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IN WHAT follows,¢ will denote a lower semicontinuous convex proper function from R" = H to R u { + oo }. Here proper means that ¢ ¢:. + oo. The effective domain of¢ is the set dom ¢ = {x e RN/¢(x) < + oo }. We shall suppose that the interior of dom ¢ in RN is not empty, and ¢ ~ 0. These two assumptions do not restrict the generality. The scalar product in His denoted by (x, y).

Let us recall that the subdifferential of¢ is a (multivalued) operator defined on

y) for ally e H} with values o¢(x) = {z e H: ¢(x + y) -¢(x) ~ (z, y), Vy E H}.

The set o¢(x) is closed convex in Hand o¢ is a cyclically monotone operator, i.e. for all n e N, for all n-tuple (x 1 , ... , x.) of elements of D(o¢), for allY; e o¢(x;)

We define J;. =(I+ ).8¢)-1 on H; J;. is a contraction, and o¢;. =(I+ J;)/A is the Yosida approximation to o¢;8¢;. is Lipschitzian, with Lipschitz constant 1/A and o¢ .. (x)eo¢(J .. x).

If ¢;.(x) = inf {jx-yj 2 /(2).) + (¢/2)(y)}, o¢;. is the subdifferential of ¢;.• Explicitly, ¢;.(x) = ¢(JJ.x) + jx + J.J.xj 2 /(2).) and ¢ ;.(x) ~ ¢(x). Moreover, lim ¢ ;.(x) -¢(x) if x e H. The general

references for these results are refs [1,[START_REF] Rockafellar | Convex Analysis[END_REF].

;. .... o Before we proceed to the existence theorem, it is of some interest to give an explicit example. It will allow the reader to notice the difficulties of the problem. Assume u 0 > 0; we shall seek a solution u, which is locally Lipschitzian in t. The interesting case occurs when u 1 < 0. If t < u 0 /ul' the only solution of

d 2 u
dt2 + ol/fk(u) 3 0 is u(t) = x 0 + tu 1 • We must have u(t) ~ 0, for all t ~ 0. It is easy to check that any u of the form u(t) = 0 for for with v > 0 and -u 0 /u 1 ~ t 1 ~ oo is a solution. (see the figure below). If we assume that the energy is conserved, then necessarily u 0 (t) =u 1 (t + u 0 lu 1 ) fort ~u 0 /u 1 . There is an "optical reflection" in -u 0 /u 1 • The Yosida approximation gives, in the limit, the solution which conserves the energy. In fact, the approximating equation is

d 2 - Ul Ul -
----= 0 where r =min(r, 0); its solution is dt 2 A. '

ul(t) = u 0 + tu 1 u/t) = .j1u 1 sin [(t + t 0 )!JA] u/t) = -u 1 (t-n.JA -t 0 ) 0 ~ t ~ -u 0 /u 1 = t 0 t 0 ~ t ~ t 0 + nJA t 0 + nJA ~ t.
Clearly, the ul converge to the energy conserving solution, u 0 .

THE EXISTENCE THEOREM

Definition 1. Iff E 13(0, T; H) (T finite) and u 0 E dom cp, u 1 E Fi, we say that u is an energy-conserving solution of the problem (P)

(P)
when it satisfies the following requirements:

(1) u E W 1 • 00 ((0, T); H)

(2) u(t) E dom c/J, Vt E [0, T]

"initial conditions"

(3) there exists a bounded measure f.1. with values in H, such that (d 2 ujdt 2 ) + f.1. = fin the sense of distributions, and (4) for any continuous v, with values in H, such that ¢(v)E L 1 (0, T), we have:

I: (cp(v)-cp(u)) dt ~ (f.l., v-u)
(5) du/dt has left and right limits for any t E [0, T] (with the necessary modifications at 0 and T) (6) energy is conserved:

I d :~ (tf + cp(u(t)) = I d;tu (tf + cp(u(t)) = Ju 1 J 2 + cp(u 0 ) + I~ (u(s),f(s)) ds
almost everywhere on [0, T]; here u stands for du/dt (7) the initial conditions are satisfied in the following sense:

u(O) = u 0
and if K 0 is the closure of dom ¢, 1/1 Ko the indicator function of K 0 :

d+u -u 1 + dt(O) + iJI/fK 0 (u 0 )30.
THEOREM I. (a) For any f E 13(0, T; H), u 0 E dom ¢ and u 1 E H, the problem ( P) has an energyconserving. solution in the sense of Definition 1. This solution is obtained as the strong limit in H 1 ((0, T); H) and the weak * limit in W 1 • 00 ((0, T); H) of a subsequence of the sequence of solutions of(~):

(P;) (b) Moreover, if¢ is Lipschitzian in a neighbourhood of u 0 with respect to K 0 , and if -u 1 belongs to C, the tangent cone to K 0 at u 0 (i.e.

C = u r(K 0 -u 0 )), then t>O d+u (8) - (0) = 2P u -u dt c l 1
where P c is the projection onto C.

Proof Part (a)

1. Preliminary estimates We have the energy equality for (P;) 

Interpretation of J.l•

Let dJ-1. = g. dt + dJ.l, be the decomposition of J.l with respect to the Lebesgue measure on [0, T].

Then Corollary 5.A of ref. [ 5], gives us the following results:

(13) g(t) E ilc/J(u(t)) almost everywhere (with respect to the Lebesgue measure) on [0, T].

Let N(t) be the normal cone to K 0 = dom c/J at u(t). Let J.l, = h ./J-1.,/ with h a J-1..-integrable function. Then We shall often say in what follows that J.l is the measure associated with the solution u of(P).

The properties of dujdt

We know that the injection M 1 (0, T) ~ H-1 (0, T) is compact. As J.l;. converges vaguely to J.l in M 1 (0, T; H) ~ (M 1 (0, T)t, J.l;.. converges strongly to J.l in H-1 (0, T; H) ;;:: (H-1 (0, T)r, and therefore du du . d/ -> dt strongly m L 2 (0, T; H).

As /du;./dt/ :s;; E, for all t and A., (du;./dt)-> (dujdt) in ll(O, T; H), for all p E [1, oo). On the other hand, as d 2 ujdt 2 is a measure, du/dt has right and left limits in every point of (0, T), a right limit in 0, and a left limit in T, and we can write

Energy conservation

It is clear that d- IT dt u = U 1 + 0 f(s) ds -JL([O, T)) d+u IT dt = u 1 + 0 f(s) ds -JL([O, T]).
because u;.-J;.u;.-> 0 in C 0 ([0, T]; H) and (u;.-J;.u;)j).. ....... Jl in M 1 ([0, T]; H). On the other hand, (iu;.-J;,ul)!).. is bounded in L 00 (0, T). Thus, (iu;.-J;,u;.I 2 )/A. converges to 0 in L 00 (0, T) weak*. As cl>;,(u;) converges to a certain x, cf>(J;,u)-cf>;.(u;) -lu,_ + J;,u;.I 2 /(2A) has the same limit in L 00 (0, T) weak*. We have the inequality IJcf>(u)-cf>(J;.u;.))dt ~ (JL;.,u-J;.u) asJL;.(t)eocf>{J;.u 4 (t))forte[O, T].

Passing to the limit:

I: (cf>(u) -x) dt ~ 0. But: lim cf>(J;.u;.) ~ cf>(u).
This implies x ~ cf>(u), thus proving that x = cf>(u).

If JL({t 0 }) = 0, we see from (9) that lim cf> ;,(u;.(t 0 )) = lim cf>(u;.(t 0 )) = t lu 1 1 2 + cf>(u 0 ) + I' (u(s)f(s)) ds;

;,--.o ;,-o Jo hence:

tlu(t)il + cf>(u(t)) = tlu 1 1 2 + cf>(u 0 ) +I (u(s),f(s)
) ds, almost everywhere on [0, T].

Initial conditions

It is quite clear that u(O) = u 0 .

To finish the proof, we need only consider the interpretation (13), (14 

) of Jl. In fact, N(t) = ot/J Ko(u(t)). If d + u/dt(O) # ul' then Jls = (-u 1 + d + u/dt(O)) c5 0 + fl.

Part (b)

The case when uo E int Ko is quite simple. So we make the hypothesis Uo E oKo. The idea of the proof is to compare u;. with the solution v;. of (15)

d 2 v d/ + (ot/Jc);. (v;,-u 0 ) = 0 V;,(O) = u 0 dv;, dt = ul Notice that ot/Jc;.(x) = (x-Pcx)/A.; v;_ is given explicitly by v;_(t) = u 0 + tPc u 1 + .JX sin(t/.JX) (u 1 -Pcu 1 ) v;_(t) = u 0 + tPcu 1 + (t-n.JX)(u 1 -Pcu 1 ) ifO ~ t ~ n.JX if t ~ n.JX
We can check these formulas using the fact that the decomposition of an arbitrary element of H into the sum of its projections onto C and C_j_ = N is unique. This result is given in ref. [START_REF] Zarantonello | Contributions to Nonlinear Functional Analysis[END_REF], Lemma 2.2. Knowing that (Ct/1 ct is Lipschitzian, we can see that V;_ is the solution of (15). Let us show now that 8¢). is locally near (ot/1);_ in an adequate sense.

PROPOSITION I. If¢ is Lipschitzian in a neighbourhood of u 0 , there exists positive p and A. 0 such that, for Jx-u 0 / ~pandA.~ A. 0 :

(16) (ot/l);_(x)-of/>;_(x) = h(x-u 0 )/A + A;_(x)
where: h(x-u 0 ) = PK/x)-Pc(x-u 0 ); /h(x)/ ~ Jx/F.(Jxi) and 8(r) decreases to zero as r goes to zero; As e is arbitrary, we obtain x(x) = ({>(x). We can extend this equality to all of the domain of({>, by continuity. Let us show that xis Lipschitzian: let x and x' be given in H; we have

h(x) = 0 on K 0 -u 0 /A;_(x)J ~ k Proof. 1. Let ¢ be Lipschitzian over dom ¢ n BJUJ with Lipschitz constant k. Then dom ¢ n BJUJ is closed: in fact, if (x.).,
X(X') -X(X) ~ ({>(y~) + (z~, X' -y~) + & -({>(y~, X -y~) = (z~, x' -x) + e ~ k/x' -x/ + e,
if t: is arbitrary andy: and z: are chosen adequately. We can bound from below x(x')x(x) by the same type of argument, and thus we have shown that lx(x') -x(x)l ~ kjx' + xl-

Decomposition of 4).

Denote by ift the indicator function of dom 4) = K.

Obviously 4) = "' + X; then by Theorem 23.8 of ref. [START_REF] Rockafellar | Convex Analysis[END_REF], al/)(x) = ox(x) + oift(x) for all X in K.

We have z .. + Aol/t(z;.) + AY;. 3 x where 9;. E OX(z_.) and is thus bounded by k;

z'-=(I+ Aoift)-1 (x-Ag..). !at,b .. (x)-Bl/t;.(x)l =l[x -•(I+ },oift)-1 (x-Ag;.)-x +(I+ Aoift)-1 x]I/A = 1/A I<I + Aoift)-1 (X-Ag)-(I+ AOI/t)-1 xl ~ IY .. I ~ k.
Lemma 4.6. of Zarantonello [START_REF] Zarantonello | Contributions to Nonlinear Functional Analysis[END_REF] allows us to write:

PR(x + u 0 ) = u 0 + P eX + h(x) with jh(x)j ~ lxis(!xl) and h(x) = 0 if x E K -uo- Then !oiftix)-(oiftc);.(x-u 0 )j = !Pc(x-u 0 ) -PR(x-u 0 )1/A ~ s(jx-u 0 l) jx-u 0 j.

Comparison of ocf>._ and at,&._

The sequence (I+ Aoc/>)-1 converges to PKox when A goes to zero; but (J + Aoc/>)-1 is a contraction; this convergence is therefore uniform on compact sets. So, there exists a function j of pandA, decreasing to zero as A~ 0, such that j(J + Aoc/>)-1 x-P Koxl ~)(A, p) on the ball BP(u 0 ), and in an analogous fashion

j(I + Aot,b)-1 x-PRxl ~ ](A,p)
on the ball BP(u 0 ).

Clearly, PdB/u 0 )) c B/u 0 ) PR(BP(u 0 )) c BP(u 0 ) Vp > 0 Vp > 0.
Take p = u/2, and choose A 0 so small that max (j(A 0 , uj2),](A 0 , u/2)) < u/2.

Then !<I + Aocp)-1 x -u 0 ! < u, and I<I + Aot,b)-1 x -u 0 ! < u iflxl < uj2. Let y = (I + ).ocf>)-1 x andy = (I + Aot,b)-1 x.
We know that cf>lo,.(uoJ = ¢1o,.(uor

Therefore (1/A)(x-y, v) + cf>(y + v)-cf>(y) ~ 0 (1/A)(x -y, v) + c/)(y + v) -c/)(Y) ~ o VvEH VvEH.
If we add these two inequalities, taking v = yy, and v = -v, we obtain y = y. This achieves the proof of Proposition 1. This completes the proof of Theorem 1.

COUNTEREXAMPLES TO WELLPOSEDNESS

3.a Discontinuity

The idea of this counterexample is quite simple.

Take H = R 2 , K = {(xl' x 2 ): x 1 ~ 0, x 1 + x 2 ~ 0}, ¢ = ljlk, f = 0; take as initial data u~ = (1 -h,! + h), u~ = ( -1, -!)
where I hi < !• It is easy to check that the solutions are unique.

If h = 0, according to part (b) of Theorem 1, the solution is

u 0 (t) = (I -t, !O -t)) if t ~ I if t > 1.
If h > 0, the solution is

if t ~ I
and it has a unique reflection at timet = 1 on the side

x 1 + x 2 = 0 of K. Then uh(t) = (t(t -1) -h, t -1 + h) if t > 1.
If h < 0, the solution has a first reflection at timet = 1 + 2h; then uh(t) = (-3h -(t -1 -2h), (t -1 -2h)/2) until the time 1 + 4h, when it has a second reflection, after which

uh(t) = ( -1t + 1 -h, t -1 + h).
As h tends to zero, remaining negative, uh tends to ii 0 defined by

ii 0 (t) = (1 + t, 10 -t)) if t ~ I ii 0 (t) = (-1{t-l),t-1) ift >I.
We can see now that, as a function of h, uh is right-but not left-continuous. 

b. N onuniqueness

Two examples will be given, both of them with

<P = 1/J K" {i). Take H = R, K = R+, </J = 1/JK, u 0 = U 1 = 0.
x,

We seek an infinitely differentiable nonpositive f which gives us two solutions. The first solution will be formed of an infinite number of arches, smaller and smaller as t gets nearer to 0 (see figure below). The associated measure Jl. will then be atomic. The second solution will be u = 0, Jl. =f More precisely, let p E g?(R) be an even, nonnegative function, the support of which is included in [ -1, + 1], and satisfying JRp(x) dx = 1. Denote p,(x) = p(x/s). Let Y, From now on we fix an e, and write Y, = y, y 1 = J~ y(s) ds and y 2 = g y(s)(1 + s) ds. Obviously

y 1 = 2y 2 •
We look for anf defined on each interval [a,., a,._ 1 ] as follows:f = 0 on [a,., a,. + a,.]

( t -a -a) f(t) = -11,.Y "
" on [a,.+ a,., a,.+ r,.] =[a,.+ a,.,a,._J.

r,. -a,.
f is coo except perhaps in 0, if it is defined.

We have necessarily

u = f on [a,., a,._ 1 ] u(a,.) = u(a,._ 1 ) = 0 d+u d-u lfwewrite dt(a,.) = v,. then dt(a,._ 1 ) = -v,._ 1 •
Our aim is now to look for necessary conditions which will insure thatfhas a meaning and is coo, and u has a meaning and is a solution of (P). n + 1 11. = 12~ (n-4)! and a.= n(n-2)(n-3)' For u to be a solution of (P), we have only to check that

1 I ,u({a.}) = 2 I v. = 2 I 1 24 v 4 < + oo n~4 n~4 
n;;?!:4n.

L r. = L n + 1 n + 1 < + oo. n,H nHn(n-2)(n-3)n-1
Then a 4 < + oo and we can choose T = a 4 .

For fto be C"' up to zero we need

1 .v1
rtnl{mii'n~1 r.)' ~ (n-4)! (Cn)P Tyl < + 00 V p;

thus, we obtain the supplementary information thatj<Pl(O) = 0, V pEN. Clearly 0 with associated measure {1 = fis a solution. Thus we have built an infinitely differentiable/ such that (P) has two solutions.

(ii) Take H = R 2 ,f = 0. We intend to build a convex set K of cao boundary, such that with an initial velocity tangent to the boundary, we obtain two different solutions; one "along" the boundary, the other having an infinity of reflexions on it. We shall use the results and notations of the preceding paragraph. Let us define a continuous parametrized curve with values inC~ R 2 as follows: This curve will be continuously differentiable if

e' n 1 -i -(a) = e' n+ 1 1 -i -(a) . •p ( d + u ) •p ( d-u ) dt n dt n
Then, necessarily Pn -Pn+ 1 = 2 arctan vn. As vn = 24v 4 /n!, the series L Pn converges. Moreover, if we choose v 4 small enough, I Pn < <n/2, which means that t ~---+ nF(t) will have no tangent n=4 parallel to the imaginary axis. We have F"(t) = ei<tJ"-" 12 lf(t) on [an, an_ 1 ]. Butfis constructed in such a way that j<Pl(an) = 0 for all p ?: 0, n ?: 4. Therefore F is C"' on [0, TYMoreover, the sign of the curvature of F((O, T]) is the sign of fr 1 F 2 -fr 2 F 1 , where

F = F 1 + iF 2 .
We can easily check that f 1 F 2 -F 2 F 1 =f(t) ?: 0. We can thus see that

F([O, T]) is the boundary of a con vex set K of C ~ R 2 •
Take now initial conditions u 0 = 0, u 0 = a > U, and define a function r/la on [0, T] by

1 I' r/JJt) = ~ Jo IF( a) Ida.
Let <Pa be the reciprocal of r/la.

Then v(t) = F(<fta(t)) is a solution of(P) on [0, r/J 0 (T)].

In fact, v(t) E K, for all t E [0, r/la(T)].

d 2 v d • . dt2 = a dt [F(<f>a(t))/jF(<f>a(t))j].
As F(a) =I 0, for all a E [0, T], d 2 ujdt 2 is a bounded function which can be identified with a bounded measure. On the other hand, it is clear that d 2 v/dt 2 is normal to iJK, (dv/dt)is continuous at every point, jdv/dtj =a and the initial conditions are satisfied. Therefore u is a solution of(P) in the sense of Definition 1.

The other solution will be given by Clearly, v (t) E K for all t. We have

d +- v "(J -(a /a)= ae' n dt n d-- _v (a /a) = a eifJn+' dt n [ an an-1] on -, -- a a d2iJ .
dt 2 = 0 1ft E (an, an-J Therefore It is easy to check, using the interpretation of the measure associated with a solution of (P), (13), (14), that v is a solution of (P); clearly, the energy is conserved, and the initial conditions are satisfied.

Comments on this part. These results are closely connected with results on the propagation of singularities of a hyperbolic problem on a manifold with boundary. The first one obviously refers to diffraction in an angle. The second one was figured out by thinking of a tennis player who succeeds in making his ball bounce higher and higher, from a rest position, only by hitting it downwards. Professor L. Amerio told me that he had built an analogous example. The third type of counterexample is given, with a different construction by M. E. Taylor in his paper [START_REF] Taylor | [END_REF] concerning reflection of singularities of wave equations in an exterior domain of RN. When the complement of this domain is not convex, Taylor's theorem fails as there appear phenomena of non uniqueness of the wave front set. I cannot see, presently, how all these results could be taken in account together in reasonable mathematical theory. is in the interior of fi'K(u(t)). The local uniqueness is then clear. The only difficult case is when u(t) E oK, and ((d-u/dt (t)), n(u(t))) = 0. We need the following result.

LEMMA 2. If oK is of class C 3 and its gaussian curvature is strictly positive, then there exists no sequence of points of oK, (um)meN converging to U 00 , such that um is a reflexion point for all m, i.e. I um -um-1 I um -um-1 1 I um + 1 -um I I um + 1 -um I such that um+ 1 -um has a limit direction, and such that L lum+ 1 -uml < + OC.

Let us show that this lemma implies local uniqueness. With Uo E oK, (n(u(to)), (d-u/dt)(to)) = 0, then necessarily ((d+ u/dt) (t 0 ), n(u(t 0 ))) = 0. Suppose that there is no right neighbourhood of t 0 such that u(t) belongs tooK in all this neighbourhood. Then we can find a t 1 , arbitrarily near t 0 , such that u(t 1 )¢oK. There must exist at most a finite number of reflections between t 0 and t 1 , in order to satisfy Lemma 2. Then ((d + u/dt(t 0 )),n(u(t 0 ))) < 0 and we obtain a contradiction. Therefore there exists an '1 > 0 such that u(t) E oK for to ~ t ~ to + '1•

  Take H = R, K = R +, ¢ = 1/J the indicator function of K, i.e. ¢(x) = + oo ifx¢K ¢(x) = 0 ifxeK Then o¢(x) = {0} ifx > 0 o¢(x) = (-oo; OJ ifx = 0 o¢(x) = 0 if X< 0.

Fig.!.

  Fig.!.

  (9) ~Ju;.(t>Jl + cp;.(u;_(t)) = ~Jul + ¢;,(u 0 ) +I~ (u;,(s),f(s)) ds from which follows the inequality

  ) E N(t) /J-1../ -almost everywhere on [0, T].

  , and the conclusion of Part (a) of Theorem 1 holds.

Fig. 2 .

 2 Fig. 2.

  = ll•Jl, 1 _, 121 * p, 12 with e < 1• Clearly Y, = I on [s, I -s], supp Y, c: [0, I], andY, is coo. It is an easy exen:ise to check that 2 I Y,(s)(Is) ds -I Y,(s) ds = 0.

uFig. 3 .

 3 Fig. 3.

  which gives us u(t) = v,.(t -a.) on [a,., a,. + a,.] u(t) = v,.(t-a,.) -11. J:"+"" y(s)(t + s)ds on [a,.+ n,.,a,._ 1], v,.r,. = 11,.Yz(<,.a,.)2 v,. + v,.-1 = 11nY1(r,.a,.). Let vn-1 = O!,.V,.. Choose 0!,. = n for n ~ 4. This implies v 4 (n 2 -1)4! 12v 4 n 2 -1 11,.11,. = 2y1 n! = ~-~• Take v 4

4 .

 4 A UNIQUENESS THEOREM IN A PARTICULAR CASE THEOREM 2. Let <P = lj; K' f = 0. Assume that the boundary iJK of the closed convex set K is of class C 3 , and that its gaussian curvature is strictly positive. Then the problem (P) admits a unique solution on [0, + oo] in the sense of Definition 1. Moreover, if the initial data u 0 is given on oK and u1 is tangent to oK, then u runs along the geodesic of oK passing through Uo and tangent to u 1 with the speed lu 1 1. lfthe initial data are not such, then u is never tangent tooK, and it has a finite number of reflections in a finite time.Proof Denote by fl' K(u) the tangent cone to K at u, i.e . .?/ K(u) = v r(Ku) and by n(u) the T>O exterior unit normal to K at u. Remark that fi'K(u) = {v: (v, n(u)) ;:,: 0} for all u E oK.

l

  (um -um_ 1 , n(um)) (um -um+ 1 , n(um)) d ~T---=--=---,,=-= an lumum-11 lum-um+11 um-um-1 (um-um_l'n(um))n(um) = um+1-um -(um+1-um,n(um))n(um)

  be the center of a closed ball of radius p, contained in the interior of dom tj>. By general theorems, we may suppose that t/> is bounded on a + BP by a constant C.

	(11) We may therefore extract a new subsequence, still denoted by u;., such that ilc/J;.(u;.)-> J.l vaguely J: /ilcfJ;.(u;.(t))/ dt :s;; C' independent of A.. tiu_.(t)!l ~ tlutl 2 + t/>(uo) + !JIL2(0,T;H)(f~ !u_.(s)jldsy
	in M 1 ([0, T]; H), the set of bounded measures on [0, T] with values in H. In the sense of distribu-tions, d 2 u/dt 2 + J.l = f, which is precisely (3). ~tlutl 2 + t/>(uo) + ti!IL2co, T;HJ ( 1 + f~ lu_.(s)jl ds) If v is an arbitrary element of C 0 ([0, T]; H),
	by the relation x ~ (1 + x 2 )/2. Gronwall's lemma implies:	lim c/J ;.(v(t)) = c/J(v(t)). ;.-o
	t/>,.(u,.(t)) + ltu,~.(t)jl ~ (tlutl Let v be such that c/J(v)EI!(O, T). Then c/J(v;.) is also in L 1 (0, T). We have 2 + t/>(uo) + tlf!L'(O,T;H})exp(Tiflv,o.T;Hl) Set (10) (12) I: (c/J;.(v(t))-c/J;.(u;.(t))) dt ~I: (ilc/J;.(u;.(t)), v(t)-u;.(t)) dt.
	It is clear that the right-hand side tends to
			(J.I., v-u)
	as A. goes to infinity. We have	lim I: cP;.(u;.(t)) ~I: c/J;.(u;.(t)) dt :s;; I: c/J(u(t)) dt.
	Hence, taking the upper limit in (12), we get I: (c/J(v(t)) -c/J(u(t))) dt ~ (J.I., v -u), i.e. (4)
				For an arbitrary con-
	tinuous z such that jz(t)j ~ 1 for all t in [0, T], we may write
	(8tf> .. (u(t)), a + z(t) -u(t)) ~ tf> .. (a + pz(t)) -t/>J.(u,~.(t)).
	Integrating from 0 to T, we have p J: (otf>..(uit)),z(t))dt ~ CT + J: e:~.<-f,a-u,~.)dt ~
	( ~CT+ d;,a-u;. du	0 ) IT IT I du 12 IT 0 0 + dr" dt+	(f,a-u;)dt
	If we choose		
	we obtain the estimate		

We may therefore extract a subsequence, still denoted by u,~., such that

u_. -+ u in C 0 ([0, T]; H) strong du du. _,~. _.. -m L 00 (0 T: H) weak* dt dt ' ' t/>._(u)-"X in L 00 (0,

T)weak*. Astj>;.(u;) ~ E,!u_.-J_.u .. l ~ JTI.Eandtf>(J .. u_.) ~E. Wehave E ~ \i!}ttf>(JJ.u;.(t)) ~ tf>(u(t)) and u(t) e dom tj>, for all tin [0, T]. Hence we obtain (1) and (2). 2. Main estimate Let a

  is a sequence of points of dom ¢ n BJUJ converging

	to X	00	, we have	¢(x) ~ J~n; ¢(x.

) ~ J~n; (k/x.-xP/ + f/>(xp)) = f/>(xP) + Jx-xP/' which shows that x E dom ¢. 2. Lipschitzian extension of ¢/ 8 "<•ol' Denote by ({> the convex function equal to ¢ in dom ¢ u BJUJ and + w elsewhere. Obviously ({> is lower semicontinuous. Define a convex function x by X(X) = SUp{({>(y) + (z, X -y): y E int dom ({>and Z E o({>(y)}.

In fact xis a Lipschitzian extension of ({>Jdam.P: x(x) is never infinite, thanks to the relation x(x) ~ ({>(y) + k/x -yJ (clearly a({> is bounded by k on int dom ({>). If x E dom ({>, x(x) ~ ({>(x). On the other hand, given 8 > 0, there exists a Y, E int dom ({> and a z, E o({>(y,) such that X(X) ~ ({>(y.) + (z,, X -y.) + 8. Therefore x(x) ~ ({>(x) + 8.

  it were not the case, we could find a sequence v. with Pv. converging to u 0 , and a strictly positive number '1o such that(v.-PKovn, ill)~ '1o lutllv.-PKovJWe can see that (v. + Pv.)!iv. + Pv.l converges to a certain w, which must be inN, and therefore, we obtain a contradiction. We may assume 17(b) to be an increasing function of <5, such that

	(17)	iu;.(t)-v;_(t)l ~ ch J-x( k ~ + £ ;;). e(Et))
	(18)	Et lu;.(t)-v;.(t)i ~ kt + Ue(Et) + ;:ch .JI k 31 +• 4 !). e(Et). 2 1 t ( t 3 Et 4 )
	Proof Define a transformation Y;_ on CO([ 0, T] ; H) by IPKov-uol ~ b implies (v-PKov, ul) ~ '7(<5) lull
	Write now Then u;. satisfies (u ;.(t), u 1 ) = (u;.(ny'l), u 1 ) + (u ;.(ny'l), u 1 ) (t -ny'I) + ( f_,:r (f(s) -A ;.u ;.(s))(t -s) ds, u 1 ) (T;.w)(t) = Uo + tul +I (f(s)-o<f>)w(s)))(t-s)ds.
		T;.u;. = u;.. -ft _([u .. (s)-PK 0 u;.(s)],u 1 )(t-s)ds
		7ty'.l.	
		t312 +lflu !1 +k--17(Et) t2 ~A) 2	ft 1ty'X	(l/A.)Iu;.(s)-PKou;.(s)llu 1 l(t-s)ds
	From Proposition 1, and the estimate (11), we have:
	Therefore		
	and finally we obtain the estimate (17). The estimate (18) is a straightforward consequence of (17), thanks to the relation lti;.(t)-v).(t)l ~ r i(ot/JJ,(v;.(t))-o<f>;.(v.~.(t)l dt + r io<t>;.(v;.(t))-o<f>.~.(u.~.(t))i dt.
	End of proof of Theorem I, part b.	

LEMMA I. u;. and v;. satisfy the inequalities: Estimate r;w -r;w by a standard recurrence argument: i(T;.w-T;.(w)(t)l ~ ~~~~wwllco([o.toll

Then

As we know that r;w converges to u;. as n ~ oo, for any initial w, and on any compact time interval, we may write Take w = v;. defined by (15).

(~v).v;.)(t) = Uo + tul -I: o<f>;.(v .. (s))(ts) ds-Uo -tul + L(ot/Jc);.(v_.(s))(ts) ds.

If we assume t 0 ~ p/E and). ~ ). 0 , we may apply the conclusions of Proposition I for x = v;.(t).

Denote ii 1 = 2P cU 1 -u 1 . Clearly, ii 1 is an element of C. Let us notice that, for any given 11 > 0, there exists a b(17

) > 0 such that, if IPKovu 0 1 ~ b(17), then (v-PK 0 v,ii 1 ) ~ 11lii 1 llv-PKovl.

If ~ (u;.(ny'I), u 1 ) + (u .. (ny'I), u 1 )(t + ny'I) J: (1/A.)Iu;.(s) -P Kou;.(s)l ds ~ C' + kT. We obtain, in the limit as A.-+ 0 (u(t) -U 0 , U 1 ) ~ lu 1 l 2 t -o(t), from Where (d;tu(O),al) ~ lutl 2 •

On the other hand, as a result of

(6)

, and of the fact that¢ is continuous in a neighbourhood of u 0 Conclusion (8) is now clear.

  Let us first prove the local uniqueness at every point t. If u(t) e int K, or if u(t) e oK and (d-ujdt) (t) is the interior of fi'K(u(t)), the local uniqueness is immediate. If u(t) E oK, and d-ujdt (t) ¢ fi'K(u(t)), then

	and		
	d+u -dt	d-u (t) --dt	(t) = kn(u(t))
	according to Theorem 1.		
	Necessarily the vector		

l d+u I ~d-u I dt(t) = dt(t). d + u d-u (d-u ) dt (t) = dt (t) -2 dt (t), n(u(t)) n(u(t))

Let fl be the measure associated with u, and define a real valued measure (fl, z) with z E C 0 ([0, T]; H) by ((fl, z), <P > = (fl, z <P > V </1 E C 0 ([0, T]). Lets = (w -(w, n(u))n(u)) x with wE H, and X E C 0 ([0, T]), supp x c: [t 0 , t 0 + 17]. It is clear that s(t) E fl K(u(t)), and sis universally integrable on [0, T]. According to the interpretation of Jl, (13) and ( 14), necessarily (fl, s> = 0.

So

If we set v = (pj(to.to+>~l' n(u)), we may then identify pj(to,to+ nl and n(u)v. Suppose u(t 0 ) = 0, which does not restrict the generality, and denote n(t 0 ) = n 0 , uN = -(u, n 0 ), u' = u -(u, n 0 )n 0 . Represent oK in a neighbourhood of 0 as follows:

Herejis convex, twice continuously differentiable, and Df(O) = 0. We differentiate the relation uN(t) = j(u'(t)) on [t 0 , t 0 + ' JJ.

dt ts contmuous, as dt = dt , dtdt = kn(u (1or a certam real k , and

We now differentiate (19) in the sense of distributions:

Therefore, v can be identified with a function and

This is precisely the equation of the geodesics of oK. As oK is of class C 3 , we know there is uniqueness. By a classical argument, local uniqueness implies global uniqueness.

To complete the proof of Theorem 2, we need only to establish Lemma 2.

Proof of Lemma 2. Suppose there. exists a sequence um E oK such that as m-+ w,

In a neighbourhood U of uoo we have the representations of oK given by

where fm is of class C 3 and Dfm(O) = 0 ;fm is convex.

Obviously (21)

On the other hand,

with fm(Pm(um-1 -um))

The function h does not depend on m; lim h(r) = 0, and h is increasing r~o From ( 21) and ( 22) we obtain:

Since we have assumed that the gaussian curvature of oK at U 00 is strictly positive, "m ;;:=: K 0 > 0 form large enough. Dividing both sides of (23) by IP m(um_ 1 -urn) I we obtain Ko/IP m(Um+l-u'")l_ t/ ~ IIPm(um+l-um)l_ t/ h(IPm(um+l-um)l) IPm(um-1-u,.)l IP'"(um-1-u'")l + h(IP'"(urn-1-u'")l) + h(IP'"(um+l-u'")i).

If we choose m 0 such that On the other hand we have Therefore P m(um-tu'") -f'"(P '"(um-t -u'")) n(u'") = um-1u'".

So we have a constant K such that (25) and analogously

From ( 24), ( 25) and (26) we obtain

Since lm converges to 0, we can find an arbitrarily large m 0 such that lm ~ lmo' for all m ~ m 0 . Then Therefore It is clear that we can choose m 0 so large that the right hand side of this inequality is arbitrarily large. We obtain therefore a contradiction, as um+ 1 -um is supposed to have a limit direction when m tends to infinity. This completes the proof of Theorem 2.

The main results of this paper have been stated in ref. [6].