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Abstract

A classical compression method for trees is to represent them by directed acyclic graphs. This
approach exploits subtree repeats in the structure and is efficient only for trees with a high level of
redundancy. The class of self-nested trees presents remarkable compression properties because of the
systematic repetition of subtrees. In this paper, we provide a better understanding of this specific family
of trees and we introduce a lossy compression method that consists in computing the reduction of a self-
nested structure that closely approximates the initial data. We compare two versions of our algorithm
and a competitive approach of the literature on a simulated dataset.

Keywords: Unordered trees, Self-nested trees, Directed acyclic graphs, Lossy compression

1 Introduction
Trees are commonly used to represent hierarchical data appearing in computer science as XML files, suffix
trees, dictionaries, or language expression structures. Compression methods often take advantage of repeated
substructures appearing in the tree. As it is explained in [4], one often considers the following two types of
repeated substructures: subtree repeat and tree pattern repeat.

Subtree repeat. A subtree (sometimes referred to as complete subtree in the literature) is a subgraph
of a tree consisting of a vertex and all its descendants. A subtree repeat is an isomorphic occurence of
this pattern in the tree. DAG compression [5, 6, 13, 14] uses this type of repeated substructures.

Tree pattern repeat. A tree pattern is any connected subgraph of a tree. A tree pattern repeat is an
identical occurence of a tree pattern appearing in the tree. Tree grammars [7, 17, 18] and top tree
compression [4] use this type of repeated substructures.

A survey on this topic may be found in [19] in the context of XML files.

In this paper, we restrict ourselves to DAG compression, which consists in building a Directed Acyclic
Graph (DAG) that represents a tree without the redundancy of its identical subtrees. Previous algorithms
have been proposed to allow the computation of the DAG of an ordered tree with complexities ranging
in O(n2) to O(n) [10], where n is the number of vertices of the tree. In the case of unordered trees, two
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different algorithms exist [14, 2.2 Computing Tree Reduction], which share the same time-complexity in
O(n2 ×m× log(m)), where n is the number of vertices of the tree and m denotes its outdegree. From now
on, we limit ourselves to unordered trees and focus on the question of the compression rate achieved by DAG
compression scheme. Of course, this is a complex problem that does not admit a simple answer because
it depends on both the considered scenario and the chosen criterion. Here, we consider a compression rate
that takes into account both the numbers of vertices and edges of the structures: ρ is defined as 1 minus the
ratio of the number of vertices and edges of the DAG over the number of vertices and edges of the initial
tree. Nevertheless, one may find in [5, Theorems 29 and 30] first theoretical elements to address this difficult
question: the average numbers of vertices Nn and of edges En of the DAG related to a tree randomly chosen
with uniform distribution among unlabeled unordered trees with n vertices behave as

Nn =

√
ln(4)

π

n√
ln(n)

(
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(
1

ln(n)
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As a consequence, the average compression rate ρn = 1− (Nn + En)/(2n− 1) is of order

ρn = 1− 2

√
ln(4)

π ln(n)

(
1 +O

(
1

ln(n)

))
,

which may be deemed to converge insufficiently fast to 1: for instance, one has ρ100 ' 38% and ρ1000 ' 49%.
In addition, these average results do not take into account the high dispersion of the potential compression
rates among unordered trees. We shall present two opposite examples. The linear tree is defined as follows:
each vertex has exactly one child, except the final leaf. This structure is not compressed at all by DAG
procedure, that is to say ρ = 0. It should be remarked that the number of vertices of the DAG of a tree of
height h is at least h + 1. In other words, the DAG only provides a width compression of the initial tree.
Interestingly, a complementary strategy has been developed in [2] to compute height compression of a DAG
in polynomial-time. Actually, only trees with a high level of redundancy in their subtrees are efficiently
compressed by their DAG version. A good example of this phenomenon is provided by the topological
structure of some plants. The authors of [14] model plants by tree graphs and propose in particular to
compress a rice panicle with 843 vertices (see [14, Figure 19]): they obtain a complex DAG (see [14, Figure
20]) with 106 vertices and 162 edges that achieves a good compression rate ρ ' 84%.

Trees that are the most compressed by DAG compression scheme present the highest level of redundancy
in their subtrees: all the subtrees of a given height must be isomorphic. In this case, regardless of the number
of vertices, the DAG related to a tree T has exactly h+ 1 vertices, where h denotes the height of T , which
is the minimal number of vertices that may be reached. This family of trees has been introduced in [14,
Definition 7] under the name of self-nested trees. According to the previous remarks, a quite natural lossy
compression method could be to approximate a tree by a self-nested structure that is next highly compressed
by DAG method. If the self-nested approximation accurately represents the data to compress, one should
obtain a lossy compression algorithm with high compression rates and low error rates. This idea has been
developed in [14]: motivated by biological considerations, the authors propose to add a minimum number of
vertices to a tree for obtaining a self-nested structure (called Nearest Embedding Self-nested Tree, NEST)
that is next compressed. NEST estimate of a tree T may be computed in O(h2 ×m), where h denotes the
height of T and m its outdegree.

In this article, we build on previous work and provide a better understanding of the class of self-nested
trees that has never been studied in the literature. First of all, we investigate the combinatorics of this
family under some natural conditions on the height and the outdegree (see Section 3). We then introduce a
distance on the space of unordered trees in order to quantify the quality of a given self-nested estimate of
a tree structure. We define in Subsection 4.1 an edit distance δ from the edit operations consisting in leaf
insertion and deletion, with the same unit cost. We show that the computation of δ reduces to a minimum
cost flow problem (see Subsection 4.3) which time-complexity is polynomial (see Proposition 10). We identify
the least self-nested structure with respect to this edit distance, i.e., the structure that is the farthest to a
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self-nested tree (see Proposition 12). These results show that self-nested trees are very rare, while still being
relatively close to any unordered tree. Furthermore, we state through two examples that some quantities
may be computed on self-nested trees faster than on general unordered trees (see Lemma 2: computation of
the number of vertices of a tree and Proposition 11: computation of the edit distance). All these comments
establish that self-nested trees provide a very simple structure that is well-adapted to approximate unordered
trees.

The second aim of this paper is to propose an alternative solution to NEST approximation of a tree.
Only adding vertices may appear restrictive in particular without a specific motivation coming for example
from biology as in [14]. Thus one may expect better self-nested estimates of a tree than NEST solution. In
this context, the best idea would be to compute a projection on self-nested trees of the tree structure that
we want to compress. This question belongs to the class of NNS (Nearest Neighbor Search) problems, called
post office problems in [15], referring to the question of assigning to a residence the nearest post office. More
precisely, the problem on which we focus is an NNS in a non-ordered discrete data space. Limited work has
been reported in the literature for these very complex queries [16]. The discrete state space considered in
this work consists of unordered trees, which makes it necessary to use the adapted tree edit distance δ. Only
exhaustive search would allow for computing the nearest self-nested tree of a given data. Here, we introduce
two algorithms called RFC (Replace Forests by their Centroid) and RFC+ (RFC improved by local pruning)
that provide accurate self-nested estimates of a tree (see Algorithms 2 and 4). Their time-complexity is
investigated in Propositions 15 and 16, while their efficiency – in particular compared to NEST algorithm –
is illustrated on simulated datasets in Section 6.

The paper is organized as follows. Section 2 is devoted to the presentation of the concepts of interest in
this paper, namely unordered trees, self-nested trees and tree reduction. Combinatorics of self-nested trees
is presented in Section 3. Section 4 deals with the edit distance δ on the space of unordered trees used in
this article. Our approximation algorithms are presented in Section 5, while Section 6 gathers the numerical
results. Finally, most of the long proofs have been deferred to Appendices A and B.

2 Preliminaries
This section is devoted to the precise formulation of the structures of interest in this paper, among which
the class of non-plane rooted trees T, the set of self-nested trees Tsn and the concept of tree reduction.

2.1 Towards tree reduction
Directed graphs. A finite directed graph or graph is a pair G = (V,E) where V denotes the finite set of
vertices, and E denotes a finite set of ordered pairs of vertices called edges. If (x, y) is an edge of the graph
G, x is a parent of y and y is a child of x. In all the sequel, child(x) denotes the set of children of vertex x.
A path from a vertex x to a vertex y is a sequence of edges (ξk, ξk+1)1≤k≤M−1 such that ξ1 = x and ξM = y.
x is called an ancestor of y if x = y or if there exists a path from x to y, and y is then called a descendant
of x. The ancestors of y that are different from y are referred to as proper ancestors.

Connected directed graphs. A chain from a vertex x to a vertex y is a sequence of vertex pairs
{ξk, ξk+1}1≤k≤M−1 such that ξ1 = x, ξM = y and for any k, either (ξk, ξk+1) or (ξk+1, ξk) is an edge.
Two vertices x and y are connected if there exists a chain from x to y. A graph G is connected if any pair
of vertices are connected.

Rooted trees. τ is a rooted tree if τ is a connected graph containing no cycle, that is, without chain from
any vertex x to itself, and such that there exists a unique vertex root(τ), called the root, which has no parent,
and any vertex different from the root has exactly one parent. The leaves of τ are all the vertices without
children. Their set is denoted leaves(τ). The height of a vertex x may be recursively defined as height(x) = 0
if x is a leaf of τ and height(x) = 1 + maxy∈child(x) height(y) otherwise. The height of the tree τ is defined
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as the height of its root, height(τ) = height(root(τ)). The outdegree deg(τ) of τ is the maximal branching
factor that can be found in τ , that is deg(τ) = maxx∈τ #child(x)1.

Non-plane trees. In the present paper, we consider unordered trees for which the order among the sibling
vertices of any vertex is not significant. A precise characterization is obtained from the additional definition
of isomorphic trees. Let τ1 = (V1, G1) and τ2 = (V2, G2) two rooted trees. A one-to-one correspondence
ϕ : V1 → V2 is called a tree isomorphism if, for any edge (x, y) ∈ E1, (ϕ(x), ϕ(y)) ∈ E2. Structures τ1 and
τ2 are called isomorphic trees (denoted τ1 ≡ τ2) whenever there exists a tree isomorphism between them.
It should be noted that one may easily determine if two n-vertex trees are isomorphic in O(n) time (see [1,
Example 3.2 and Theorem 3.3]). The existence of a tree isomorphism ≡ defines an equivalence relation on
the set of rooted trees. The class of unordered or non-plane trees may be defined as the equivalence classes
for the relation ≡, that is the quotient set of rooted trees by the existence of a tree isomorphism. One may
refer the reader to [12, I.5.2. Non-plane trees] for more details on this combinatorial class.

Tree reduction. Let us now consider the equivalence relation ≡ on the set of the subtrees of a tree τ .
We consider the quotient graph Q(τ) = (V≡, E≡) obtained from τ using this equivalence relation. V≡ is the
set of equivalence classes on the subtrees of τ , while E≡ is a set of pairs of equivalence classes (C1, C2) such
that C2 is (isomorphic to) a subtree of C1 and height(C1) = height(C2) + 1. In light of [14, Proposition
1], the graph Q(τ) is a directed acyclic graph (DAG), that is a connected directed graph without path from
any vertex x to itself. Let (C1, C2) be an edge of the DAG Q(τ). We define N(C1, C2) as the number of
occurrences of a tree of C2 as a subtree of any tree of C1. The tree reduction R(τ) is defined as the quotient
graph Q(τ) augmented with labels N(C1, C2) on its edges (see [14, Definition 3 (Reduction of a tree)]) for
more details). Intuitively, the graph R(τ) represents the original tree τ without its structural redundancies
(see Figure 1).

3 2

1 2

1

Figure 1: A rooted tree τ (left) and its reduction
R(τ) (right). In the tree, roots of isomorphic
subtrees are colored identically. In the quotient
graph, vertices are equivalence classes colored ac-
cording to the class of isomorphic subtrees of τ
that they represent.

3

3

1

Figure 2: A self-nested tree τ (left) and its linear
reduction R(τ) (right). In the tree, all the sub-
trees of the same height are isomorphic and their
roots are colored identically. The quotient graph
is a linear DAG in which each vertex represents
all the subtrees with the same height.

2.2 Self-nested trees
A subtree τ [x] rooted in x is a particular connected subgraph of τ = (V,E). Precisely, τ [x] = (V [x], E[x])
where V [x] is the set of the descendants of x and E[x] is defined as

E[x] = {(ξ, ξ′) ∈ E : ξ ∈ V [x], ξ′ ∈ V [x]} .

A tree τ is called self-nested (see [14, III. Self-nested trees]) if for any pair of vertices x and y, either the
subtrees τ [x] and τ [y] are isomorphic, τ [x] ≡ τ [y], or one is (isomorphic to) a subtree of the other. This
characterization of self-nested trees is equivalent to the following statement: for any pair of vertices x and y
such that height(x) = height(y), τ [x] ≡ τ [y], i.e., all the subtrees of the same height are isomorphic.

A linear DAG is a DAG containing at least one path that goes through all its vertices. Linear DAGs are
tightly connected with self-nested trees and thus play a central role in our investigations about self-nested

1For the sake of simplicity, we often write x ∈ τ instead of x ∈ V , where τ = (V,E) is a rooted tree.
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trees. We also introduce the notion of direct subtree of a vertex. Let τ be a rooted tree and x be one of its
vertices. For any vertex y ∈ child(x), the subtree τ [y] is called a direct subtree of x in τ .

Proposition 1 (Godin and Ferraro [14]) A tree τ is self-nested if and only if its reduction R(τ) is a
linear DAG.

Proof. Assume that R(τ) is a linear DAG with H + 1 vertices. Thus height(τ) = H and τ contain subtrees
of height h for any h between 0 (the leaves) and H (only τ). As a consequence, two vertices of R(τ) cannot
represent two equivalence classes of subtrees of the same height, and thus τ is self-nested. Reciprocally, if τ
is self-nested, there exists only one equivalence class for subtrees of height h, 0 ≤ h ≤ height(τ). Thus R(τ)
contains height(τ) + 1 vertices. In addition, each subtree of height h in τ has at least one direct subtree of
height h − 1. Consequently, there exists an edge between the vertex of R(τ) representing the equivalence
class of height h and the one representing the equivalence class of height h−1, and R(τ) is a linear DAG. �

In light of Proposition 1, the structure of a self-nested tree τ is defined by the numbers nh1,h2 of direct
subtrees of height h2 rooted in the subtrees of τ of height h1, 0 ≤ h2 ≤ h1 − 1, 1 ≤ h1 ≤ height(τ). It
should be noted that the quantities nh1,h1−1 are constrained to be positive integers: a tree of height h1

has at least one direct subtree of height h1 − 1. We number the vertices of the linear DAG R(τ) from
0 at the bottom (leaves of τ) to height(τ) at the top (root of τ) in such a way that there exists a path
height(τ) → height(τ) − 1 → · · · → 0. Thus edge h1 → h2, h1 ≥ h2 + 1, is labelled with nh1,h2 . In this
context, the vertex with number h1 in the DAG represents the unique (up to isomorphism) subtree of height
h1 in τ , which has nh1,h2

direct subtrees of height h2.

The set of admissible labels on the edges of the (linear) DAG of a self-nested tree of height H is given by

NH = {(nh1,h2
)0≤h2≤h1−1≤H−1 : ∀ 1 ≤ h1 ≤ H, nh1,h1−1 ≥ 1}.

An element of NH is denoted by nH = (nh1,h2)0≤h2≤h1−1≤H−1 or nH = (nh1,h2) in a more concise form
and without confusion on the height. In this context, ST(nH) denotes the unique self-nested tree of height
H defined by labels nH = (nh1,h2

) in which subtrees of height h1 have nh1,h2
direct subtrees of height h2

(see Figure 3). The construction of a self-nested tree from the non-negative integers nh1,h2
is detailed in

Algorithm 1. This notation plays a crucial role in our paper. By convention, the notation ST(n0) refers to
the tree composed of an isolated root •.

n2,1 n2,0

n1,0 n1,0

0

1

2

n1,0

n2,1

n2,0

Figure 3: Representation of the self-nested tree ST(n2) of height 2 (left) and its linear DAG (right) with our
notation. All the subtrees of the same height are isomorphic and their roots are colored identically.

The number of vertices of a self-nested tree τ may be easily computed from the labels nh1,h2
on the

edges of its linear DAG with complexity O(height(τ)2) (see Lemma 2). This quite simple example shows
that some computations may be easier in terms of complexity on a self-nested tree than on a general tree
structure thanks to the elimination of redundant computations of duplicated structures. Indeed, the number
of vertices of a tree t may be obtained by a depth-first search algorithm in O(#t) time, that is in the worst
case #t = mH , where m = deg(t) and H = height(t). Another example will be given in Subsection 4.4.

Lemma 2 For any H ≥ 1, the number of vertices of the self-nested tree ST(nH) may be computed in O(H2)
from the formula

#ST(nH) = 1 +

H−1∑
h=0

nH,h ×#ST(nh),

initialized at height 0 by #ST(n0) = 1.
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Proof. The tree ST(nH) is composed of a root and nH,h direct subtrees of height h all isomorphic to ST(nh),
for each 0 ≤ h ≤ H − 1. Initialization is obvious because ST(n0) = • by convention. �

Algorithm 1: Construction of the self-nested tree ST(nH), n ∈ N and H ≥ 1.
1 Function SelfnestedTree(nH , v = •):

Data: triangle array nH ∈ NH and current vertex v (initially an isolated root)
Result: self-nested tree ST(nH)

2 for h2 in {0, . . . ,H − 1} do
3 for i in {1, . . . , nH,h2} do
4 add a child c to v
5 call SelfnestedTree(nh2

, v = c)

3 Combinatorics of self-nested trees
We now investigate combinatorics of self-nested trees. This section gathers new results about this problem
for trees that satisfy constraints on the height and the outdegree. All the proofs have been deferred into
Appendix A.

3.1 Exact results
In this section, we restrict ourselves to finite classes of rooted non-plane trees that satisfy an equality or
inequality constraint on the height and the outdegree. In particular, T=h,≤m (T≤h,≤m, respectively) stands
for the set of non-plane trees of height h (height less than h, respectively) and an outdegree less than m.
We use the similar notations Tsn=h,≤m and Tsn≤h,≤m for the set of self-nested trees under the same conditions.
Of course, we have the inclusion Tsn≤h,≤m ⊂ T≤h,≤m. Nevertheless, we would like to be more precise and
characterize the relative size of the set of self-nested trees with respect to the size of the set of trees under
the above conditions.

Proposition 3 For any H ≥ 1 and m ≥ 1,

#Tsn≤H,≤m =

H∑
h=1

h∏
i=1

(
m+ h− i
h− i+ 1

)
.

Proof. The reader may find the proof in Appendix A.1. �

Proposition 4 For any integer m ≥ 1, let us define the sequence (uh(m))h≥0 by

u0(m) = 1 and uh(m) =

(
uh−1(m) +m

m

)
for h ≥ 1.

Then, for any integer H ≥ 1,
#T≤H,≤m = uH(m)− 1.

Proof. The reader may find the proof in Appendix A.2. �

By virtue of Propositions 3 and 4, we can analyze the cardinality of the self-nested trees with respect to that
of the non-planar trees. We compute the ratio #Tsn≤H,≤m/#T≤H,≤m for values of H and m (see Table 1).
An exhaustive enumeration of T≤3,≤2 is presented in Figure 4.
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outdegree
≤ 2 ≤ 3 ≤ 4

he
ig
ht

≤ 2 0.88 6.18× 10−1 3.52× 10−1

≤ 3 0.49 3.38× 10−2 7.43× 10−5

≤ 4 0.07 2.90× 10−8 4.16× 10−23

≤ 5 3.36× 10−4 3.56× 10−28 1.66× 10−100

Table 1: Relative frequencies of self-nested trees with given maximal height and ramification number within
the set of non-planar trees under the same constraint.

Remark 5 A more traditional approach in the literature is to investigate combinatorics of trees with a
given number of vertices. For example, exploiting the theory of ordinary generating functions, Flajolet and
Sedgewick recursively obtained the cardinality of the set Tn of unordered trees with n vertices (see [12, eq.
(73)] and OEIS 2 A000081). In particular, the generating function associated with the non-plane trees is
given by

H(z) = z + z2 + 2z3 + 4z4 + 9z5 + 20z6 + 48z7 + 115z8 + 286z9 + · · · ,

where the coefficient Hn of zn in H(z) is the cardinality of the set Tn. It would be very interesting to
investigate the cardinality of self-nested trees under the same constraint Tsnn , but it appears to be out of our
reach. A strategy could be to remark that

#Tsnn =

n∑
h=1

#{nh : #ST(nh) = n},

where #{nh : #ST(nh) = n} denotes the number of solutions to the Diophantine equation #ST(nh) = n.
In light of Lemma 2, each of these Diophantine equations is polynomial of degree h in h(h+ 1)/2 unknown
variables. Nevertheless, determining the number of solutions of such a Diophantine equation, even in this
particular framework, remains a very difficult question.

3.2 Asymptotics
In light of Table 1, the number of non-plane trees seems to increase very much faster than the quantity
of self-nested trees under the same constraint. For this, let us determine asymptotic equivalents for both
cardinalities.

Corollary 6 When h and m simultaneously go to infinity,

log #Tsn=h,≤m ∼
(m+ h)2

2
log(m+ h)− h2

2
log h− m2

2
log m− hm log m.

Proof. The reader may find the proof in Appendix A.3. �

Now, we focus on the cardinality of unordered trees.

Corollary 7 For any integers m ≥ 1 and H ≥ 3,

exp

[
mH−1 log

(
2 +

1

m

)
−
(
mH−1 − 1

m− 1
− 1

)
logm

]
− 1 ≤ #T≤H,≤m ≤ exp

[
mH−1 log 3 +

mH − 1

m− 1
− 1

]
.

Proof. The reader may find the proof in Appendix A.4. �

By virtue of Corollary 7, the cardinality #T≤H,≤m roughly increases as exp(mH−1) for large parameters m
and H, which is indeed very much faster than the rate obtained for self-nested trees in Corollary 6.

2On-line Encyclopedia of Integer Sequences
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4 Constrained edit distance
In this paper, our aim is to build approximation algorithms that provide self-nested estimates of trees. Here
we introduce a distance on the space of unordered trees in order to quantify the quality of the estimates
obtained from these algorithms. The problem of comparing trees occurs in several diverse areas such as
computational biology and image analysis. We refer the reader to the survey [3] in which the author reviews
the available results and presents, in detail, one or more of the central algorithms for solving the problem.

4.1 Definition
We consider a constrained edit distance between unordered rooted trees. This distance is based on the
following tree edit operations [8]:

Insertion. Let v be a vertex in a tree τ . The insertion operation inserts a new vertex in the list of
children of v. In the transformed tree, the new vertex is necessarily a leaf.

Deletion. Let l be a leaf vertex in a tree τ . The deletion operation results in removing l from τ . That
is, if v is the parent of vertex l, the list of children of v in the transformed tree is child(v) \ {l}.

As in [8] for ordered trees, only adding and deleting a leaf vertex are allowed edit operations. An edit script
is an ordered sequence of edit operations. The result of applying an edit script s to a tree τ is the tree τs
obtained by applying the component edit operations to τ , in the order they appear in the script. The cost
of an edit script s is only the number of edit operations #s. In other words, we assign a unit cost to both
allowed operations. Finally, given two unordered rooted trees τ1 and τ2, the constrained edit cost δ(τ1, τ2) is
the length of the minimum edit script that transforms τ1 to a tree that is isomorphic to τ2,

δ(τ1, τ2) = min
{s : τs1≡τ2}

#s.

We refer the reader to Figure 5 for an example of minimum-length edit script. We also point out that if τ̂
denotes the NEST of a tree τ and n the number of vertices that have been added to τ to obtain τ̂ , one has
δ(τ, τ̂) = n. The numerical results of this paper obtained from δ are thus fully comparable with those in [14]
while the distance used is slightly different.

tree τs1

1

2 7

3 5 6

4

1

2 7

3 5 6

4

1

2 7

3 5 6

4

tree τs1

1

2 7

a3 5 6

4

tree τs2

1

2 4

3 5 6

Figure 5: A minimum-cost edit script that transforms τ1 (left) into τs1 that is a tree isomorphic to τ2 (right)
after 3 operations: delete leaf 4, delete leaf 3, add a child to vertex 7. The tree isomorphism illustrated by
red arrows between the transformed version τs1 of τ1 and τ2 defines the tree mapping (only full red arrows)
(1→ 1, 2→ 4, 5→ 6, 6→ 5, 7→ 2) from τ1 to τ2.
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Proposition 8 δ defines a distance function on the space of unordered rooted trees T. δ is now called
constrained edit distance or simply edit distance.

Proof. The separation axiom is obviously satisfied by δ because of its definition as a cardinality. In addition,
τ1 ≡ τ2 if and only if the empty script ∅ satisfies τ∅1 ≡ τ2, so that the coincidence axiom is checked. Symmetry
is obvious by applying in the reverse order the reverse operations of a script s. Finally, if s (σ, respectively)
denotes a minimum-length script to transform τ1 into τ2 (τ2 into τ3, respectively), the script sσ obtained as
the concatenation of both these scripts transforms τ1 into τ2. The triangle inequality is thus satisfied,

δ(τ1, τ3) ≤ #(sσ) = #s+ #σ = δ(τ1, τ2) + δ(τ2, τ3),

which yields the expected result. �

4.2 Relation with tree mappings
Here we address the issue of equivalence between edit distance and tree mapping cost using the particular
edit distance δ. Such equivalence has been discussed in [20, 22] in the context of other edit distances.

Mapping. Let τ1 and τ2 be two trees. Suppose that we have a numbering of the vertices for each tree.
Since we are concerned with unordered trees, we can fix an arbitrary order for each of the vertex in the tree
and then use left-to-right postorder numbering or left-to-right preorder numbering. A mapping M from τ1
to τ2 is a set of couples i → j, 1 ≤ i ≤ #τ1 and 1 ≤ j ≤ #τ2, satisfying (see [22, 2.3.2 Editing Distance
Mappings]), for any i1 → j1 and i2 → j2 inM, the following assumptions:

i1 = i2 if and only if j1 = j2.

vertex i1 in τ1 is an ancestor of vertex i2 in τ1 if and only if vertex j1 in τ2 is an ancestor of vertex j2
in τ2.

Constrained tree mapping. Let τ1 and τ2 be two trees, s be a script such that τs1 ≡ τ2 and ϕ a tree
isomorphism between τs1 and τ2. The graph τ1 ∩ τs1 defines a tree embedded in τ1 because script s only
added and deleted leaves. As a consequence, the function ϕ̂ defined as ϕ restricted to τ1 ∩ τs1 provides a tree
mapping from τ1 to τ2 with i→ j if and only if ϕ̂(i) = j. Of course, this is a particular tree mapping since
it has been obtained from very special conditions. The main additional condition is the following: for any
i1 → j1 and i2 → j2,

vertex i1 is the parent of vertex i2 in τ1 if and only if vertex j1 is the parent of vertex j2 in τ2.

It is easy to see that this assumption is actually the only required additional constraint to define the class
of constrained tree mappings cTM involved in the computation of our constrained edit distance δ (see the
example presented in Figure 5). The equivalence between constrained mappings of cTM and δ may be stated
as follows:

δ(τ1, τ2) = min
M∈cTM

#{i : @ j s.t. i→ j ∈M}+ #{j : @ i s.t. i→ j ∈M}.

The equivalence between tree mapping cost and edit distance is a classical property used in the computation
of the edit distance.

The mappings involved in our constrained edit distance have other properties related to some previous
works of the literature. We present additional definitions, namely, the lowest common ancestor of two vertices
and the constrained mappings presented in [22].

Lowest common ancestor. The lowest common ancestor (LCA) of two vertices v and w in a same tree
is the lowest (i.e., least height) vertex that has both v and w as descendants. In other words, the LCA is
the shared ancestor that is located farthest from the root. It should be noted that if v is a descendant of w,
w is the LCA.
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Constrained mapping with Zhang’s distance. Tanaka and Tanaka proposed in [20] the following con-
dition for mapping ordered labeled trees: disjoint subtrees should be mapped to disjoint subtrees. They
showed that in some applications (e.g., classification tree comparison) this kind of mapping is more mean-
ingful than more general edit distance mappings. Zhang investigated in [22] the problem of computing the
edit distance associated with this kind of constrained mapping between unordered labeled trees. Precisely,
a constrained mapping M between trees τ1 and τ2 is a mapping satisfying the additional condition (see [22,
3.1. Constrained Edit Distance Mappings]):

Assume that i1 → j1, i2 → j2 and i3 → j3 are inM. Let v (w, respectively) be the LCA of vertices i1
and i2 in τ1 (of vertices j1 and j2 in τ2, respectively). v is a proper ancestor of vertex i3 in τ1 if and
only if w is a proper ancestor of vertex j3 in τ2.

Let τ1 and τ2 be two trees and M ∈ cTM. First, one may remark that the roots are necessarily mapped
together. In addition,M satisfies all the conditions of constrained mappings imposed by Zhang in [22] and
presented above (see again the example of Figure 5).

4.3 Distance computation and reduction to the minimum cost flow problem
The edit distance between two trees T1 and T2 may be obtained from the recursive formula presented in
Proposition 9 hereafter. In the sequel, the forest of direct subtrees of the root of a tree t is denoted by
Ft. Furthermore, S(n) denotes the set of permutations of {1, . . . , n} and

(
A
n

)
the set of subsets of A with

cardinality n.

Proposition 9 Let T1 and T2 be two trees and n = min(#FT1
,#FT2

). The edit distance between T1 and T2

satisfies the following induction formula,

δ(T1, T2) = min
{t1,...,tn}∈(FT1n )

min
{τ1,...,τn}∈(FT2n )

min
σ∈S(n)

n∑
i=1

δ(ti, τσ(i)) +
∑

θ∈FT1\(t1,...,tn)

δ(θ, ∅) +
∑

θ∈FT2\(τ1,...,τn)

δ(∅, θ),

initialized with
δ(T1, ∅) = #T1 and δ(∅, T2) = #T2,

where the symbol ∅ stands for the empty tree.

Proof. First, let us remark that a maximum number of direct subtrees of T1 should be mapped to direct
subtrees of T2, because δ(θ1, θ2) < δ(θ1, ∅) + δ(∅, θ2), for any trees θ1 and θ2. This maximum number
is n = min(#FT1

,#FT2
). As a consequence, the minimal editing cost is obtained by considering all the

possible mappings between n direct subtrees of T1 and n direct subtrees of T2. The direct subtrees that are
not involved in a mapping are either deleted or added. We refer the reader to Figure 6. �

tree T1 tree T2

∅

Figure 6: Schematic illustration of the recursive formula to compute the constrained edit distance δ between
trees T1 and T2. Edit script to transform T1 into T2: the three direct subtrees of T1 are mapped to three
direct subtrees of T2, while the empty tree ∅ is mapped to the fourth direct subtree of T2 (all the vertices
are added).
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In light of Proposition 9 and Figure 6 and as in [22, 5. Algorithm and complexity], each step in the
recursive computation of the edit distance δ(T1, T2) between trees T1 and T2 reduces to the minimum cost
maximum flow problem on a graph G = (V,E) constructed as follows. First the set of vertices V of G is
defined by

V = {source , sink , ∅T1
, ∅T2

} ∪ FT1
∪ FT2

.

The set E of edges of G is defined from:

edge source→ ti, ti ∈ FT1
: capacity 1 and cost 0;

edge source→ ∅T1 : capacity #FT1 −min(#FT1 ,#FT2) and cost 0;

edge ti → τj , ti ∈ FT1
, τj ∈ FT2

: capacity 1 and cost δ(ti, τj);

edge ti → ∅T2
, ti ∈ FT1

: capacity 1 and cost δ(ti, ∅) = #ti;

edge ∅T1
→ τj , τj ∈ FT2

: capacity 1 and cost δ(∅, τj) = #τj ;

edge τj → sink, τj ∈ FT2 : capacity 1 and cost 0;

edge ∅T2
→ sink: capacity #FT2

−min(#FT1
,#FT2

) and cost 0.

We obtain a network G augmented with integer capacities and nonnegative costs. A representation of G is
given in Figure 7. By construction and as explained in [22, Lemma 8], one has C(G) = δ(T1, T2) where C(G)
denotes the cost of the minimum cost maximum flow on G. As a consequence, δ(T1, T2) may directly be
computed from a minimum cost maximum flow algorithm presented for example in [21, 8.4 Minimum cost
flows]. The related complexity is given in Proposition 10.

Proposition 10 δ(T1, T2) may be computed in O(#T1×#T2×[deg(T1)+deg(T2)]×log2(deg(T1)+deg(T2))).

Proof. In light of [21, Theorem 8.13], the complexity of finding the cost of the minimum cost maximum
flow on the network G defined in Figure 7 may be directly obtained from its characteristics and is O(N ×
|f?| × log2(n)), where n, N and |f?| respectively denote the number of vertices, the number of edges and
the maximum flow of G. It is quite obvious that:

N = O(#child(T1)×#child(T2) + #child(T1) + #child(T2));

|f?| = O(#child(T1) + #child(T2));

n = O(#child(T1) + #child(T2)).

Thus, the total complexity to compute the recursive formula of δ(T1, T2) presented in Proposition 9 is∑
t∈T1

∑
τ∈T2

O
(
#child(t)×#child(τ)× [#child(t) + #child(τ)]× log2(#child(t) + #child(τ))

)
≤ O

(
[deg(T1) + deg(T2)]× log2(deg(T1) + deg(T2))×

∑
t∈T1

∑
τ∈T2

#child(t)×#child(τ)
)

≤ O
(
#T1 ×#T2 × [deg(T1) + deg(T2)]× log2(deg(T1) + deg(T2))

)
,

which yields the expected result. �

Not surprisingly, the time-complexity of computing the edit distance δ is the same as in [22] for another
kind of constrained edit distance. It should be noted that this algorithm does not take into account the
possible presence of redundant substructures, which should reduce the complexity. We tackle this question
in the following part.
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4.4 Complexity of distance computation for self-nested trees
The compression methods that we will present in the sequel require to compute the edit distance between
a tree and its self-nested estimates. Consequently, the complexity of our algorithms highly depends on
the computation of the edit distance involving self-nested trees. The tree-to-tree comparison problem has
already been considered for quotiented trees (an adaptation of Zhang’s algorithm [22] to quotiented trees is
presented in [11]), but never in the specific framework of self-nested trees. Because of the systematic presence
of redundancies, the edit distance between two self-nested trees or between one tree and a self-nested one
should be computed with a time-complexity smaller than in Proposition 10. We investigate this question in
particular for the sake of reducing the complexities of the approximation algorithms presented in Section 5.

As a first step, we only deal with the edit distance between two self-nested trees ST(nH) and ST(n′H′).
The computational complexity in the case of distances between self-nested and non-self-nested trees may
be addressed in a similar way, also using the previous result of Subsection 4.3. The computation of the
edit distance δ(ST(nH),ST(n′H′)) reduces to a minimum cost flow problem but the network graph that we
consider takes into account the number of appearances of a given pattern among the lists of direct subtrees
of ST(nH) and ST(n′H′). We construct a graph G = (V,E) as follows. The set of vertices V of G is given by

V = {source , sink , ∅ , ∅′} ∪
⋃

0≤h≤H−1

{ST(nh)} ∪
⋃

0≤h≤H′−1

{ST(n′h)} .

The set E of edges of G is defined from:

edge source→ ST(nh), 0 ≤ h ≤ H − 1: capacity nH,h and cost 0;

edge source→ ∅: capacity
∑

0≤h≤H−1 nH,h −min(
∑

0≤h≤H−1 nH,h,
∑

0≤h≤H′−1 n
′
H′,h) and cost 0;

edge ST(nh)→ ST(n′h′), 0 ≤ h ≤ H − 1, 0 ≤ h′ ≤ H ′ − 1: capacity nH,h and cost δ(ST(nh), ST(N ′h′);

edge ST(nh)→ ∅′, 0 ≤ h ≤ H − 1: capacity nH,h and cost δ(ST(nh), ∅) = #ST(nh);

edge ∅ → ST(n′h), 0 ≤ h ≤ H ′ − 1: capacity n′H′,h and cost δ(∅,ST(n′h)) = #ST(n′h);

edge ST(n′h)→ sink, 0 ≤ h ≤ H ′ − 1: capacity n′H′,h and cost 0;

edge ∅′ → sink: capacity
∑

0≤h≤H′−1 n
′
H′,h −min(

∑
0≤h≤H−1 nH,h,

∑
0≤h≤H′−1 n

′
H′,h) and cost 0.

As in Subsection 4.3, the graph G has integer capacities and nonnegative costs on its edges (see Figure 8).
By construction, the cost C(G) of the minimum cost maximum flow on the graph G is equal to the expected
edit distance δ(ST(nH), ST(n′H′)). The related complexity is presented in Proposition 11. The computation
of the edit distance between a tree and a self-nested structure also reduces to a minimum cost flow problem
but we skip this case which may be easily derived from graphs presented in Figures 7 and 8. Nevertheless,
we give the related complexity in Proposition 11.

Proposition 11

δ(ST(nH), ST(n′H′)) may be computed in O(H2×H ′2× [deg(ST(nH))+deg(ST(n′H′))]× log2(H+H ′)).

δ(T, ST(nH)) may be computed in O(#T ×H2 × [deg(T ) + deg(ST(nH))]× log2(deg(T ) +H)).

Proof. We only state the first item. The proof is quite similar to the demonstration of Proposition 10. The
characteristics n (number of vertices), |f?| (maximum flow) and N (number of edges) of the network G may
be easily found from Figure 8:

N = O(H ×H ′ +H +H ′);

|f?| = O(deg(ST(nH)) + deg(ST(n′H′)));

n = O(H +H ′).

Together with [21, Theorem 8.13], this states the result. �
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Figure 7: Reduction of the computation of edit distance δ(T1, T2) presented in Proposition 9 and in Figure
6 to the minimum cost flow problem. Each edge is augmented with two labels separated by the symbol &:
its capacity (left) and its cost (right). For the sake of simplicity, k (κ, respectively) denotes #FT1

(#FT2
,

respectively), and n = min(k, κ).
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Figure 8: Reduction of the computation of the edit distance δ(ST(nH), ST(n′H′)) between two self-nested
trees to the minimum cost flow problem. As in Figure 7 in the general case, each edge is augmented with
an integer capacity and a cost. For the sake of simplicity, we use the following notations: th = ST(nh),
τh = ST(n′h) and ν = min(

∑
0≤h≤H−1 nH,h,

∑
0≤h≤H′−1 n

′
H′,h).
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5 Self-nested approximation
Having defined the distance δ on the space of unordered trees, this section is devoted to the presentation
of two algorithms to compute an accurate self-nested approximation of a tree T that next will be highly
compressed by DAG method. We also investigate the worst approximation error that may be obtained by
such an algorithm.

5.1 Theoretical considerations on the worst case
Let us consider a tree T to be compressed. Our strategy consists in finding a self-nested tree T̂ that
approximates T . To achieve this goal, we would like to minimize the function τ 7→ δ(T, τ). We investigate
the worst-case approximation error that may be achieved, i.e., we search among trees of height H and
maximal outdegree m a tree T that is the farthest from its best self-nested approximation T̂ . We state in
Proposition 12 that such a tree is ΘH,m defined by its DAG in Figure 9. One of its best self-nested estimates
is TH,m, also defined in Figure 9. Two examples are displayed in Figure 10.

TH,m

H−2

m

m

m⌊
m
2

⌋

ΘH,m

H−2

⌈
m
2

⌉
m

m⌊
m
2

⌋

⌊
m
2

⌋
m

m

m

Figure 9: Definition of the trees TH,m (left) and
ΘH,m (right) from their DAG. ΘH,m is one of the
least self-nested trees among T≤H,≤m and one of
its nearest self-nested trees is given by TH,m.

T2,3 Θ2,3

distance=2

T2,4 Θ2,4

distance=4

Figure 10: Trees TH,m and ΘH,m for H = 2 and
m = 3 or m = 4.

Proposition 12 For any H ≥ 2 and m large enough (greater than a constant depending on H),

max
t∈T≤H,≤m

min
τ∈Tsn≤H,≤m

δ(t, τ) = δ(ΘH,m, TH,m)

=
⌊m

2

⌋
×
⌈m

2

⌉
×mH−2,

where the trees TH,m and ΘH,m are defined in Figure 9.

Proof. The reader may find the proof in Appendix B. �

The diameter of the state space T≤H,≤m is of order mH (indeed, the largest tree of this family is the
full m-tree, while the smallest tree is reduced to a unique root vertex). As a consequence and in light of
Proposition 12, the largest area without any self-nested tree is a ball with relative radius⌊

m
2

⌋
×
⌈
m
2

⌉
×mH−2

mH
=

⌊
m
2

⌋
×
⌈
m
2

⌉
m2

=
1

4
+

1

4m2
12N+1(m) ' 1

4
.

This establishes a remarkable property of the space of self-nested trees: it is impossible to approximate a
tree by a self-nested one with a relative error less than 1/4. This result is especially noteworthy considering
the very low frequency of self-nested trees compared to unordered trees (see Table 1 and Subsection 3.2).
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5.2 Replace forests by their centroid
NEST algorithm only adds vertices to get a self-nested structure from a given tree. In many cases, the
number of vertices to add is large compared to the size of the tree and other solutions may be preferable
(see the example given in Figure 11). All the subtrees of a same height appearing in a self-nested tree are
isomorphic. Consequently, instead of only adding vertices, our strategy consists in replacing all the subtrees
of a same height by a same structure. In other words, we replace some internal structures by their self-nested
centroid (i.e., the self-nested tree minimizing the distance to these structures). In particular, this allows us
to delete some vertices and thus to gain in flexibility with respect to NEST.

tree to compress NEST solution expected solution

distance=4 distance=2

Figure 11: The tree to compress is given in the left column. NEST algorithm adds 4 vertices to get a
self-nested structure, whereas a better solution may be expected by deleting only 2 leaves (tree in the right
column).

Let Mh1
be the number of subtrees of height h1 in the tree T , 1 ≤ i ≤Mh1

be the index of one of these
subtrees and ri be its root vertex. For h2 < h1, T [ri] has µ

(i)
h1,h2

direct subtrees of height h2. Without loss

of generality, we assume that the sequence (µ
(i)
h1,h2

)1≤i≤Mh1
is sorted in increasing order. Our compression

algorithm relies on the following result that is a direct consequence of Proposition 1.

Lemma 13 The tree T is self-nested if and only if, for any heights h1 ≥ h2 + 1, the multiset

Mh1,h2 =
{
µ

(i)
h1,h2

: 1 ≤ i ≤Mh1

}
has only one element with multiplicity Mh1

.

If T is not a self-nested tree, some of the multisets Mh1,h2 are not reduced to a singleton. In this
case, we propose to approximate T by replacing the µ(i)

h1,h2
direct subtrees of height h2 appearing in the ith

subtree of height h1 by µ̄h1,h2
subtrees of height h2, where µ̄h1,h2

is one centroid of the multisetMh1,h2
. Of

course, there may exist several combinations of centroids. We choose the best possibility in terms of edit
distance. In other words, the self-nested trees RFC(T ) (Replace Forests by their Centroid) that we propose
to approximate T with are

RFC(T ) = ST(n?H) with n?H ∈ arg min
{nH :nh1,h2∈Λh1,h2}

δ(T, ST(nH)),

where H = height(T ) and Λh1,h2
is the set of centroids µ̄h1,h2

ofMh1,h2
. There remains the question of how

to find the set Λh1,h2
of centroids of the multisetMh1,h2

. Formally, this is equivalent to minimizing the cost
function

ϕh1,h2 : nh1,h2 7→
Mh1∑
i=1

|µ(i)
h1,h2

− nh1,h2 |.

Lemma 14 There are two possibilities:

ϕh1,h2
has only one absolute minimum µ

(i?)
h1,h2

.

There exists an index i? such that µ(i?)
h1,h2

and µ(i?+1)
h1,h2

minimize ϕh1,h2
and thus all the integers between

µ
(i?)
h1,h2

and µ(i?+1)
h1,h2

also minimize ϕh1,h2
.
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Proof. The function ϕh1,h2 is convex and piecewise-linear because it is obtained as a sum of convex piecewise-
linear functions. In addition, slope changing may occur only at values µ(i)

h1,h2
. The expected result follows. �

In light of Lemma 14, an exhaustive search among the µ(i)
h1,h2

enables all centroids µ̄h1,h2 – and thus
RFC(T ) – to be found. This procedure provides first self-nested estimates of the tree T among which we
choose those that are closest to T (see Algorithm 2, the time-complexity is given in Proposition 15).

Algorithm 2: Computation of self-nested estimates RFC(T ) of a tree T .
1 Function RFC():

Data: an unordered rooted tree T of height H
Result: list of compressed versions of T augmented with their editing cost

2 for h1 in {1, . . . ,H} do
3 for h2 in {0, . . . , h1 − 1} do
4 compute the set Λh1,h2

of absolute minima of ϕh1,h2

5 L←[ ]
6 c← +∞
7 for nH in Λ1,0 × Λ2,0 × Λ2,1 × · · · × ΛH,H−1 do
8 τ ←SelfnestedTree(nH)
9 d← δ(τ, T )

10 if d = c then
11 append τ to L

12 else if d < c then
13 L← [τ ]
14 c← d

15 return L, c

Proposition 15 RFC(T ) may be computed in

O
(
α(T )×#T × height(T )3 × deg(T )× log2(deg(T ) + height(T ))

)
,

where α(T ) is the cardinality of the product set Λ1,0 × Λ2,0 × Λ2,1 × · · · × Λheight(T ),height(T )−1.

Proof. The complexity of determining the sets Λh1,h2
for all h1, h2 (first loop, lines 2–4 of Algorithm 2) is

only O(height(T )2 ×#T ). The main step is thus to compute the α(T ) edit distances involving a self-nested
tree (line 9) that appear in the procedure and which complexity is given in Proposition 11. �

5.3 Local pruning and second approximation algorithm
The preceding procedure only allows us to modify some subtrees and not to delete them. The second strategy
that we consider exploits local pruning of T , i.e., consists in checking if deleting a subtree is a good operation
to transform T into a self-nested tree. Indeed, it may be more efficient to prune subtrees with only few nodes
rather than to transform them (see the example of Figure 12).

F1(T ) denotes the forest of the (not necessarily direct) subtrees of height 1 appearing in T . In addition,
θ1(l) denotes the tree of height 1 with l leaves. As a consequence, one has

F1(T ) = {θ1(l) with multiplicity m(l) : l ∈ LT },

for some finite set LT ⊂ N∗. It should be noted that F1(T ) = ∅ if and only if T is composed of an isolated
root. The locally pruned versions of T are the trees obtained by deleting all the leaves from subtrees of F1(T )
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in T . More precisely, for any integers l1, . . . , lk, 1 ≤ k ≤ #LT , let s(l1, . . . , lk) be the script that deletes all
the leaves from the m(li) subtrees θ1(li) appearing in T , for any 1 ≤ i ≤ k. ST (k) denotes the set of such
editing scripts. The forest of all the locally pruned versions of T is the set defined by

LP(T ) =

#LT⋃
k=1

{T s : s ∈ ST (k)}.

The edit distance between T and one of its locally pruned versions T s ∈ LP(T ) is the number of leaves that
have been deleted, δ(T, T s) = #s. The construction of this set is given in Algorithm 3. It should be noted
that, in the worst case, all the subtrees of height 1 appearing in T are different. The cardinality of LP(T ) is
thus of order O(2deg(T )).

tree to compress NEST and RFC solution expected solution

distance=3 distance=1

Figure 12: NEST and RFC algorithms add 3 vertices to the left subtree of height 1 in the tree to compress
given in the left column. It would be more efficient to delete this subtree (right column).

Algorithm 3: Computation of the locally pruned versions LP(t) of a tree t. Each element of the output
is a couple (ts, c), where ts ∈ LP(t) and c = δ(t, ts).
1 Function LocPruning(t):

Data: a tree t
Result: forest LP(t) augmented with edit distances to t

2 L←[ ]
3 for n in {1, . . . ,#Lt} do
4 for (i1, . . . , in) in

(Lt
n

)
do

5 c← 0
6 for k in {1, . . . , n} do
7 delete all the leaves of all subtrees θ1(ik) appearing in t
8 c← c+ ik

9 add the edited tree and the editing cost c to L

10 return L

Local pruning is motivated by the following idea: if two subtrees T [x] and T [y] are isomorphic, and if
the deletion of T [x] is a good operation to find a self-nested estimate of T , thus T [y] should be also deleted.
Our algorithm RFC+(T ) (RFC improved by local pruning) exploits this scheme: approximate T by the self-
nested trees RFC(t) for any t ∈ LPγ(T ), where LPγ(T ) denotes the recursive application of local pruning
to T γ times3 for any γ ≥ 0. Of course it is not useful to investigate all the locally pruned versions of T ,
particularly whenever the cost of pruning exceeds the cost of matching the subforest, as highlighted in the
pseudocode given in Algorithm 4. The complexity of this algorithm is presented in Proposition 16. Two
typical examples are presented in Figures 13 and 14.

3It should be remarked that LP0(T ) is only the singleton {T}.
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Proposition 16 RFC+(T ) may be computed in

O
(
α(T )× 2deg(T ) ×#T 2 × height(T )3 × deg(T )× log2(deg(T ) + height(T ))

)
,

where α(T ) is given by

α(T ) = max
γ≥0

max
t∈LPγ(T )

#
[
Λ1,0 × Λ2,0 × Λ2,1 × · · · × Λheight(t),height(t)−1

]
.

Proof. In the worst case, the cardinality of LP(T ) is O(2deg(T )). As a consequence, one has to apply RFC
algorithm on at most O(#T × 2deg(T )) recursive locally pruned versions of T . The result follows from
Proposition 15. �

Algorithm 4: Computation of self-nested estimates RFC+(T ) of a tree T .
1 Function RFC+(T):

Data: an unordered rooted tree T
Result: list of compressed versions of T augmented with their editing cost

2 T2C← [T ]
3 res← [ ]
4 cost← +∞
5 while T2C 6= [ ] do
6 newT2C← [ ]
7 for τ in T2C do
8 L, c←RFC(τ)
9 if cost = c then

10 extend res with L without redundancies

11 else if cost > c then
12 res← L
13 cost← c

14 P ←LocPruning(τ)
15 for (θ, γ) in P do
16 if γ ≤ cost then
17 append θ to newT2C without redundancies

18 T2C← newT2C

19 return res, cost

tree to compress RFC solutions RFC+ solution

distance=2 distance=1

Figure 13: The tree to compress is given in the left column. RFC algorithm finds 4 solutions that are at
distance 2 of the initial tree and presented in the middle column. Local pruning is useful here: there exists
a better solution at distance 1 found by RFC+ algorithm (right column).
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tree to compress NEST solution RFC or RFC+ solution

Figure 14: The tree to compress and its DAG reduction are given in the left column. NEST algorithm adds
6 vertices to obtain a self-nested tree (middle), whereas RFC and RFC+ only delete 3 vertices to obtain a
self-nested tree (right).

6 Numerical illustration
We illustrate the behavior of both algorithms RFC and RFC+ on simulated binary trees. We compare these
three algorithms by considering their compression rate ρ and their error rate e defined from

ρ = 1− #V (R(C(T ))) + #E(R(C(T )))

#V (T ) + #E(T )
and e =

δ(T,C(T ))

#V (T )
,

where T denotes the initial data to compress and C(T ) stands for its self-nested approximate version. It
should be noted that e may be greater than 1. In addition, we highlight that the tree ΘH,m introduced in
Subsection 5.1 is approximated by TH,m (see Figure 9 and Proposition 12) with the error rate

e =
δ(ΘH,m, TH,m)

#ΘH,m
' 1/3.

Indeed, the number of vertices of ΘH,m is of order 3mH/4. This is not the maximal error rate but it gives
an idea of the incompressible error that must be expected from any approximation algorithm.

6.1 A large binary tree
To assess our algorithms, we first construct a large tree T sampled from the uniform distribution among
binary trees with 100 vertices. The error and compression rates of these algorithms are presented in Figure
15, while statistics on the numbers of vertices are given in Figure 16. The topological structure of T , together
with the results provided by the different algorithms, are displayed in Figure 17.

First of all, one may remark that the compression rate of the classical DAG compression scheme is
satisfactory on this example compared to the average rate ρ100 ' 38% expected for trees with 100 vertices
(see Section 1 and [5, Theorems 29 and 30]): the DAG reduction has 32 vertices and 55 edges (see Figure
17), thus ρ ' 56%. NEST estimate is obtained by adding 107 vertices to the target. It is more than two
times larger than the initial tree and thus is not visually similar to it (see Figures 16 and 17). RFC algorithm
provides 4 self-nested estimates that all are at distance 43 to the target. With no additional information, none
can be considered as a better compression than the others, except by choosing the solution which number of
vertices is the closest to the target. However, it should be noted that this criterion seems somewhat arbitrary,
in the sense that in particular applications other criteria, as the height or outdegree, could make more sense.
The only solution provided by RFC+ algorithm is at distance 35 to the target, that is to say a substantial gain
of around 19% compared to RFC. Nevertheless, all these trees are good visual estimates of the initial tree
structure. The compression rates given in Figure 15 are very similar for the three approximation algorithms.
The only reason why RFC+ has a better compression rate than its alternatives is that local pruning may
shorten the height of the tree, and thus makes the number of vertices of the DAG reduction decrease.
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Figure 15: Error (top) and compression (bottom)
rates for DAG compression applied to the initial
data and its three self-nested estimates.
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Figure 16: Sizes of trees obtained from NEST,
RFC and RFC+ algorithms. The NEST solution
has twice as many vertices as in the initial data
(dashed line).

6.2 Small binary trees
Our simulations are performed on a stochastic model of binary trees. Given a tree t, we randomly choose
a vertex of t with uniform distribution and add a child to it if it has 0 or 1 child. Beginning with the tree
composed of an isolated root and recursively repeating this operation n times, one obtains a random binary
tree with at most n vertices. Our dataset is composed of 500 trees simulated according to this model for
different values of n between 20 and 50. Descriptive statistics of the dataset are given in Figure 18 and Table
2. Numerical results are provided in Figure 20.
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Figure 18: Histogram of simulated trees.

number of vertices
mean min max std
26.9 15 40 5.1

Table 2: Statistics of simulated trees.

The three algorithms are equivalent in terms of compression rates, which was expected for the same
reason as in Subsection 6.1. The key parameter is thus the error rate that is much better for RFC and
RFC+ algorithms than for NEST procedure. On average, one obtains a substantial gain of around 20% for
both our algorithms (see Figure 19). Local pruning is useful in RFC 24.2% of the time and makes the error
decrease of only 1.8% (see Table 3). However, when local pruning is not useless, the error is improved of
7.3%, which is not negligible. Despite the fact that small binary trees framework is the most favourable to
NEST solution, our compression procedures perform better than this algorithm. As a conclusion, the RFC
and RFC+ algorithms have a higher time-complexity than NEST that is in O(height(T )2 × deg(T )) time,
but provide very much improved compression properties.

eRFC − eRFC+ > 0 eRFC − eRFC+

freq. mean mean
24.2% 7.3% 1.8%

Table 3: Comparison of error rates
eRFC and eRFC+ .

NEST − RFC

NEST − RFC+

0.0 0.2 0.4 0.6 0.8 1.0

Difference of error rates

Figure 19: Comparison of error rates: eNEST − eRFC+ (top)
and eNEST − eRFC (bottom).
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tree T to compress

NEST solution

RFC+ solution

RFC solutions

Figure 17: The initial data to compress, its DAG version and the solutions provided by the different lossy
compression algorithms presented in this paper. One may observe that the RFC+ solution is visually very
close to the initial tree, which is confirmed by the error rate of 35%. All the solutions provided by the RFC
algorithm are at distance 43 to the tree to compress and are also good visual self-nested estimates. The
NEST solution has too many vertices for looking like the initial data: the algorithm added 107 vertices to
obtain a self-nested tree.
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Figure 20: Compression rates (top) and error rates (bottom) for NEST (blue, left), RFC (green, middle) and
RFC+ (red, right) algorithms estimated from 500 simulations of random binary trees: average rates (bold
lines), 95% confidence intervals (colored areas), minimum and maximum rates (dashed lines).
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A Proofs of the combinatorics results

A.1 Proof of Proposition 3
Using the notation of Subsection 2.2, a self-nested tree of height h is represented by a linear DAG with h+ 1
vertices numbered from 0 to h (top) in such a way that there exists a path h → · · · → 1 → 0. One recalls
that this graph is augmented with integer-valued label ni,j on edge i→ j for any i > j with the constraint
ni,i−1 > 0. In this context, the outdegree of a self-nested tree is less than m if and only if, for any i,

i−1∑
j=0

ni,j ≤ m.

We propose to write ni,i−1 = 1 + n′i,i−1 and, for j ≤ i − 2, n′i,j = ni,j . As a consequence, all the labels are
parametrized by the n′i,j ’s which satisfy,

∀ 1 ≤ i ≤ h, ∀ 0 ≤ j ≤ i− 1, n′i,j ≥ 0 and
i−1∑
j=0

n′i,j ≤ m− 1.

Thus, the number of self-nested trees of height h is obtained as

#Tsn=h,≤m =

h∏
i=1

#

{
n′i,j : n′i,j ≥ 0 and

i−1∑
j=0

n′i,j ≤ m− 1

}
. (1)

Furthermore, the set
{
n′i,j : n′i,j ≥ 0 and

∑i−1
j=0 n

′
i,j ≤ m − 1

}
is only the regular discrete simplex of

dimension i having m points on an edge. The cardinality of this set has been studied by Costello in [9].
Thus, by virtue of [9, Theorem 2], one has

#

{
n′i,j : n′i,j ≥ 0 and

i−1∑
j=0

n′i,j ≤ m− 1

}
=

(
m+ i− 1

i

)
. (2)

Together with

#Tsn≤H,≤m =

H∑
h=1

#Tsn=h,≤m,

this yields the expected result.

A.2 Proof of Proposition 4
Roughly speaking, an unordered tree with maximal height H and maximal outdegree m may be obtained by
adding at most m trees of height less than H − 1 to an isolated root. More precisely, one has to choose m
elements with repetitions among the set T≤H−1,≤m ∪ {•} ∪ {∅} and add them to the list of direct subtrees
(initially empty) of a same vertex. It should be noted that no subtree is added when ∅ is picked.

One obtains either an isolated root (if and only if one draws m times the symbol ∅), or a tree with
maximal height H. As a consequence, one has the formula,

# [T≤H,≤m ∪ {•}] =

(
# [T≤H−1,≤m ∪ {•} ∪ {∅}] +m− 1

m

)
,

which shows the result.
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A.3 Proof of Corollary 6
In the proof of Proposition 3, we have already shown that

#Tsn=h,≤m =

h∏
i=1

(
m+ h− i
h− i+ 1

)
,

see (1) and (2). Substituting the binomial coefficients by their value, we get

#Tsn=h,≤m = Γ(m)−h
h∏
i=1

Γ(m+ h− i+ 1)

Γ(h− i+ 2)

= Γ(m)−h
h∏
i=1

(h− i+ 2)× (h− i+ 3)× · · · × (h− i+m),

where Γ denotes the Euler function such that Γ(n+ 1) = n! for any integer n. As a consequence,

log #Tsn=h,≤m = −h log Γ(m) +
∑

1≤i≤h
2≤k≤m

log(h− i+ k)

= −h log Γ(m) +
∑

0≤j≤h−1
2≤k≤m

log(j + k), (3)

by substituting h− i by j. First, according to Stirling’s approximation, we have

− h log Γ(m) ∼ −hm log m. (4)

Now, we focus on the second term. In order to simplify, we are looking for an equivalent of the same double
sum but indexed on 1 ≤ j ≤ h and 1 ≤ k ≤ m. We have

h∑
j=1

m∑
k=1

log(j + k) =

h∑
j=1

m∑
k=1

∫ j+k

1

dx
x

=

h∑
j=1

[
m−1∑
l=0

(m− l)
∫ j+l+1

j+l

dx
x

+

∫ j

1

dx
x

]

=

m−1∑
l=0

(m− l)

 h∑
j=1

∫ j+l+1

j+l

dx
x

+ log j


=

m−1∑
l=0

(m− l)
∫ l+h+1

l+1

dx
x

+m

h∑
j=1

log j

=

m−1∑
l=0

(m− l) log

(
1 +

h

l + 1

)
+m

h∑
j=1

log j. (5)

As usually, we find an equivalent of this term by using an integral comparison test. We establish by a
conscientious calculus that
m−1∑
l=0

(m− l) log

(
1 +

h

l + 1

)
+m

h∑
j=1

log j ∼ (m+ h)2

2
log(m+ h)− h2

2
log h− m2

2
log m+R(m,h), (6)

where the rest R(m,h) is neglectable with respect to the other terms and to hm log m. Let us remark that
the expression of the equivalent is symmetric in h and m as expected. Finally, (3), (4), (5) and (6) show the
result.
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A.4 Proof of Corollary 7
The proof is based on the classical bounds on binomial coefficients,(

n× e

k

)k
≥
(
n

k

)
≥
(n
k

)k
.

Using Proposition 4, we have u1(m) =
(

1+m
m

)
= m+ 1 and

u2(m) =

(
u1(m) +m

m

)
=

(
2m+ 1

m

)
≥
(

2m+ 1

m

)m
=

(
2 +

1

m

)m
.

The lower bound is obtained by induction on h > 2: assuming that

uh(m) ≥
(
2 + 1

m

)mh−1

m
mh−1−1
m−1 −1

,

we have

uh+1(m) =

(
uh(m) +m

m

)
≥
(
uh(m)

m
+ 1

)m
≥
(
uh(m)

m

)m
≥

(2 + 1
m

)mh−1

m
mh−1−1
m−1

m

by the induction hypothesis. Using

m

(
mh−1 − 1

m− 1

)
=
mh − 1

m− 1
− 1,

we obtain

uh+1(m) ≥
(
2 + 1

m

)mh
m

mh−1
m−1 −1

.

Moreover,

u2(m) =

(
2m+ 1

m

)
≤
(

2m+ 1

m
e

)m
≤ (3 e)m.

The upper bound is obtained by induction on h ≥ 2: assuming that

uh(m) ≤ 3m
h−1

e
mh−1
m−1 −1,

we obtain

uh+1(m) =

(
uh(m) +m

m

)
≤
((

uh(m)

m
+ 1

)
e

)m
≤

3m
h−1

e
mh−1
m−1 −1

m
+ 1

 e

m

by the induction hypothesis. Using the inequality

kx

x
+ 1 ≤ kx,

satisfied whenever k and x are both greater than the critical value 1.693 . . . obtained by numerical methods,
we obtain

uh+1(m) ≤
(

3m
h−1

e
mh−1
m−1 −1 e

)m
= 3m

h

e
mh+1−1
m−1 −1 .

This shows the expected result.
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B Proof of Proposition 12
The main difficulty is to establish that the worst case is given by ΘH,m. We propose to begin with trees of
height 2, and we shall state in two steps the expected result.

First of all, let us remark that the DAG of any tree of T2,≤m is of the form . Nevertheless, leaves
attached to the root do not impact the self-nestedness of the tree and deletes some degrees of freedom in our
research of the worst case. As a consequence, we only consider DAGs of the form with M intermediate
vertices (that is to say M different subtrees of height 1) labeled from I1 to IM , M ≤ m. Of course, M = 1
ensures that the corresponding tree is self-nested: we exclude this case. Let pk (lk, respectively) denote the
number of appearances (the number of leaves, respectively) of Ik, for 1 ≤ k ≤M .

We shall investigate the worst case for a given value of M . First, it should be noted that if an operation
is optimal for an equivalence class Ik, it is also optimal for all the subtrees of this class. In addition, there
are only two possible scripts to transform Ik: either one deletes all the leaves of Ik (with a cost pklk), or one
adds or deletes some leaves to transform Ik into a given subtree of height 1 with, say, x leaves (with a cost
pk|lk − x|). As a consequence, the total editing cost (to transform the initial tree into a self-nested tree in
which trees of height 1 have x leaves) is given by

C2 =
∑
k∈A

pklk +
∑
k/∈A

pk|lk − x|,

where A denotes the set of indices k for which one deletes all the leaves of Ik.

The worst case has the maximum entropy and thus a uniform repartition of its leaves in the tree. For
the sake of clarity, one assumes in the sequel that m is even and M divides m. The explicit solution of the
problem is thus pk = m

M , lk = km
M , x = m

2 and A = ∅. The remarkable fact is that the corresponding cost is
given by

C2 =
m

M

M∑
k=1

∣∣∣∣m2 − km

M

∣∣∣∣
=

2m

M

M
2 −1∑
k=1

(
m

2
− km

M

)
=

m2

4
.

This means that the worst case may be obtained from any value of M whenever it divides m. Actually, the
case M does not divide m leads to a worst case better than when M divides m. One concludes that one of
the worst cases is obtained from M = 2, p1 = p2 = m

2 , l1 = m
2 , l2 = m and C2 = m2

4 . When m is an odd
integer, one observes the same phenomenon: the worst case is obtained from M = 2, p1 =

⌈
m
2

⌉
, p2 =

⌊
m
2

⌋
,

l1 =
⌊
m
2

⌋
, l2 = m and C2 =

⌊
m
2

⌋
×
⌈
m
2

⌉
. This yields the expected result for any integer m.

We shall use the preceding idea to show the result for any height H. Among trees of height at most H,
it is quite obvious that the worst case appears in trees of height H. We assume that there are M different
patterns I1, . . . , IM appearing p1, . . . , pM times under the root. The cost of editing operations (adding or
deleting leaves) at distance h to the root is in the worst case pk ×mh−1. As a consequence, at least for m
large enough, height(Ik) = H − 1 and the only difference with the other patterns is on the fringe: all the
vertices of Ik have m children except vertices at height H − 2 that have lk leaves. If A denotes the set of
indices k for which one deletes all the leaves of Ik, the editing cost to transform the tree into the self-nested
tree in which subtrees of height 1 have x leaves is given by

CH = mH−2

[∑
k∈A

pklk +
∑
k/∈A

pk|lk − x|

]
.

In light of the previous reasoning, this states the expected result.
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