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Résumé

We prove the consistency of an adaptive importance sampling stra-
tegy based on biasing the potential energy function V of a diffusion
process dX0

t = −∇V (X0
t )dt + dWt ; for the sake of simplicity, per-

iodic boundary conditions are assumed, so that X0
t lives on the flat

d-dimensional torus. The goal is to sample its invariant distribution
µ = Z−1 exp

(

−V (x)
)

dx. The bias Vt−V , where Vt is the new (random
and time-dependent) potential function, acts only on some coordinates
of the system, and is designed to flatten the corresponding empirical
occupation measure of the diffusion X in the large time regime.

The diffusion process writes dXt = −∇Vt(Xt)dt+ dWt, where the
bias Vt−V is function of the key quantity µt : a probability occupation
measure which depends on the past of the process, i.e. on (Xs)s∈[0,t].
We are thus dealing with a self-interacting diffusion.

In this note, we prove that when t goes to infinity, µt almost surely
converges to µ. Moreover, the approach is justified by the convergence
of the bias to a limit which has an intepretation in terms of a free
energy.

The main argument is a change of variables, which formally vali-
dates the consistency of the approach. The convergence is then rigo-
rously proven adapting the ODE method from stochastic approxima-
tion.

∗michel.benaim@unine.ch,brehier@math.univ-lyon1.fr
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1 Introduction

Computing the average µ(ϕ) =
∫

D
ϕ(x)µ(dx) of a function ϕ : D → R,

with respect to a probability distribution µ defined on D ⊂ R
d, is typically

a challenging task in many applications (e.g. chemistry, statistical physics,
see e.g. [5]), since usually d is large and µ is multimodal.

In the sequel, we assume that D = T
d = (R/Z)d is the flat d-dimensional

torus, and that µ writes

µ(dx) = µβ(dx) =
exp

(

−βV (x)
)

Z(β)
dx, (1)

where V : T
d → R is a smooth potential function, β ∈ (0,+∞) is the

inverse temperature, dx denotes the Lebesgue measure on T
d and Z(β) is

a normalizing constant. In this context, the multimodality of µβ follows, in
the case of so-called energetic barriers, from the existence of several local
minima of V .

A standard approach to computing µβ(ϕ) is to consider the following
SDE on T

d (overdamped Langevin dynamics) :

dX0
t = −∇V (X0

t )dt+
√

2β−1dWt, X0
0 = x. (2)

where
(

W (t)
)

t≥0
is standard Brownian Motion on T

d. Indeed, it is well-

known that, for any continuous function ϕ : Td → R almost surely

1

t

∫ t

0
ϕ(X0

r )dr →
t→+∞

∫

Td

ϕ(x)µβ(dx), (3)

However, this convergence may be very slow, when β is large and V has
several minima : the stochastic process X0 is then metastable, and hopping
from the neighborhood of one local minimum of V to another is a rare event
which may have a strong influence on the estimation of averages µβ(ϕ).

Many strategies based on importance sampling techniques – self-healing
umbrella-sampling [7], well-tempered metadynamics [1], Wang-Landau al-
gorithms, adaptive biasing force, etc... – have been proposed and applied to
improve the convergence to equilibrium of stochastic processes in order to
compute approximations of µβ. We refer for instance to [6] and references
therein for a mathematical review.

In this work, we focus on an Adaptive Biasing Potential (ABP) method,
given by the system (4). The method was designed in [4, 7] for problems
in chemistry, and up to our knowledge no rigorous general mathematical
analysis has been performed so far. Precisely, in (2), V is replaced with a
time-dependent and random potential function Vt which is modified adap-
tively, using the history of the process up to time t : At depends on the
values of the associated stochastic process Xr for all 0 ≤ r ≤ t. Here,

2



Vt = V − At ◦ ξ, where, for some m ∈ {1, . . . , d− 1}, At : Tm → R and
ξ : Td → T

m is a smooth function, referred to as the reaction coordinate

mapping. In applications, usually m ∈ {1, 2, 3}. To simplify further the
presentation, we assume that ξ(x1, . . . , xd) = (x1, . . . , xm) ; in this case,
z = (x1, . . . , xm) = ξ(x1, . . . , xd) (resp. z

⊥ = (xm+1, . . . , xd)) is interpreted
as the slow (resp. fast) variable.

The dynamics of the ABP method is given by the following system



















dXt = −∇
(

V −At ◦ ξ
)

(Xt)dt+
√

2β−1dW (t)

µt =
µ
0
+
∫
t

0
exp

(

−βAr◦ξ(Xr)
)

δXr
dr

1+
∫
t

0
exp

(

−βAr◦ξ(Xr)
)

dr

exp
(

−βAt(z)
)

=
∫

Td K
(

z, ξ(x)
)

µt(dx), ∀z ∈ T
m,

(4)

where a smooth kernel function K : Tm×T
m → (0,+∞), which is such that

∫

Tm K(z, ζ)dz = 1,∀ζ ∈ T
m, is introduced to define a smooth function At

from the distribution µt. The unknows in (4) are the stochastic processes
t 7→ Xt ∈ T

d, t 7→ µt ∈ P(Td) (the set of Borel probability distributions
on T

d, endowed with the usual topology of weak convergence of probabi-
lity distributions), and t 7→ At ∈ C∞(Tm) (the set of infinitely differentiable
functions on T

m). In addition to (4), arbitrary (and deterministic, for simpli-
city) initial conditions Xt=0 = x, µt=0 = µ0 and At=0 = A0 are prescribed.

The third equation in (4) introduces a coupling between the evolutions
of the diffusion Xt and of the weighted empirical distribution µt : then X
can be seen as a self-interacting diffusion process, like in [3].

Our main result is the consistency of the ABP approach.

Theorem 1.1 Almost surely, µt →
t→+∞

µβ, in P(Td).

With standard arguments, Theorem 1.1 yields almost sure convergence
of At in Ck(Tm), for all k ∈ N.

Corollary 1.2 Set exp
(

−βA∞

)

=
∫

K(·, ξ(x))µβ(dx). Then almost surely,

At →
t→+∞

A∞, in Ck(Tm), ∀ k ∈ N.

The limit A∞ is an approximation of the function known as the free

energy A⋆ (see (5)), which depends on V , β and ξ. As explained in Section 2,
the construction of the adaptive dynamics (4) is motivated by an efficient
non-adaptive biasing method, (6), which depends on A⋆. Computing A⋆ is
the aim of many algorithms in molecular dynamics (see [6]), and adaptive
methods are among the most used in practice. Our result, Theorem 1.1,
answers positively the important question of the consistency of ABP method.

The remaining part of the article is organized as follows. In Section 2,
we define the free energy function A⋆, and explain why non-adaptive and
adaptive biaising methods which are related to this function are interesting
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in the context of metastable dynamics (2). In Section 3, we detail the stra-
tegy for the proof of Theorem 1.1 : we prove a stability estimate for At, and
then introduce a random change of variables, based on a change of time. We
are then in position to adapt the strategy of proof from [3] in our setting,
which is based on the ODE method from stochastic approximation. The
main essential role of the change of variables is the identification of the limit
flow.

The main result Theorem 1.1 holds in a more general setting, with ap-
propriate modifications, than that of the present paper. For instance, the
overdamped Langevin dynamics may be defined on the non-compact space
R
d instead of Td ; one can also consider the (hypoelliptic) Langevin dyna-

mics, or infinite-dimensional dynamics (parabolic SPDEs). It is also possible
to study the efficiency of the method in terms of a Central Limit Theorem.
These generalizations will be studied in [2].

2 Free energy and construction of the ABP dyna-

mics (4)

The aims of this section are to explain first how the ABP method (4), is
constructed in a consistent way (the limit in Theorem 1.1 is µβ) ; and second
why it is expected to be efficient (a rigorous analysis of the efficiency is out
of the scope of this work).

Observe that exp
(

−βA∞(z)
)

=
∫

Tm K(z, ζ) exp
(

−βA⋆(ζ, β)
)

dζ, where
A⋆(·, β) is the free energy (at temperature β−1), defined by : for all z ∈ T

m

exp
(

−βA⋆(z, β)
)

=

∫

Td−m

exp
(

−βV (z, z⊥)
)

Z(β)
dz⊥. (5)

Usually, K(z, ζ) = Kǫ(z, ζ) = 1
ǫ
K̃
(

(ζ − z)/ǫ
)

, where ǫ ∈ (0, 1) and K̃ :
R
m → (0,+∞) is symmetric, smooth, with compact support in [−1/2, 1/2] ;

then Aǫ
∞ converges to A⋆(·, β), in C∞. Choosing ǫ sufficiently small, At

almost surely approximates the free energy A⋆(·, β) when t → +∞, thanks
to Corollary 1.2.

Equation (5) means that exp
(

−βA⋆(z, β)
)

dz ∈ P(Tm) is the image
µβ

(

ξ−1(·)
)

of µβ by ξ. The free energy gives an effective potential along
ξ, which is chosen in practice such that

(

ξ(X0
t )
)

t≥0
is metastable ; this is re-

lated to µβ
(

ξ−1(·)
)

being metastable, for instance when A⋆(·, β) has several
local minima.

This is why in many applications, computing free energy differences
A⋆(z1, β)−A⋆(z2, β) is essential, see [6]. The free energy function also theo-
retically provides efficient importance sampling algorithms ; however these
algorithms can only be implemented if A⋆ is explicitly known, and adaptive
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strategies allow to circumvent this practical difficulty. Define biased proba-
bility distribution and dynamics

µ⋆β =
exp

(

−β
[

V (x)−A⋆(ξ(x), β)
])

Z(β)
dx

dX⋆
t = −∇

[

V −A⋆(ξ(·), β)
]

(X⋆
t )dt+

√

2β−1dW (t),

(6)

by replacing the original potential function V with the biased potential
function V −A⋆

(

ξ(·), β
)

in (1) and (2). Note that µ⋆β is the unique invariant
distribution of X⋆. By construction, it is easy to check that the image by ξ
of µ⋆β is the uniform distribution dz on T

m, i.e. the associated free energy is
equal to 0.

Now define (unweighted) empirical distributions associated with (2) and (6)
respectively :

ρ0t =
1

t

∫ t

0
δX0

r
dr , ρ⋆t =

1

t

∫ t

0
δX⋆

r
dr.

Then, by (3), the image by ξ of ρ0t , resp. ρ
⋆
t , converges almost surely in

P(Tm), to exp
(

−βA⋆(z, β)
)

dz, resp. dz. Thus the dynamics in (6) reaches
asymptotically a flat histogram property in the z = ξ(x) direction ; the
exploration of Tm is thus faster for ξ(X⋆) than for ξ(X0), and in turn the
convergence of X⋆ to µ⋆β is expected to be faster than the convergence of

X0 to µβ.
Finally, the construction of the ABP method (4), in particular the use

of weighted empirical distributions µt, is motivated by the following almost
sure convergence : for any continuous ϕ : Td → R,

1
t

∫ t

0 exp
(

−βA⋆(ξ(X
⋆
r ), β)

)

ϕ(X⋆
r )dr

1
t

∫ t

0 exp
(

−βA⋆(ξ(X⋆
r ), β)

)

dr
→

t→+∞
µ⋆β

(

ϕ exp
(

−βA⋆(ξ(·), β)
))

= µβ(ϕ).

(7)
Theorem 1.1 thus extends this consistency property from a non-adaptive (6)
to an adaptive dynamics (4).

3 Proof of Theorem 1.1

In this section, we provide the main ideas of the proof of Theorem 1.1.Some
technical arguments are skipped, and will be fully detailed in [2], in a more
general framework. We first state an important property of At, and then
introduce a change of variables, which helps us identifying a more standard
form for self-interacting diffusion processes. We then adapt in our context
the arguments from [3], to establish the consistency of the ABP approach
thanks to the ODE method from stochastic approximation theory.
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3.1 Properties of the ABP dynamics (4)

Our first task in the study of the ABP dynamics is to study the well-
posedness of the equation, i.e. the existence of a unique global solution
t 7→ (Xt, µt, At) ∈ T

d × P(Td) × C∞(Tm). In order to apply a standard
fixed point/Picard iteration strategy, it is essential to control the Lipschitz
constant of ∇

(

At◦ξ
)

(first equation in (4)). This key stability property is en-

sured as follows. Let m = minz,ζ∈Tm K(z, ζ), and M (n) = maxz,ζ |∂
n
zK(z, ζ)|

for n ∈ {0, 1}, where ∂nz denotes the differential of order n, and introduce

A =

{

A ∈ C∞(Tm) | min
z∈Tm

e−βA(z) ≥ m, max
z∈Tm

|∂nz e
−βA(z)| ≤M (n), n = 0, 1

}

.

Then A is left invariant by the evolution t 7→ At, i.e. A0 ∈ A implies At ∈ A
for all t ≥ 0, almost surely.

3.2 Change of variables

The stochastic process t 7→ µt, with values in P(Td), is the unique solu-
tion of the random Ordinary Differential Equation (ODE), interpreted in a
weak sense (considering continuous bounded test functions) :

dµt
dt

=
θ′(t)

1 + θ(t)

(

δXt
− µt

)

, (8)

where θ(t) =
∫ t

0 exp
(

−βAr(ξ(Xr))
)

dr. The random function θ : [0,+∞) →
[0,+∞) is a C1-diffeomorphism : indeed for all t ≥ 0, almost surely θ′(t) =
exp

(

−βAt(ξ(Xt))
)

∈ [m,M ]. This fundamental property allows us to apply
the following change of variables :

s = θ(t) , t = θ−1(s) ; Ys = Xt , νs = µt , Bs = At. (9)

Observe that s = θ(t) →
t→+∞

+∞ and that t = θ−1(s) →
s→+∞

+∞, almost

surely. Instead of studying the asymptotic behavior of µt when t → +∞, it
thus equivalent to study the asymptotic behavior of νs when s → +∞. In
the new variables (9), the ABP dynamics (4) writes











dYs = −∇
(

V −Bs ◦ ξ
)

(Ys)e
βBs(ξ(Ys))ds+

√

2β−1eβBs(ξ(Ys))dW̃ (s)

νs =
ν0+

∫
s

0
δYr dr

1+s

exp
(

−βBs(z)
)

=
∫

Td K(z, ξ(x))νs(dx),

(10)
where W̃ is a new standard Brownian motion on T

d, defined from W and
θ. Notice that νs is a nonweighted empirical distribution and that s 7→ νs
satisfies the simpler random ODE

dνs
ds

=
1

1 + s

(

δYs
− νs

)

. (11)
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The change of variable (9) both removes θ(t) from (8) as well as the weigths
exp

(

−βAt(ξ(Xt))
)

= θ′(t) from (4).
Thanks to Equation (10), an analogy with the framework of [3] can now

be made. Even though we cannot directly apply the results therein, due to
the specific form of the dynamics on Y , we follow the same strategy for the
analysis of νs when s→ +∞ : we use the ODE method.

3.3 Application of the ODE method and sketch of proof of

Theorem 1.1

The guideline of the so-called ODE approach we wish to apply is as
follows : there is an asymptotic time-scale separation between the (fast)
evolution of Ys and the (slow) evolution of νs (and of Bs). The asymptotic
behavior of νs is then determined by a so-called limit ODE, where δYs

is
replaced in (11) with the unique invariant probability distribution of the
following SDE on T

d,

dY B
s = −∇

(

V −B ◦ ξ
)

(Ys)e
βB(ξ(Ys))ds+

√

2β−1eβB(ξ(Ys))dW̃ (s), (12)

i.e. the first (fast) equation of (10) where the slowly varying variable Bs is
frozen at an arbitrary B ∈ A. In fact, we have the following fundamental
result : the invariant distribution of (12) does not depend on B.

Proposition 3.1 For any smooth B : Tm → R, the unique invariant dis-

tribution of (12) is µβ.

Proposition 3.1 is essential and its proof is very simple. Indeed, introduce
the generator LB

X of XB , resp. the unique invariant distribution of XB ,
denoted by µBβ (dx) = ZB(β)−1 exp

(

−β(V −B ◦ ξ)(x)
)

dx, with the diffusion

dXB
t = −∇

(

V −B ◦ξ
)

(Ys)dt+
√

2β−1dW (t). Then the generator LB
Y of Y B

defined by (12) is equal to exp
(

βB ◦ ξ
)

LB
X . Proposition 3.1 is a consequence

of the following identity : for any smooth φ,ψ : Td → R,
∫

Td

φ(y)LB
Y ψ(y)µβ(dy) =

∫

Td

φ(x)LB
Xψ(x)µ

B
β (dx) = 0.

We now outline the end of the proof of Theorem 1.1, adapting the ar-
guments from [3] in our original case ; details in a more general setting are
given in [2]. The ODE method suggests us to define Γ(σ, s, ν) = Γσ−s(ν),
for any σ ≥ s and ν ∈ P(Td), where Γs(ν) = e−sν+(1− e−s)µβ →

s→+∞
µβ is

the solution of dΓs

ds
= µβ − Γs with Γ0(ν) = ν. To state (without proof) our

last techincal result, we recall that weak convergence in P(Td) is associated
with the following metric

d
(

µ1, µ2
)

=

+∞
∑

n=1

1

2n
min

(

1, |

∫

Td

fndµ
1 − fndµ

2|
)

,
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for a given family
(

fn
)

n≥1
of C∞ functions, which is dense in C0(Td).

Proposition 3.2 For any S ≥ 0, almost surely

∆(s, S) = sup
σ∈[0,S]

d
(

νexp(s+σ),Γ(σ, s, νs)
)

→
s→+∞

0,

i.e. almost surely s 7→ νs is an asymptotic pseudo-trajectory of the semi-

flow Γ.

We refer to [3] for a proof of a similar result in a different context, and to [2]
for a detailed proof in a more general context ; the main difference between
the two situations is the use of a specific Poisson equation related to the
generator of (12).

To conclude, observe that d
(

νexp(s), µβ
)

≤ ∆(s−S, S)+d
(

ΓS(νexp(s)), µβ
)

.
Letting first s, then S, go to +∞, Proposition 3.2 implies the main result of
this paper, Theorem 1.1.
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