [x(x) ~ x(x)] < k|x' + x|.

3. Decomposition of ¢.
Denote by ¥ the indicator function of dom ¢ = K.
Obviously ¢ = ¥ + x; then by Theorem 23.8 of ref. [2], dd(x) = dx(x) + y(x) for all x in K.
We have

06,(x) = (x — (I + 20§)™" x)/A
Let (I + Ad¢) 'x =z
z, + AdY(z,) + Ag,>x
where g, € dx(z,) and is thus bounded by k;
= (I + A0y)" Hx — 4g)).
106,(x) — a0 =[[x — (I + 20¢)~"(x — Ag)) — x + (I + Ady) ™ 'x]|/
= AT + A0) " x — Ag) — (I + 20¢) "1 x| < g, S k

Lemma 4.6. of Zarantonello [3] allows us to write: Pe(x + uy) = u, + Pcx + h(x) with
|h(x)| < |x|e(x])  and h(x) =0ifxe K — u,.
Then
(5%(30 — (@Y x — up)| = | Pelx — ug) — Pplx — ”())V;L < eflx - uoD |x — Uo|.

4. Comparison of 8¢, and 0¢,

The sequence (I + 18¢)! converges to P, x when 4 goes to zero; but (I + Ad¢)~ ! is a con-
traction; this convergence is therefore uniform on compact sets. So, there exists a function j of
p and 1, decreasing to zero as A — 0, such that [(I + 10¢) 'x — P, xl < j(4, p) on the ball B (u,),
and in an analogous fashion

[ + 0@y 'x — Ppx| < j(4, p) on the ball B (u,).

Clearly, Py (B (4,)) = B,(u,) Vp>0
Pe(B,u,) < B(u)  Vp>0.
Take p = ¢/2, and choose 4, so small that
max (j(4y, 6/2), (44, 6/2)) < 6/2.

Then |(I + A8¢) " 'x — uy| < o,and [(I + 10§) 'x — uy| < oif|x| < 6/2. Lety = (I + Ad¢) *x
and § = (I + A0@)"'x. We know that ¢|, . = |, . .
Therefore

A x -y +d(y+v)—d(»=0 VveH
AN -7, +HF+D)—dPH=0 VieH.

If we add these two inequalities, taking v = j — y, and § = — v, we obtain § = y. This achieves
the proof of Proposition 1.



LeMMA 1. u, and v, satisfy the inequalities:

t2 3
(17) |u,(0) — v,(0)] < \/I< + 153,/1 (Et))
2 3 E 4
(18) li,(0) — 5,00] < kt + %S(Et) ! \/I< ‘ 4f ) s(Et))

Proof. Define a transformation T, on C°([O, T]; H) by

t

(T,w)(£) = uy + tu, + j (f(s) — 0¢p,(W(s))) (t — s5)ds.

0

Then u, satisfies
Tu, =u,.
Estimate 77w — T’W by a standard recurrence argument:

R 1e? . ,
[(Tw — T,00) (0] < I?”W - w”CO([O,to]) ife <,

Then
2n

(T%w — T%) ()] < ift <t

t A
@n)! A" 1w = ®lleago. an

As we know that T7w converges to u, as n — 0o, for any initial w, and on any compact time
interval, we may write

[u () —wo)] < Y || T 'w — T W“cO([o o) S \/IHT}.W - W”CO([O.to]) ifr <t

nz0

Take w = v, defined by (15).

A t
(T, — v )(O) = uy, + tu, — J 0 (v, ()t — s)ds — uy — tu; + J‘(alllc)l(vl(s))(t — 5)ds

If we assume ¢, < p/E and 4 < 4, we may apply the conclusions of Proposition 1 for x = v,(¢).
Therefore

1 Ese(E 2 3 .
(T, — 0)(@) SJ (k .\ ss/(1 5)>(t —s)ds <kl +E3t%g(Et0) ifr<r,

[

and finally we obtain the estimate (17).
The estimate (18) is a straightforward consequence of (17), thanks to the relation

lu, (1) —5,00| < J [(0%) (v,(0) — 86,(v,(1)] dt + j [00,(v,(8)) — 8¢, (u (1)) dr.

End of proof of Theorem 1, part b.
Denote @, = 2P.u; — u,. Clearly, i, is an element of C. Let us notice that, for any given
n > 0, there exists a d(y) > 0 such that, if |P; v — u,| < d(n), then

(0 — P, i) < nldy||v — Py vl.



If it were not the case, we could find a sequence v, with Py, converging to u,, and a strictly positive
number 5, such that

(v, — PKovn’ ) 2 n, |'11| |Un - PKovn"

We can see that (v, + Pv,)/|v, + Pu,| converges to a certain w, which must be in N, and therefore,
we obtain a contradiction. We may assume #(8) to be an increasing function of §, such that

|Py,v — 1| < & implies (v — Py v, i) < 7(5) |, |
Write now
(1,00 1)) = (/) ,) + (/D) &) (¢ = 77 +< f () — A — 9)ds, al)
/A

-~ J _([ul(s) — P u(s)) )t — s)ds

nJ4
= (u,(n/2), 4,) + (i,(n/2), 4,)(¢ + n/7)

t3/2

N

From Proposition 1, and the estimate (11), we have:

1Sl —n(Et)j (UDI09) — P 17,1 ¢ = 9)ds
T

J‘(l//l)|ul(s) P, u;.s)|ds C’ + kT.

0

We obtain, in the limit as 4 — 0

(u(t) — uy, i) = |4, |*t — oft), from where
d*u -
( ) ) > |a, ]
On the other hand, as a result of (6), and of the fact that ¢ is continuous in a neighbourhood of u,

= |u,| = |4,]. Conclusion (8) is now clear.

d u
—dt~(0)

This completes the proof of Theorem 1.

3. COUNTEREXAMPLES TO WELLPOSEDNESS
3.a Discontinuity
The idea of this counterexample is quite simple.
Take H=R? K ={(x,,x;):x,2 0, x, + x, 20}, ¢ =¢,, f=0; take as initial data
= (1 —h%+h),u =(—1,—1) where |h| < % It is easy to check that the solutions are
unique.
If h = 0, according to part (b) of Theorem 1, the solution is

M =(1—-1t31—1) ift <1
WO =G -1 —1)  ife>1



If A > 0, the solution is
=1 —h-ti+h-13 ifr<]

and it has a unique reflection at time ¢ = 1 on the side x, + x, = 0 of K. Then
W) =Gt - 1) —ht—1+h ift>1

If h < 0, the solution has a first reflection at time ¢t = 1 + 2h;thenu®(t) = (—=3h — (t — 1 — 2h),
(t — 1~ 2h)/2) until the time 1 + 4h, when it has a second reflection, after which

) =(—4t+3—ht—1+h).
As h tends to zero, remaining negative, " tends to #° defined by
PO =01+ti1-1) ifr<1

dy(t) = (=3t — 1t —1) ift>1

We can see now that, as a function of h, u” is right- but not left-continuous.
A2
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Fig. 2.

3. b. Nonunigueness

Two examples will be given, both of them with ¢ = ¢,.
(). Take H=R, K =R*, ¢ =Y, uy=u, = 0.

We seek an infinitely differentiable nonpositive f which gives us two solutions. The first
solution will be formed of an infinite number of arches, smaller and smaller as ¢ gets nearer to0
(see figure below). The associated measure u will then be atomic. The second solution will be
u=0,u=/

More precisely, let p € Z(R) be an even, nonnegative function, the support of which is included
in [—1, +1], and satisfying [ p(x) dx = 1. Denote p (x) = p(x/e). Let y, = Lot —a2y * Py With
¢ <34 Clearly y, = lon[e, 1 — €], supp y, = [0, 1], and y, is C*. It is an easy exercise to check
that

2Jl y(s)(1 ~ s)ds — jl y(s)ds = 0.

0 0



From now on we fix an ¢, and write y, = y, y, = [} ¥(s)ds and y, = [ ¥(s)(1 + s5)ds. Obviously
¥, = 2y,. We look for an f defined on each interval [a,, a,_,] as follows: f = O on [a,, a, + ¢,]

t—a — 0o
f(t) = _nny <_T_f;—_—"> on [an + an’ an + T"] = [an + o-n’ an—l]'
n n

fis C® except perhaps in 0, if it is defined.
We have necessarily
i=f onfa,a,_ ;]
u(a,) = ua,_)=0

+ -
If we write d—dtg(an) = v, then d—1‘(a,,_1) = —v,_,

dt

Our aim is now to look for necessary conditions which will insure that f has a meaning and is
C*®, and u has a meaning and is a solution of (P).
ut) = vt — a,) on[a,a, + a,]

t

u(t) = v,(t —a,) — n"f ys)(t +s)ds on[a, +0,a,_,]

antan

which gives us
Dntn = r’nyZ(rn - 0.")2

v, tuv,_, = n"yl(tn —a,).

Letv,_ ;, = a,v,. Then

Choose a, = n for n > 4. This implies
v, 0 — 1)4! 120, n° — 1

2y, n! y, n!

MuOn =



Take

_17% anda____n_j—_l___
=% = @) " an—2)n = 3

For u to be a solution of (P), we have only to check that

Zﬂ({a)—-22v—2z L 240, < + ©
nz4 nz4 n>4

n+1 n+1
L=l e T a1 T *

nz4 nz4

Then a, < + o0 and we can choose T = a,.
For f'to be C*® up to zero we need
/Y r)’w——l———(C)”—‘v—1 <+ Vp;
i mzn—1 § (n_4)’ ! 2y1
thus, we obtain the supplementary information that f?(0) = 0,V p € N. Clearly 0 with associated
measure fi = fis a solution. Thus we have built an infinitely differentiable f such that (P)has two
solutions.

(i) Take H = R2, f = 0. We intend to build a convex set K of C* boundary, such that with an
initial velocity tangent to the boundary, we obtain two different solutions; one “along” the
boundary, the other having an infinity of reflexions on it.
We shall use the results and notations of the preceding paragraph. Let us define a continuous
parametrized curve with values in C ~ R? as follows:
F(t) = F(a,) + €t — a,) + P "Pu(t)  iftela,a,_,]0<t <T=a,

This curve will be continuously differentiable if

”"‘(1 - ldd+ (a )) = e‘”"“(l - z%_—(a ))

Then, necessarily 8, — B,,, = 2 arctan v,. As v, = 24v,/n!, the series Y B converges. Moreover,

if we choose v, small enough, B < {mn/2, which means that t+— "F(t) will have no tangent
4 =N n

parallel to the imaginary axis. We have F"(t) = ¢®»~"? f{(t) on [a a,_,] But f is constructed
in such a way that f®(a,) = 0 for all p > 0, n > 4. Therefore F is C* on [0, T]"Moreover, the
sign of the curvature of F([0, T]) is the 51gn of F F F F where F = F| + iF,.

We can easily check that F F -~ F = —f () = > 0. We can thus see that F([O T1]) is the
boundary of a convex set K of c~gr2’

Take now initial conditions u, = 0, ##, = a > U, and define a function ¢, on [0, T] by

Y, () = lj |F(0)| do.
aJo

Let ¢, be the reciprocal of ¥,.
Then v(t) = F(¢,(t)) is a solution of (P) on [0, y (T)].
In fact, o(t) € K, for all t € [0, ¥,(T)].



dv

5 = A FOa)F @)
d? d. . ,
5 = a3, F@0VF@,0)

As F(6) # 0, for all 6 € [0, T], d?u/dt? is a bounded function which can be identified with a
bounded measure. On the other hand, it is clear that d2v/dt? is normal to 9K, (dv/dt)is continuous
at every point, |dv/dt| = a and the initial conditions are satisfied. Therefore u is a solution of (P)
in the sense of Definition 1.

The other solution will be given by

(1) = F(a,) + ¢"(at — a,) on l:&, a"‘l]
a a

Clearly, (1) e K for all t. We have
da*p i
Tt— (a,,/a) =ac

d~ 7 .

_dt_(a"/a) = gebrt

d2d .

Frei 0 iftefa,a,_,)

Therefore ,

da*d . )
— =g 5a a(elﬂn . etﬂ..u) - ﬁ
dtz nz1 g

It is easy to check, using the interpretation of the measure associated with a solution of (P), (13),
(14), that § is a solution of (P); clearly, the energy is conserved, and the initial conditions are
satisfied.

Comments on this part. These results are closely connected with results on the propagation of
singularities of a hyperbolic problem on a manifold with boundary. The first one obviously
refers to diffraction in an angle. The second one was figured out by thinking of a tennis player
who succeeds in making his ball bounce higher and higher, from a rest position, only by hitting
it downwards. Professor L. Amerio told me that he had built an analogous example. The third
type of counterexample is given, with a different construction by M. E. Taylor in his paper [4]
concerning reflection of singularities of wave equations in an exterior domain of R¥. When the
complement of this domain is not convex, Taylor’s theorem fails as there appear phenomena of
nonuniqueness of the wave front set. I cannot see, presently, how all these results could be taken
in account together in reasonable mathematical theory.

4. A UNIQUENESS THEOREM IN A PARTICULAR CASE

THEOREM 2. Let ¢ = Y, f = 0. Assume that the boundary 0K of the closed convex set K is of
class C?, and that its gaussian curvature is strictly positive. Then the problem (P) admits a
unique solution on [0, + o] in the sense of Definition 1. Moreover, if the initial data u,, is given



on 0K and u, is tangent to K, then u runs along the geodesic of 6K passing through u, and
tangent to u, with the speed |u, |. If the initial data are not such, then u is never tangent to K,
and it has a finite number of reflections in a finite time.

Proof. Denote by & (u) the tangent cone to K at u, i.e. 7 (u) = Y (K — u) and by n(u) the
exterior unit normal to K at u. Remark that
& w) = {v: (v, n(w) =0} for all ue K.

Let us first prove the local uniqueness at every point ¢. If u(t) € int K, or if u(t) € 0K and (d " u/dt) ()
is the interior of & (u(t)), the local uniqueness is immediate.
If u(t) e 8K, and d"u/dt (t) ¢ FL,(u(t)), then

d*u du
T(t)l = —dT(t)-
and
44— L0 = knlur)

de 0 dr

according to Theorem 1.
Necessarily the vector

d*u d u d u
G () = Ty ) - 2(*&’ (), n(u(t))) n(u(t))
is in the interior of &, (u()). The local uniqueness is then clear. The only difficult case is when
u(t) e 0K, and ((d " u/dt (1)), n(u(t))) = 0. We need the following result.

LemMa 2. If 8K is of class C* and its gaussian curvature is strictly positive, then there exists no
sequence of points of K, (u,),, .y converging to u_, such that u_ is a reflexion point for all m, i.e.

me N

(um - um—l’ n(um)) — (um - um+ 1° n(um» and

Ium_um—ll lum_um+1|

Un — um—l (um U 1’ n(um)) n(um) — um+ 1 um (um+ 1 Up> n(um)) n(um)

P R R

m—1

m+ 1 m+1—um|

such that u_, , — u,_ has a limit direction, and such that

Z lum+l _um|< + .

meN

Let us show that this lemma implies local uniqueness. With u, € 0K, (n(u(t,)), (d “u/d)(t,)) =0,
then necessarily ((d*u/dt) (t,), n(u(ty))) = 0. Suppose that there is no right neighbourhood of ¢,
such that u(t) belongs to 0K in all this neighbourhood. Then we can find a ¢, arbitrarily near ¢,,
such that u(t,) ¢ 0K. There must exist at most a finite number of reflections between ¢, and ¢, in
order to satisfy Lemma 2. Then ((d * «/dt(z,)), n(u(t,))) < O and we obtain a contradiction. There-
fore there exists an n > 0 such that u(f)e 0K for t, <t < t, + 1.



Let u be the measure associated with u, and define a real valued measure (u,z) with
ze C%[0, T]; H) by
2) ¢ =<zdy Ve[, T])
Let s = (w ~ (w, n(u))n(u)) x with we H, and y e C°([0, T]), supp x < [t,.t, + n]. It is clear that
s(t) e &, {(u(t)), and s is universally integrable on [0, T]. According to the interpretation of y, (13)

and (14), necessarily (u,5> = 0.
So

(W) g, 14y = (1000, Wil 154 g 00D
If wesetv = (M[(,D,,,,J,,,), n(u)), we may then identify y| to. 10+ 411G 1(u)v. Suppose u(ty) = 0, which
does not restrict the generality, and denote n(t)) = ny, uy = —(u,ny), ' = u — (u, nyn,. Repre-
sent oK in a neighbourhood of 0 as follows:
[u] < o anduy = f(v) imply uedk.
Here fis convex, twice continuously differentiable, and Df(0) = 0. We differentiate the relation
up(t) = flu'®) on [t,,t, + n].

du, oy 98
(19) ok Df{u (t))?f’
du d*u dul d*u du .
& is continuous, as TS IE— e A kn{u) (for a certain real k), and

d*u d u
( O ,n(u)> = (717’ n(u)) =

We now differentiate (19) in the sense of distributions:

dzuN du’ du a2

(20) g7 = D) 5, + DI W) =~
Explicitly

i) = (Dfe): —1)

(a + [Dfe)H"™

whence

v —vDf()

dt? (1 + DR

dzuN v

de> (1 + [DfW)P)7®

5 A2 v |Df()|?
(e @) = = o

Substituting in relation (20) we obtain

U+ [Dfa))e = D2 ) SL

de dt’



Therefore, v can be identified with a function and
du’ du’
D2 f(u —
d2u+ f(u)dt dt .
de* (1 + |[Df)|?)"?
This is precisely the equation of the geodesics of dK. As dK is of class C*, we know there is

uniqueness. By a classical argument, local uniqueness implies global uniqueness.
To complete the proof of Theorem 2, we need only to establish Lemma 2.

(u) = 0.

Proof of Lemma 2. Suppose there exists a sequence u,, € 0K such that

(i) u,—u, as m— 0,
(ll) Qm(um - um+ 1) — Qm(um — um—l)
2
’um - um+1' Ium—l - uml
(lll) Pm(um - um+ 1) — Pm(um—l - um)
lum - um+ ll lum—l - uml

where Q, x = —(x,n(u,)), P,x = x + n(u,) @,
In a neighbourhood U of u_, we have the representations of 0K given by

uedKnU=0Q (u—u,)=f(P (u—u),

where f, is of class C*and Df,(0) = 0; f,, is convex.

Obviously

(21) fm(Pm(um—l B um)) — fm( Pm(um+ 1 um))
le(um—l - um)l le(uerl - um)l ‘

On the other hand,

(22) £ ) =D*f (0 uv + |[v|*g, () if(W, nw,) =0,

with
|g..)| < h(u')).

The function h does not depend on m; lirr(} hr) = 0, and h is increasing

— 2 Pm(um-l - um) Pm(um— -
(6 s ) [ s

m—1

m:

m

u,)
Uy
P (u —-u) P (u —u)
— D2 0 m\m+1 m m\"m+1 nt: .
e[ty )
From (21) and (22) we obtain:
Km(,Pm(um—l - um)l - ’Pm(um-l- 1 um),) + IPm(um—l - um)l gm(Pm(um—l - um))

- IPm(um+1 - um), gm(Pm(um+ 1 um)) =0

Since we have assumed that the gaussian curvature of K at u_ is strictly positive, k, =k, > 0
for m large enough. Dividing both sides of (23) by |P,(u, _, — u,)| we obtain

(23)



P _
rettess = ol P, — )

+ h(|Pm(um—l - um)|) + h(|Pm(um+l - um)l)'

0o

|Pm(um+1 - um)l — 1 IS
|Pm(um-1 - um)|

If we choose m,, such that
m = my = h(IPm(um+ 1 um)t) < KO/Z’

then
Ko
2

iPm(um+1 - um)( _
le(um-l - um)l

Set I, = |u,_, — u,| Finally

1’ S h(‘Pm(um—l - um)‘) + h(|Pm(um+l - um)l)'

Ko
2

On the other hand we have

‘Pm(um+1 - um)‘ _
[Pty — )|

(24) ll S k) + W, ).

P u, ,~u)—fP(t,_, —u)nu)=u_, —u,.

Therefore

I, = |Pu, -, ~ )| < |D*fONP,(u,_, —u)(P(u,_, +u)| +

+|P (u,_, — ) W|P,u,_, — u))
So we have a constant K such that
l
(25) m —-1/<Kl
and analogously
mlP,,(u,ir: 1| < Kl
From (24), (25) and (26) we obtain
L/, = SKMI)+hA,, )+, +1.,,)

Set A(r) = K'(h(r) + r), then

(26)

lm+ 1 ? lm + lm(ﬁ(lm-# 1) + E(lm))
Since [, converges to 0, we can find an arbitrarily large m, such that | < [, . for allm = m,,
Then
ey 20, — 20 A1) ifm>m,

m

Lz ¥ LA-2r0 )= 3 (- 2R N1, + (1 — 2k, )
m2mg+ 1 m2my m2mg+ 1
Therefore
1—2h(,)

> lm>W -

m2mg+1



It is clear that we can choose m,, so large that the right hand side of this inequality is arbitrarily
large. We obtain therefore a contradiction, as u,,, , — u, is supposed to have a limit direction
when m tends to infinity. This completes the proof of Theorem 2.

The main results of this paper have been stated in ref. [6].
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