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ON THE EXOTIC GRASSMANNIAN AND ITS NILPOTENT VARIETY

Given a decomposition of a vector space V = V 1 ⊕ V 2 , the direct product X of the projective space P(V 1 ) with a Grassmann variety Gr k (V ) can be viewed as a double flag variety for the symmetric pair (G, K) = (GL(V ), GL(V 1 ) × GL(V 2 )). Relying on the conormal variety for the action of K on X, we show a geometric correspondence between the K-orbits of X and the K-orbits of some appropriate exotic nilpotent cone. We also give a combinatorial interpretation of this correspondence in some special cases. Our construction is inspired by a classical result of Steinberg [

1. Introduction 1.1. Multiple flag varieties. Let G be a connected reductive algebraic group over C and let g be its Lie algebra. Let (g, x) → g • x denote the adjoint action of G on g.

Given a parabolic subgroup P ⊂ G, the quotient G/P is a projective variety called (partial) flag variety. Equivalently G/P can be viewed as the set of parabolic subgroups of the same type as P (i.e., conjugate to P ), or as the set of parabolic subalgebras p 1 ⊂ g of the same type as p := Lie(P ) (i.e., of the form g • p for g ∈ G). Evidently the natural action of G on G/P is transitive.

Flag varieties are central objects in geometric representation theory. In recent years there has been a growing interest for multiple flag varieties, or, direct products of flag varieties. By the Bruhat decomposition, a double flag variety of the form G/P 1 × G/P 2 always consists of finitely many orbits for the diagonal action of G, which are parametrized by the double cosets W P 1 wW P 2 (w ∈ W ) of the Weyl group W = W G . Triple flag varieties of the form G/P 1 × G/P 2 × G/P 3 consist of infinitely many G-orbits in general. Triple flag varieties with finite number of G-orbits are classified in [START_REF] Magyar | Multiple flag varieties of finite type[END_REF], [START_REF]Symplectic multiple flag varieties of finite type[END_REF] in the classical cases (see also [START_REF] Matsuki | An example of orthogonal triple flag variety of finite type[END_REF]).

In this paper we study certain multiple flag varieties that can be associated to symmetric pairs. 1.2. Double flag variety of a symmetric pair. Let θ be an involutive automorphism of G. The subgroup K = G θ := {g ∈ G : θ(g) = g} is then reductive, and the pair (G, K) is called a symmetric pair.

Example 1.1. (a) For θ = id G we obtain the (trivial) symmetric pair (G, G). (b) Let G = GL 2n (C) and let θ(g) = ι t g -1 ι -1 , where ι = 0 1n -1n 0 . Then G θ = Sp 2n (C). The pair (GL 2n (C), Sp 2n (C)) is referred to as a symmetric pair of type AII. (c) Similarly, (G, K) = (GL p+q (C), GL p (C) × GL q (C)) is a symmetric pair, which is called of type AIII. In this case, the involution θ is given by an inner conjugation by 1p 0 0 -1q . We refer the readers to [START_REF] Helgason | Differential geometry, Lie groups, and symmetric spaces[END_REF] for a complete classification of classical symmetric pairs. Following [START_REF] Nishiyama | Double flag varieties for a symmetric pair and finiteness of orbits[END_REF], for parabolic subgroups Q ⊂ K and P ⊂ G, we consider the double flag variety X := G/P × K/Q. The group K acts diagonally on X and we call X of finite type if it has a finite number of K-orbits. This is not the case in general, as shown by the next examples.

Example 1.2. (a) In the case of the trivial symmetric pair (G, G), the double flag variety X is an usual double flag variety for G of the form G/P × G/Q, and it is of finite type for every choice of Q and P (by the Bruhat decomposition as already explained above). (b) Consider θ : G × G → G × G given by the flip θ(g 1 , g 2 ) = (g 2 , g 1 ). Then G θ = {(g, g) : g ∈ G} ∼ = G. In this case X is a triple flag variety of the form (G × G)/(P 1 × P 2 ) × G/Q = G/P 1 × G/P 2 × G/Q, which is in general not of finite type (see [START_REF] Magyar | Multiple flag varieties of finite type[END_REF] and [START_REF]Symplectic multiple flag varieties of finite type[END_REF] as already mentioned).

Sufficient criteria for X to be of finite type are obtained in [START_REF] He | On orbits in double flag varieties for symmetric pairs[END_REF][START_REF] Nishiyama | Double flag varieties for a symmetric pair and finiteness of orbits[END_REF]. Moreover, in [START_REF] He | On orbits in double flag varieties for symmetric pairs[END_REF], the complete classification of the double flag varieties X = G/P × K/Q of finite type is given when P or Q is a Borel subgroup of G or K, respectively.

In the case of the symmetric pair of type AIII, we know:

Proposition 1.3 (see [START_REF] Nishiyama | Double flag varieties for a symmetric pair and finiteness of orbits[END_REF]Table 3]). Let (G, K) = (GL p+q (C), GL p (C) × GL q (C)). In each of the following cases, the variety X = G/P × K/Q is of finite type.

(a) Q ⊂ K is mirabolic (i.e., K/Q is a projective space) and P is arbitrary; (b) P ⊂ G is maximal (i.e., G/P is a Grassmannian) and Q is arbitrary.

Remark 1.4. In [START_REF] Nishiyama | Double flag varieties for a symmetric pair and finiteness of orbits[END_REF]Table 3], more examples of X of type AIII which are of finite type are given. But, even in the case of type AIII, the classification of double flag varieties of finite type is open.

Notation 1.5. Hereafter (G, K) denotes a symmetric pair. By differentiation, the automorphism θ induces a Lie algebra automorphism still denoted by the same letter θ ∈ Aut(g). Let

g = k ⊕ s,
where k = Lie(K) = ker(θid g ) and s = ker(θ + id g ).

For every x ∈ g, we write x = x θ + x -θ with (x θ , x -θ ) ∈ k × s, or to be more explicit,

x θ = 1 2 (x + θ(x)) and x -θ = 1 2 (x -θ(x)).
Finally, we denote by N (g), N (k), and N (s) the sets of nilpotent elements of g, k, and s, respectively.

1.3. Conormal variety. The action of the group K on the double flag variety X = K/Q × G/P induces a Hamiltonian action of K on the cotangent bundle T * X, which therefore gives rise to a moment map µ X : T * X → k * ∼ = k (see [START_REF] Chriss | Representation theory and complex geometry[END_REF] for example).

Let us describe the moment map µ X explicitly. For that purpose, we realize the cotangent bundle over G/P as T * (G/P ) = {(p 1 , x) : p 1 is G-conjugate to p, x ∈ n p 1 } ≃ G × P n p , where n p 1 stands for the nilpotent radical of a parabolic subalgebra p 1 ⊂ g. Similarly we realize T * (K/Q), and then get the cotangent bundle T * X = T * (G/P ) × T * (K/Q) as the set of quadruples T * X = {((p 1 , x), (q 1 , y)) ∈ (G/P × g) × (K/Q × k) : x ∈ n p 1 , y ∈ n q 1 }.

Here n q 1 denotes the nilpotent radical of a parabolic subalgebra q 1 ⊂ k, and q 1 is a K-conjugate of q. Then the moment map µ X can be viewed as the map µ X : T * X → k, µ X ((p 1 , x), (q 1 , y)) = x θ + y.

The null fiber Y := µ -1 X ({0}) ⊂ T * X of µ X is called conormal variety. It is a closed subvariety in the cotangent bundle and we may identify it as

(1) Y = {(p 1 , q 1 , x) ∈ G/P × K/Q × g : x ∈ n p 1 , x θ ∈ n q 1 }, since y = -x θ is determined by x. Every K-orbit O ⊂ X gives rise to a conormal bundle T * O X := z∈O (T z O) ⊥ , which is a Lagrangian, smooth, irreducible subvariety of T * X of dimension dim X.
From the definition of Y it is readily seen that the inclusion T * O X ⊂ Y holds. In fact, in the case where X is of finite type, we obtain a finite decomposition

(2) Y = O∈X/K T * O X = O∈X/K T * O X
into closed subvarieties of the same dimension. Thus the conormal variety Y is equidimensional and its irreducible components are exactly the closures T * O X for O ∈ X/K. They are parametrized by the orbit set X/K.

So if we can parametrize the irreducible components of Y nicely by different objects, then we can describe the K-orbits in X using such parametrization. In fact, Steinberg did this for the trivial symmetric pair in his classical paper [START_REF] Steinberg | On the desingularization of the unipotent variety[END_REF]. Let us explain it as a guiding principle.

1.4. Steinberg correspondence. We can re-interpret results of Steinberg [START_REF] Steinberg | On the desingularization of the unipotent variety[END_REF] using the above mentioned idea in the following way. This corresponds to the case of the trivial symmetric pair (G, K) = (G, G), where θ is considered to be the identity.

Let P = Q = B be a Borel subgroup of G. On the one hand, by Bruhat decomposition, the G-orbits of the double flag variety X = G/B × G/B are parametrized by the Weyl group elements w ∈ W , hence so are the components of Y. On the other hand, in the present situation, the conormal variety can be described as

Y = {(b 1 , b 2 , x) ∈ G/B × G/B × g : x ∈ n b 1 ∩ n b 2 },
and we can consider the map

π : Y → N (g), (b 1 , b 2 , x) → x.
The nilpotent cone N = N (g) consists of finitely many G-orbits. The map π is a fibration over each orbit Gx, with fiber B x × B x , where

B x = {b 1 ∈ G/B : x ∈ n b 1 }
is the Springer fiber of x (an equidimensional variety). Moreover it can be shown that dim π -1 (Gx) does not depend on x ∈ N (g). Altogether this yields (explicit) bijections

(3)

W ∼ = Irr(Y) ∼ = x∈N /G Irr(π -1 (Gx)) ∼ = x∈N /G (Irr(B x ) × Irr(B x ))/Z G (x),
where Irr(Z) stands for the set of irreducible components of a variety Z. In the right-hand side of (3) the quotient by the diagonal action of the stabilizer Z G (x) := {g ∈ G : g•x = x} on pairs of components of B x is considered. We refer to [START_REF] Steinberg | On the desingularization of the unipotent variety[END_REF] for more details. When G = GL n (C), the Weyl group W = S n is the symmetric group, the nilpotent orbits Gx ⊂ N are parametrized by partitions λ ⊢ n, the set Irr(B x ) is in bijection with the set STab(λ) of standard Young tableaux of shape λ (see [START_REF] Spaltenstein | Classes unipotentes et sous-groupes de Borel[END_REF]§II.5] and [START_REF] Steinberg | On the desingularization of the unipotent variety[END_REF]§5]), and Z G (x) is connected hence acts trivially on Irr(B x ). Thus (3) yields a bijection (4)

S n ∼ = λ⊢n STab(λ) × STab(λ),
which actually coincides with the classical Robinson-Schensted correspondence [START_REF]An occurrence of the Robinson-Schensted correspondence[END_REF]. The Steinberg correspondence is closely related to the Springer correspondence [Spr76] between nilpotent orbits and Weyl group representations, in the sense that (3) yields a decomposition of W into cells, which is a basic ingredient for obtaining further realizations and interpretations of Springer representations. The notion of cells in Weyl groups is originally developed by Joseph [START_REF] Joseph | Sur la classification des idéaux primitifs dans l'algèbre enveloppante de sl(n+1, C)[END_REF][START_REF]W -module structure in the primitive spectrum of the enveloping algebra of a semisimple Lie algebra[END_REF] and later on by Kazhdan and Lusztig [START_REF] Kazhdan | Representations of Coxeter groups and Hecke algebras[END_REF]. In the case of G = GL n (C) the Springer correspondence is a direct bijection between the set of nilpotent orbits N /G and the set W of irreducible representations of W = S n . Beyond the case of GL n (C) the correspondence is more complicated, mainly due to the topology of nilpotent G-orbits (e.g., the non-connectedness of the stabilizer Z G (x)).

The last fact motivates the search of alternative geometric constructions of Weyl group representations in classical cases other than type A. By considering the symmetric pair of type AII (G, K) = (GL 2n (C), Sp 2n (C)), and relying on properties of affine Hecke algebras, Kato [START_REF] Kato | An exotic Deligne-Langlands correspondence for symplectic groups[END_REF][START_REF]Deformations of nilpotent cones and Springer correspondences[END_REF] 

P(C 2n ) × GL 2n (C)/B = K/Q × G/B with Q ⊂ K mirabolic).
Our work is inspired by [START_REF] Henderson | The exotic Robinson-Schensted correspondence[END_REF].

1.5. Exotic Grassmannian and exotic nilpotent variety. Our goal in this paper is to establish an exotic version of Steinberg correspondence for a symmetric pair of type AIII. Specifically we consider the following double flag variety.

Notation 1.6. We use the following notation throughout the paper.

(a) We let V = C n (n ≥ 1) and consider the decomposition

V = V 1 ⊕ V 2 with V 1 = C p × {0} q , V 2 = {0} p × C q (p + q = n).
Let (G, K) be the symmetric pair given by

G = GL(V ), K = GL(V 1 ) × GL(V 2 ) ⊂ G.
Let k ∈ {0, . . . , n}. By Gr k (V ) we denote the Grassmann variety of k-dimensional subspaces of V . The exotic Grassmannian is the double flag variety

(5)

X := Gr k (V ) × P(V 1 ).
Thus X is of the form G/P × K/Q, where P ⊂ G is a maximal parabolic subgroup stabilizing a k-space in V and Q ⊂ K is a mirabolic subgroup stabilizing a line in V 1 . In fact, we see that

Q = Q 1 × GL(V 2 ) with Q 1 ⊂ GL(V 1 ) mirabolic. (b) Let g := Lie(G) = L(V )
, and set

k := Lie(K) = { x 1 0 0 x 2 : x i ∈ L(V i )}, s := { 0 x 12 x 21 0 : x ij ∈ L(V j , V i )}. For x = x 1 x 12 x 21 x 2 ∈ g we denote x θ = x 1 0 0 x 2 ∈ k and x -θ = 0 x 12 x 21 0 ∈ s.
The conormal variety Y corresponding to the K-variety X can be described as

Y = {(W, L, x) ∈ Gr k (V ) × P(V 1 ) × L(V ) : Im x ⊂ W ⊂ ker x, Im x θ ⊂ L ⊂ ker x θ }.
This is an explicit realization of Y in this case, the general definition being given in (1). (c) Let us define the (K-equivariant) map

π : Y → P(V 1 ) × s, (W, L, x) → (L, x -θ ).
Then, in fact, x -θ turns out to be nilpotent and it belongs to N (s) k 2 := {x ∈ s : x 2 = 0 and rk x ≤ min{k, n -k}}; in addition the image π(Y) coincides with

E := P(V 1 ) × N (s) k
2 , and we call it exotic nilpotent cone. Thus we have a surjective K-equivariant map π : Y → E (see Proposition 2.8; we prove this in Section 4.3).

Our analysis of the exotic Grassmannian X relies on the following key facts.

• The diagonal action of K on X has a finite number of orbits (this follows from Proposition 1.3; see also Section 2.3 for a combinatorial description of the orbits). Therefore Y is equidimensional and Irr(Y) ∼ = X/K (see Section 1.3). • The diagonal action of K on E has a finite number of orbits (this result is due to Johnson [START_REF] Johnson | Enhanced nilpotent representations of a cyclic quiver[END_REF]; see Section 2.1). Using the map π : Y → E, we relate K-orbits in E and components of Y. Thus we can describe the relation between K-orbits in X and E, which is our main result.

Theorem 1.7 (cf., Theorem 2.12). Let X, Y, E, p, q, k be as above.

(a) For every component C ⊂ Y, there is a unique

K-orbit O C ⊂ E such that C ⊂ π -1 (O C ).
Moreover, the so-obtained map Ξ : Irr(Y) → E/K, C → O C is surjective, and each fiber of Ξ contains at most two elements.

(b) In the case where p ≤ max{k, nk, q + 1}, the map Ξ is bijective.

By Theorem 1.7 and Section 1.3, we obtain the following corollary, which can be viewed as an exotic version of Steinberg correspondence for the symmetric pair of type AIII.

Corollary 1.8 (cf., Corollary 2.13). (a) There is an explicit surjection Φ :

X/K → E/K, O → O T * O X
, whose fibers have at most two elements. (b) In the case where p ≤ max{k, nk, q + 1}, the map Φ is bijective.

Actually Theorem 1.7 and Corollary 1.8 can be stated in a more precise way. Indeed from Johnson [START_REF] Johnson | Enhanced nilpotent representations of a cyclic quiver[END_REF] we have a parametrization of the K-orbits of the exotic nilpotent cone E by so-called striped signed diagrams; see Section 2.1. In Section 2.2 we state refined versions of Theorem 1.7 and Corollary 1.8 (Theorem 2.12 and Corollary 2.13), which include a characterization of K-orbits O ⊂ E such that Ξ -1 (O) and Φ -1 (O) are singletons (resp., pairs).

Furthermore in Section 2.3 we give a combinatorial parametrization of the K-orbits of the double flag variety X and, for certain values of p, q, k, we explicitly compute the correspondence Φ of Corollary 1.8. Although it is a priori computable, the correspondence Φ appears to be not straightforward in general.

As far as we know, our result is the second result of this type after the work of Henderson and Trapa [START_REF] Henderson | The exotic Robinson-Schensted correspondence[END_REF]. In [START_REF] Henderson | The exotic Robinson-Schensted correspondence[END_REF] the authors consider the symmetric pair (GL 2n (C), Sp 2n (C)) and the enhanced flag variety X := C 2n × GL 2n (C)/B , whose projectivization is the double flag variety X′ := Sp 2n (C)/Q × GL 2n (C)/B for Q mirabolic. They rely on the description of X/Sp 2n (C) due to Matsuki [START_REF] Matsuki | An example of orthogonal triple flag variety of finite type[END_REF] and on the description of the exotic nilpotent cone of Kato [START_REF] Kato | An exotic Deligne-Langlands correspondence for symplectic groups[END_REF]. They also make use of the enhanced nilpotent cone studied by Achar and Henderson [START_REF] Achar | Orbit closures in the enhanced nilpotent cone[END_REF]. A significant difference with our situation is that the variety X (as well as X′ ) is endowed with a diagonal action of the full group GL 2n (C). Our approach is therefore quite different from that of [START_REF] Henderson | The exotic Robinson-Schensted correspondence[END_REF].

Precise statement of main result

In this section we give a detailed formulation of the results outlined in Section 1.5. In Section 2.1 we parametrize (following Johnson [START_REF] Johnson | Enhanced nilpotent representations of a cyclic quiver[END_REF]) the K-orbits of the exotic nilpotent cone E in the case of the exotic Grassmannian X. In Section 2.2 we state our main result on the correspondence between the K-orbits of E and X (Theorem 2.12). In Section 2.3, we parametrize the K-orbits of X by so-called (1, 2)-tableaux, and we give a combinatorial interpretation of the correspondence of Theorem 2.12 in certain particular cases. All results presented in this section are proved in the subsequent sections.

2.1. Exotic nilpotent cone and its K-orbits. We consider the notation introduced in Notation 1.6. In particular s consists of elements of the form

x = 0 a b 0 with a ∈ L(V 2 , V 1 ) and b ∈ L(V 1 , V 2
), and we have rk x = rk a + rk b. We consider the diagonal action of

K = GL(V 1 ) × GL(V 2 ) on the product P(V 1 ) × N (s).
Proposition 2.1 (see [START_REF] Johnson | Enhanced nilpotent representations of a cyclic quiver[END_REF]). P(V 1 ) × N (s) has a finite number of K-orbits.

Furthermore Johnson's result in [START_REF] Johnson | Enhanced nilpotent representations of a cyclic quiver[END_REF] contains a combinatorial parametrization of the orbits.

In this paper, we focus on the action of K on the 2-step nilpotent cone N (s) 2 := {x = 0 a b 0 ∈ s : x 2 = 0} and hence on the exotic nilpotent cone

E = P(V 1 ) × N (s) k 2 (see Notation 1.6 (c)). Note that N (s) 2 = 0 a b 0 ∈ s : ab = 0 and ba = 0 , whence rk a + rk b ≤ min{dim V 1 , dim V 2 } = min{p, q} whenever 0 a b 0 ∈ N (s) 2 .
Definition 2.2. (a) Let Λ 2 be the set of pairs of nonnegative integers (r, s) such that r + s ≤ min{p, q}.

(b) Let Π 2 be the set of pairs ((r, s), µ) where (r, s) ∈ Λ 2 and µ = (µ 1 , . . . , µ n-(r+s) ) is a sequence satisfying the following conditions:

(6)

             (a) µ 1 = . . . = µ r = 1; (b) µ r+1 = . . . = µ r+s ∈ {0, 2}; (c) µ r+s+1 = . . . = µ p ∈ {-1, 1}; (d) µ p+1 = . . . = µ n-(r+s) = 0; (e) at least one term µ i is ≥ 1 (automatically satisfied if r = 0); (f) {-1, 2} ⊂ {µ 1 , . . . , µ n-(r+s) }.
Furthermore we call ((r, s), µ) of type (I) if µ r+1 , . . . , µ p ≤ 0; of type (II) if r + s = p, µ r+1 = . . . = µ r+s = 0, and µ r+s+1 = . . . = µ p = 1; of type (III) if s = 0 and µ r+1 = . . . = µ r+s = 2.

Notation 2.3. (a) It is convenient to represent a pair (r, s) ∈ Λ 2 by a signed Young diagram λ(r,s) of signature (p, q) defined as follows: the first r rows of λ(r,s) contain the symbol + -; the next s rows contain -+ ; the next p -(r + s) rows contain + ; the last q -(r + s) rows contain -. The diagram λ(r,s) has n -(r + s) left-justified rows, and it contains p symbols "+" and q symbols "-".

(b) We represent an element ((r, s), µ) ∈ Π 2 by a striped signed diagram λ((r,s),µ) defined as follows. Consider a grid pattern whose rows are numbered 1, 2, . . . from top to bottom and whose columns are numbered -2, -1, 0, 1, 2 from left to right. Then λ((r,s),µ) is the diagram obtained from λ(r,s) by shifting horizontally the rows so that, for every i ∈ {1, . . . , n -(r + s)}, the first box of the i-th row of λ((r,s),µ) lies in the column -µ i .

Example 2.4. (a) Let (p, q) = (4, 5) and (r, s) = (2, 1). Then λ(r,s) =

+ - + - -+ + - - . (b) Let (p, q) = (4, 5
). The set Π 2 comprises three elements of the form ((2, 1), µ), which correspond to the following striped signed diagrams.

λ((2,1),(1 2 ,0,-1,0 2 )) = + - + - -+ + - - , λ((2,1),(1 2 ,0,1,0 2 )) = + - + - -+ + - - , λ((2,1),(1 2 ,2,1,0 2 )) = + - + - -+ + - - .
They are respectively of types (I), (II), (III). In the pictures the column number 0 is the first one on the right of the thick line.

The next proposition follows from [Joh10, Theorem 4.12 and Corollary 5.7].

Proposition 2.5. (a) For (r, s) ∈ Λ 2 , let O K (r,s) be the set of elements

( 0 a b 0 ) ∈ N (s) 2 such that rk a = r and rk b = s. Then O K (r,s) is a K-orbit of N (s) 2 . Conversely every K-orbit of N (s) 2 is of the form O K (r,s) for a unique pair (r, s) ∈ Λ 2 . (b) Let O K ((r,s),µ) be the set of pairs (L, ( 0 a b 0 )) ∈ P(V 1 ) × O K (r,s) such that:    L ⊂ Im a if ((r, s), µ) is of type (I); L ⊂ ker b, L ⊂ Im a if ((r, s), µ) is of type (II); L ⊂ ker b if ((r, s), µ) is of type (III). Then O K ((r,s),µ) is a K-orbit of P(V 1 ) × N (s) 2 . Conversely every K-orbit of P(V 1 ) × N (s) 2 is of the form O K ((r,s),µ) for a unique pair ((r, s), µ) ∈ Π 2 . (c) dim O K (r,s) = (r+s)(n-(r+s)) and dim O K ((r,s),µ) = (r+s)(n-(r+s))+ n-(r+s) i=1 µ i 2 -1.
Remark 2.6. The description of K-orbits presented here is adapted from the one in [Joh10, §4-5], from which it is however slightly different. Indeed, the K-orbits of V 1 × N (s) 2 are classified in [START_REF] Johnson | Enhanced nilpotent representations of a cyclic quiver[END_REF] whereas we are concerned with the product

P(V 1 ) × N (s) 2 . Corollary 2.7. Let Π k 2 = {((r, s), µ) ∈ Π 2 : r + s ≤ min{k, n -k}}. Then we have E = ((r,s),µ)∈Π k 2 O K ((r,s),µ)
which is the decomposition of the exotic nilpotent cone E of Notation 1.6 (c) into K-orbits.

Main results.

The setting is explained in Notation 1.6. In particular we consider the conormal variety Y ⊂ Gr k (V ) × P(V 1 ) × N (g) and the exotic nilpotent cone

E = P(V 1 )×N (s) k 2 ⊂ P(V 1 )×N (s).
Remind the projection g → s, x → x -θ (see Notation 1.6). As mentioned in Section 1.5, the following statement is valid. We prove it in Section 4.

Proposition 2.8. The map

π : Y → E, (W, L, x) → (L, x -θ )
is well defined and surjective.

Recall that an element ((r, s), µ) ∈ Π k 2 can be of type (I), (II), or (III), according to Definition 2.2. We introduce subtypes (II) 0 and (II) * . Definition 2.9. We say that an element ((r, s), µ) ∈ Π k 2 is of type (II) * if it is of type (II) and satisfies (7) q = r + s ≤ p -2 and q < min{k, n -k}.

We say that ((r, s), µ) is of type (II) 0 if it is of type (II) without satisfying (7).

Remark 2.10. (a) The condition q = r +s ≤ p-2 means that the striped signed diagram λ((r,s),µ) contains no row of the form -and contains at least two rows of the form + .

Furthermore, ((r, s), µ) being of type (II), we have that all rows of λ((r,s),µ) of the form -+ lie on the right of the thick line whereas all rows + lie on the left. (b) The condition r + s < min{k, n -k} means that the nilpotent G-orbit GO K ((r,s),µ) has positive codimension inside the set N (g) k 2 := {z ∈ L(V ) : z 2 = 0, rk z ≤ min{k, n -k}}, which is the closure of the Richardson nilpotent G-orbit corresponding to a maximal parabolic subgroup of type (k, nk) (see Section 3.2). (c) In the case where p ≤ max{k, nk, q + 1}, or equivalently (q > p -2 or q ≥ min{k, n -k}), relation (7) cannot occur, hence every element ((r, s), µ) of type (II) is of type (II) 0 . If p > max{k, nk, q + 1}, then we can always find elements of type (II) * .

Example 2.11. Assume that (p, q) = (3, 1). (a) The set Π 2 2 comprises five elements, which correspond to the following striped signed diagrams (for each diagram we indicate its type).

(8)

+ - + + (I) , + - + + (II) * , -+ + + (II) * , -+ + + (III) , + + + - (II) 0 . (b) The set Π 1 2 coincides with Π 2 2 .
In particular it corresponds to the same list of striped signed diagrams as in (8), with the single difference that the second and the third diagrams in the list are of type (II) 0 when viewed as elements of Π 1 2 . There is no element of type (II) * in Π 1 2 .

Let us recall the situation once again. Since there are only finitely many exotic nilpotent orbits and since the map π : Y → E is K-equivariant, an irreducible component C of the conormal variety Y is mapped densely by π to the closure of an exotic nilpotent orbit O ⊂ E. The explicit correspondence between C and O is given by the following theorem. Then, Theorem 1.7 comes as its consequence (taking also Corollary 2.7 into account).

Theorem 2.12. We assume the notation above; in particular Π k 2 denotes the set defined in Corollary 2.7. Let O = O K ((r,s),µ) be the K-orbit of E corresponding to the element

((r, s), µ) ∈ Π k 2 . (a) If ((r, s), µ) is of type (I), (II) 0 , or (III), then there is a unique component C O of Y such that C O ⊂ π -1 (O). (b) If ((r, s), µ) is of type (II) * , then there are exactly two components C 1 O and C 2 O of Y such that C i O ⊂ π -1 (O) for i ∈ {1, 2}. (c) Every irreducible component of the conormal variety Y is of the form C O , C 1 O , or C 2 O for a unique K-orbit O of the exotic nilpotent cone E.
Since the irreducible components of the conormal variety Y correspond bijectively to the K-orbits of the double flag variety X, we get a map from X/K to E/K (see Corollary 1.8).

Corollary 2.13. The map Φ : X/K → E/K satisfies the following conditions:

(a) If ((r, s), µ) ∈ Π k 2 is of type (I), (II) 0 , (III), then Φ -1 (O K ((r,s),µ) ) is a singleton. (b) If ((r, s), µ) is of type (II) * , then Φ -1 (O K ((r,s),µ) ) is a pair. (c) Φ is a bijection if and only if p ≤ max{k, n -k, q + 1}.
Furthermore we can make the correspondence Φ of Corollary 2.13 explicit. Some examples are discussed in the following subsection.

2.3. Parametrization of K-orbits in X. We start this section with a description of the orbits of

K = GL(V 1 ) × GL(V 2 ) in the exotic Grassmannian X = Gr k (V ) × P(V 1 ).
Definition 2.14. Let δ be the diagram formed by two columns consisting of respectively p and q boxes. (a) We call (1, 2)-tableau of shape (p, q) and weight k a filling of the boxes of δ by the numbers 0, 1, 2 in such a way that the columns are nondecreasing from top to bottom, the number of 1's is the same in both columns, and the half sum of the entries of the tableau is equal to k. (b) A marked (1, 2)-tableau is a pair of the form (τ, i) where τ is a (1, 2)-tableau and i is an entry occurring in the first column of τ . We denote by Θ k 2 the set of marked (1, 2)-tableaux of shape (p, q) and weight k.

Example 2.15. Assume that (p, q) = (3, 1). (a) The set Θ 2 2 consists of seven elements enumerated as follows:

0 0 2 2 , 0 , 0 0 2 2 , 2 , 0 2 0 2 , 0 , 0 2 0 2 , 2 , 0 1 1 2 , 0 , 0 1 1 2 , 1 , 0 1 1 2 , 2 .
(b) The set Θ 1 2 consists of five elements:

0 0 0 2 , 0 , 0 0 0 2 , 2 , 0 2 0 0 , 0 , 0 1 0 1 , 0 , 0 1 0 1 , 1 .
The following result is proved in Section 6.1.

Proposition 2.16.

For (τ, i) ∈ Θ k 2 , let O (τ,i) ⊂ X be the subset formed by pairs (W, L) ∈ Gr k (V ) × P(V 1 ) such that: (9)          dim W ∩ V j = number of 2's in the j-th column of τ , for j ∈ {1, 2}; L ⊂ W if i = 2; L ⊂ W + V 2 , L ⊂ W if i = 1; L ⊂ W + V 2 if i = 0. Then O (τ,i) is a K-orbit of X. Conversely every K-orbit of X is of the form O (τ,i) for a unique marked (1, 2)-tableau (τ, i) ∈ Θ k 2 . Remark 2.17. Evidently K-orbits (K = GL(V 1 ) × GL(V 2 )) in the Grassmannian Gr k (V )
are parametrized by (1, 2)-tableaux τ of shape (p, q) and weight k (without marking): this parametrization is given by the first line of (9), and it actually appears as a special case of the classification of K-orbits in the full flag variety GL(V )/B (for B a Borel subgroup); see [M Ō90,[START_REF] Yamamoto | Orbits in the flag variety and images of the moment map for classical groups. I[END_REF], and [START_REF] Wyser | The Bruhat order on clans[END_REF] for the degeneracy order of these orbits. By Proposition 1.3 the enhanced full flag variety P(V 1 ) × (GL(V )/B) has also finitely many K-orbits, but as far as we know there is no combinatorial parametrization of these orbits; an abstract parametrization is given in [START_REF] He | On orbits in double flag varieties for symmetric pairs[END_REF].

We consider the surjective map Φ : X/K → E/K involved in Corollaries 1.8 and 2.13. Recall that the image by Φ of a 

K-orbit O = O (τ,i) ⊂ X (with (τ, i) ∈ Θ k 2 ) is the unique K-orbit Φ(O) = O K ((r,s),µ) ⊂ E (with ((r, s), µ) ∈ Π k 2 ) such that π -1 (O K ((r,s),µ) ) ∩ T * O X is open in T * O X (
: Θ k 2 → Π k 2 . ((r, s), µ) ∈ Π k 2 + - + + + - + + -+ + + -+ + + + + + - φ -1 (((r, s), µ)) for k = 1 0 0 0 2 , 2 0 0 0 2 , 0 0 1 0 1 , 1 0 2 0 0 , 0 0 1 0 1 , 0 φ -1 (((r, s), µ)) for k = 2 0 1 1 2 , 2 0 0 2 2 , 2 , 0 0 2 2 , 0 0 2 0 2 , 2 , 0 1 1 2 , 1 0 2 0 2 , 0 0 1 1 2 , 0 Example 2.19. Let p = q = k = n 2 =: m. The map φ : Θ k 2 → Π k
2 is bijective in this case, and the image by φ of the element (τ, i) ∈ Θ k 2 is the pair (τ, i) = ((r, s), µ) given by:

               r = number of 2's in the first column of τ ; s = number of 2's in the second column of τ ; µ =      (1 r , 0 s , (-1) m-(r+s) , 0 m-(r+s) ) if i = 2 (((r, s), µ) is of type (I) in this case); (1 r , 0 s , 1 m-(r+s) , 0 m-(r+s) ) if i = 1 (((r, s), µ) is of type (II) in this case); (1 r , 2 s , 1 m-(r+s) , 0 m-(r+s) ) if i = 0 (((r, s), µ) is of type (III) in this case).
For instance, the next table summarizes the map φ for p = q = k = 2.

(τ, i) 2 0 2 0 , 2 0 0 2 2 , 2 0 0 2 2 , 0 0 2 0 2 , 0 1 0 2 1 , 2 1 0 2 1 , 1 0 1 1 2 , 1 0 1 1 2 , 0 1 1 1 1 , 1 φ(τ, i) + - + - + - -+ + - -+ -+ -+ + - + - + - + - -+ + - -+ + - + + - -
In the Appendix we describe the map φ in the case p = q = k = 3.

Review on Spaltenstein varieties

In this section we introduce notation and review some basic facts on nilpotent orbits, partial flag varieties, and Spaltenstein varieties for the group G = GL(V ).

3.1. Nilpotent orbits. As in Notation 1.6 we write G = GL(V ) and g = L(V ). The nilpotent cone N := N (g) is the set of nilpotent endomorphisms x ∈ L(V ). There are only finitely many nilpotent G-orbits thanks to the theory of Jordan normal forms.

A G-orbit through x ∈ N is characterized by the sizes of the Jordan blocks λ(x) := (λ 1 ≥ . . . ≥ λ r ) of x, which form a partition of n = dim V , or equivalently a Young diagram of size n (with rows of lengths λ 1 , . . . , λ r ). We denote by

O G λ := {x ∈ N : λ(x) = λ} ⊂ g the nilpotent G-orbit corresponding to the partition λ ⊢ n. Given another partition µ = (µ 1 ≥ . . . ≥ µ s ) ⊢ n, recall that O G µ ⊂ O G λ ⇐⇒ µ λ
where µ λ stands for the dominance order, which means that µ 1 +. . .+µ i ≤ λ 1 +. . .+λ i for all i ∈ {1, 2, . . . , min{r, s}}. For the proof, and more detailed properties of nilpotent orbits used below, we refer the readers to [START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF].

The dual partition λ * = (λ * 1 , . . . , λ * λ 1 ) is the partition obtained from λ by Young diagram transposition, i.e., such that λ * 1 , . . . , λ * λ 1 are the lengths of the columns of λ. Note that the duality O G λ → O G λ * reverses the inclusion relations between orbit closures.

Finally we recall the dimension formula 

dim O G λ = n 2 - λ 1 i=1 (λ * i ) 2 . Example 3.1. If k ∈ {0, . . . , ⌊ n 2 ⌋}, then O G (n-k,k) * = {x ∈ L(V ) : x 2 = 0 and rk x = k} and O G (n-k,k) * = {x ∈ L(V ) : x 2 = 0 and rk x ≤ k} = k ℓ=0 O G (n-ℓ,ℓ) * . Furthermore dim O G (n-k,k) * = 2k(n -k).
p d =    x =   x 1,1 . . . x 1,r . . . . . . 0 x r,r   : x i,j ∈ M d i ,d j (C) (1 ≤ i ≤ j ≤ r)   
and the corresponding nilradical is n p d = {x ∈ p d : x i,i = 0 ∀i}. Every parabolic subgroup P ⊂ G = GL(V ) is conjugated to P d for some d. The partial flag variety G/P can then be regarded as the variety of partial flags

G/P = F d := {(W 0 = 0 ⊂ W 1 ⊂ . . . ⊂ W r = V ) : dim W i /W i-1 = d i }.
The Richardson nilpotent orbit corresponding to P , denoted by O G P , is by definition the open G-orbit of the set

Gn p d = G • {x ∈ L(V ) : x(W i ) ⊂ W i-1 ∀i ≥ 1} ⊂ N
(with some/any (W 0 , . . . , W r ) ∈ G/P ). Letting λ(d) be the partition of n obtained by arranging the sequence d in nonincreasing order, we have

O G P = O G λ(d) * .
The parabolic subgroup P is maximal if it is conjugated to P (k,n-k) for some k ∈ {1, . . . , n -1}. Then, the partial flag variety G/P coincides with the Grassmann variety Gr k (V ), while its Richardson orbit is O G (max{k,n-k},min{k,n-k}) * . Following [START_REF] Finkelberg | Mirabolic affine Grassmannian and character sheaves[END_REF] we call P mirabolic if it is conjugated to P (1,n-1) or P (n-1,1) . Equivalently G/P is isomorphic to the projective space P(V ).

Every parabolic subgroup

Q ⊂ K = GL(V 1 ) × GL(V 2 ) is of the form Q = Q 1 × Q 2 , where Q 1 , Q 2 are parabolic subgroups of GL(V 1 ), GL(V 2 ). Moreover Q is maximal if and only if (Q 1 is maximal and Q 2 = GL(V 2 )) or (Q 1 = GL(V 1 ) and Q 2 is maximal). We call Q mirabolic if it is maximal and Q 1 or Q 2 is mirabolic, so that K/Q ∼ = P(V 1 ) or P(V 2 ).
3.3. Spaltenstein varieties. Let a standard parabolic subgroup P = P d ⊂ GL(V ) corresponding to the composition d = (d 1 , . . . , d r ). For x ∈ N , the variety

F x,d := {(W 0 , . . . , W r ) ∈ F d (= G/P ) : x(W i ) ⊂ W i-1 ∀i ≥ 1}
is called a Spaltenstein variety. It is nonempty if and only if x belongs to the Richardson orbit closure O G P . The variety F x,d is determined by the Jordan form λ = λ(x) of x up to isomorphism and we denote F λ,d := F x,d by abuse of notation. We have

dim F λ,d = dim G/P - 1 2 dim O G λ .
The variety F λ,d is equidimensional and there is an explicit bijection

(10) SSTab(λ, d) ∼ → Irr(F λ,d )
between the set of irreducible components of F λ,d and the set SSTab(λ, d) of semistandard tableaux of shape λ and weight d, i.e., numberings of the Young diagram λ with d i entries equal to i (for all i) and such that the entries are increasing to the right along the rows and nondecreasing to the bottom along the columns. We refer to [START_REF] Spaltenstein | Classes unipotentes et sous-groupes de Borel[END_REF] for more information on Spaltenstein varieties.

In the case of a maximal parabolic subgroup P = P (k,n-k) (for 1 ≤ k ≤ n -1), the Spaltenstein variety F λ,(k,n-k) turns out to be irreducible. This fact is a consequence of (10) since the set SSTab(λ, (k, n-k)) is a singleton (if nonempty). Actually, it can simply be recovered as follows.

Proposition 3.2. Let k ∈ {1, . . . , n-1} and let x ∈ O G (n-ℓ,ℓ) * with 0 ≤ ℓ ≤ min{k, n-k}, so that the Spaltenstein variety F x,(k,n-k) is nonempty. Then we have

F x,(k,n-k) = {W ∈ Gr k (V ) : Im x ⊂ W ⊂ ker x}.
Thus F x,(k,n-k) is isomorphic to the Grassmann variety Gr k-ℓ (ker x/Im x). In particular, it is smooth and irreducible of dimension

(k -ℓ)(n -k -ℓ).
Proof. The proof easily follows from the definition of F x,(k,n-k) and the general properties of Grassmann varieties.

Definition of the map π

In this section, as before, we consider the symmetric pair (G, K) with G = GL(V ) and K = GL(V 1 ) × GL(V 2 ) (see Notation 1.6). The goal of this section is to show Proposition 2.8. We actually show a more general property (see Proposition 4.2 and Corollary 4.4).

Projection of nilpotent elements.

As in Notation 1.5 and 1.6 (b), we have the decomposition g := Lie(G) = k ⊕ s, and in particular every x ∈ g is uniquely written as x = x θ + x -θ with x θ ∈ k and x -θ ∈ s. As in Notation 1.5, we denote by N = N (g), N (k), N (s) the subsets of nilpotent elements in g, k, and s.

We first observe that the property that x and x θ are nilpotent does not imply that x -θ is nilpotent in general.

Example 4.1. Assume p = q = 3, i.e., G = GL 6 (C) and

K = GL 3 (C) × GL 3 (C). Take (11) x = a 1 3 c -a where a =   0 1 0 0 0 -1 0 0 0   , c =   0 0 1 0 0 0 1 0 0   .
Then, x is nilpotent (since x 4 = 0), x θ is nilpotent (clearly), but x -θ is not nilpotent (its minimal polynomial is P (t) = t 2 (t 4 -1)).

We consider parabolic subgroups P ⊂ G and Q ⊂ K, and the corresponding Richardson nilpotent orbits O G P ⊂ g and O K Q ⊂ k (see Section 3.2); thus O G P = Gn p and O K Q = Kn q , where n p and n q denote the nilradicals of the parabolic subalgebras p := Lie(P ) ⊂ g and q := Lie(Q) ⊂ k, respectively.

In this section, unless otherwise notified, we make no assumption on P and Q, so that unlike in Notation 1.6 the double flag variety X := G/P × K/Q is not necessarily of the form of an exotic Grassmannian. The conormal variety Y ⊂ G/P × K/Q × g is described in formula (1). Two sufficient conditions for X to be of finite type (hence for Y to be equidimensional) are given in Proposition 1.3, and these are precisely the two situations considered in the following statement. Proposition 4.2. Assume that at least one of the following two conditions is satisfied:

(a) Q ⊂ K is mirabolic, or (b) P ⊂ G is maximal.
Then, for every x ∈ g, the condition that x ∈ O G P and x θ ∈ O K Q implies x -θ is nilpotent. Proof. First assume that we are in Case (a), i.e., Q is mirabolic. Without loss of generality we may take

Q = Q 1 × GL(V 2 ), where Q 1 is the stabilizer of a line in V 1 . In this situation the inclusion x θ ∈ O K Q simply means that (12) Im x θ ⊂ L ⊂ ker x θ for some line L ⊂ V 1 . Let us write (13) x = a b c d with a ∈ M p (C), b ∈ M p,q ( 
C), c ∈ M q,p (C), and d ∈ M q (C). Relation (12) implies that d = 0 and a is a nilpotent matrix of rank ≤ 1. Moreover, by assumption, the matrix x is also nilpotent. For α ∈ C, we set

x(α) = αa b c 0 .

So, x = x(1), and we need to show that the matrix x -θ = x(0) is also nilpotent. To do this, we compute the characteristic polynomial of x(α),

det(t1 p+q -x(α)) = det t1 p -αa -b -c t1 q = det 1 p -t -1 b 0 1 q t1 p -αa -t -1 bc 0 -c t1 q = t q-p det t(t1 p -αa) -bc .
Since rk a ≤ 1, up to conjugating by an element of GL p (C), we may assume that the matrix a has at most one nonzero coefficient a i,j with i = j. Then, the multilinearity of the determinant implies that

det t(t1 p -αa) -bc = f (t 2 ) + α t g(t 2 )
for some polynomials f and g. For α = 1, as the matrix x(1) = x is nilpotent, we must have

t p+q = t q-p (f (t 2 ) + tg(t 2 )).
This equality forces f (t 2 ) = t 2p and tg(t 2 ) = 0. Thereby, det(t1 p+qx(α)) = t p+q for all α ∈ C.

Thus x(α) is nilpotent for all α. In particular, x -θ = x(0) is nilpotent. Second, let us assume that we are in Case (b), i.e., P is maximal. In that case (as noted in Section 3.2) the Richardson orbit of P consists of two-step nilpotent matrices, hence x 2 = 0. If we express x as in (13), we get (14)

x 2 = a 2 + bc ab

+ bd ca + dc cb + d 2 = 0. Whence (15) (x -θ ) 2 = bc 0 0 cb = - a 2 0 0 d 2 = -(x θ ) 2 .
Since x θ is nilpotent, we conclude from (15) that x -θ is also nilpotent.

Remark 4.3. It follows from ( 14) and (15) that if x and x θ are respectively two-step nilpotent and k-step nilpotent, then x -θ is at most (k + 1)-step nilpotent when k is odd and at most k-step nilpotent when k is even.

Corollary 4.4. Under the assumptions of Proposition 4.2, the map π : Y → K/Q×N (s), (p 1 , q 1 , x) → (q 1 , x -θ ) is well defined.

Proof. By (1) we have x ∈ n p 1 ⊂ O G P and x θ ∈ n q 1 ⊂ O K Q whenever (p 1 , q 1 , x) ∈ Y. The conclusion follows from Proposition 4.2.

Properties of the map π for Q mirabolic.

In what follows we restrict our attention to pairs (P, Q) of standard parabolic subgroups of G and K such that Q is mirabolic. Specifically we take ( 16)

Q = {g ∈ K : g(L 1 ) ⊂ L 1 } for the line L 1 = (1, 0, . . . , 0) C ⊂ C p = V 1 .
Thus K/Q is the projective space P(V 1 ). Let P = P d be a standard parabolic subgroup of G corresponding to the composition d = (d 1 , . . . , d r ). Thus, the double flag variety X = G/P × K/Q interprets as the product

X = F d × P(V 1 ) whose elements are pairs (W • , L) where L ⊂ V 1 is a line and W • = (W 0 = 0 ⊂ W 1 ⊂ . . . ⊂ W r = V ) is a partial flag with dim W i /W i-1 = d i . The conormal variety Y is then Y = {(W • , L, x) ∈ F d × P(V 1 ) × L(V ) : Im x θ ⊂ L ⊂ ker x θ (17) and x(W i ) ⊂ W i-1 ∀i ≥ 1}.
By Corollary 4.4, the map π :

Y → P(V 1 ) × N (s), (W • , L, x) → (L, x -θ
) is well defined. Some technical properties of this map are described in the next lemma.

Lemma 4.5. Since rk x -θ ≤ rk x, we get ker x -θ = ker x, whence rk x -θ = rk x.

Let (W • , L, x) ∈ Y. Write L = v C with v ∈ M p,1 (C) ∼ = V 1 , v = 0. ( a 
Finally, suppose that v / ∈ Im a and u / ∈ Im t b. The latter condition yields an element w ∈ ker b \ ker η. On the one hand, the fact that w / ∈ ker η implies that ηw = αv for some α ∈ C * . On the other hand, since w ∈ ker b, we get

αv = ηw = xw ∈ Im x, so Im η ⊂ Im x.
The latter inclusion implies Im b ⊂ Im x. Moreover, we always have Im a ⊂ Im x. Thereby,

Im x = (Im a + Im η) ⊕ Im b = Im a ⊕ Im η ⊕ Im b = Im η ⊕ Im x -θ ,
where the second equality follows from the assumption that v / ∈ Im a. This yields rk x = rk x -θ + 1.

(c) Note that

x 2 = η 2 + ab ηa bη ba .
Since η 2 = 0, the assumption that x 2 = 0 yields ab = 0 and ba = 0, which guarantees that (x -θ ) 2 = 0. 

π : Y → E, (W, L, x) → (L, x -θ )
is well defined. For every (L, z) ∈ E, we have in particular z ∈ O G P . This inclusion guarantees that the Spaltenstein variety andπ((W, L, z)) = (L, z). Therefore, the map π is surjective onto E. This completes the proof of Proposition 2.8.

F z,(k,n-k) ⊂ Gr k (V ) is nonempty (see Section 3.3). Any W ∈ F z,(k,n-k) satisfies (W, L, z) ∈ Y

Proof of Theorem 2.12: Orbit correspondence

In Section 5.1 we show an abstract correspondence between the K-orbits of the exotic nilpotent cone and the components of the conormal variety associated to the double flag variety G/P × K/Q, in the case where Q ⊂ K is mirabolic and for P ⊂ G arbitrary. In Sections 5.2-5.4 we assume in addition P maximal, so that we recover the situation of the exotic Grassmannian Gr k (V ) × P(V 1 ), and we prove Theorem 2.12 by using the abstract result of Section 5.1. 5.1. Abstract correspondence. All along the section we take Q mirabolic, specifically we assume that Q ⊂ K is the stabilizer of a line of V 1 , so that K/Q = P(V 1 ). In this subsection we let P = P d ⊂ G be an arbitrary (standard) parabolic subgroup, corresponding to a composition d = (d 1 , . . . , d r ). As in Section 3.2 we denote by O G P ⊂ N (g) the Richardson orbit corresponding to P . The conormal variety Y is as in (17), and it is equidimensional (this follows from Proposition 1.3; see Section 1.3).

Set

n L = {z ∈ k = L(V 1 ) × L(V 2 ) : Im z ⊂ L ⊂ ker z} (this is the nilradical of Lie(Q) in k). Hence Y = {(W • , L, x) ∈ F d × P(V 1 ) × N (g) : x θ ∈ n L and x(W i ) ⊂ W i-1 for all i ≥ 1}.
By Corollary 4.4 the map

π : Y → P(V 1 ) × N (s), (W • , L, x) → (L, x -θ ) is well defined. We write π = ψ • φ where φ : Y → P(V 1 ) × N (g), (W • , L, x) → (L, x) and ψ : Z := φ(Y) = {(L, x) ∈ P(V 1 ) × O G P : x θ ∈ n L } → P(V 1 ) × N (s), (L, x) → (L, x -θ ). Furthermore we set E = π(Y) = ψ(Z).
It is easy to see that K acts diagonally on Y, Z, and E, and the maps φ and ψ are K-equivariant. By Proposition 2.1, E has a finite decomposition into K-orbits

E = m i=1 O K i .
For every i ∈ {1, . . . , m} and every partition λ ⊢ n for which O G λ ⊂ O G P , we denote

Z i = ψ -1 (O K i ) and Z λ i = {(L, x) ∈ Z i : x ∈ O G λ }. Thus every subset Z i or Z λ
i is a locally closed subvariety of Z, and every inverse image

φ -1 (Z i ) or φ -1 (Z λ i ) is a locally closed subvariety of Y. Note that (18) Z λ i = {h(L i , x) : h ∈ K, x ∈ O G λ ∩ (z i + n L i )} whenever (L i , z i ) ∈ O K i . Note also that the restriction φ| φ -1 (Z λ i ) : φ -1 (Z λ i ) → Z λ i is a fibration whose fiber is the Spaltenstein variety F λ,d , thus we have dim φ -1 (Z λ i ) = dim Z λ i + dim F λ,d . Definition 5.1. For a K-orbit O K i ⊂ E and a partition λ ⊢ n with O G λ ⊂ O G P , we say that the pair (O K i , λ) is good if Z λ i is nonempty and the equality dim Z λ i + dim F λ,d = dim Y holds.
The next statement is a general construction of the irreducible components of Y. We use it later in a special case (for P maximal) in the proof of Theorem 2.12. Proposition 5.2. (a) For every irreducible component C ⊂ Y, there is a unique good pair

(O K i , λ) such that C ⊂ φ -1 (Z λ i ). (b) Conversely, if (O K i , λ
) is a good pair, then every component of φ -1 (Z λ i ) of maximal dimension is a component of Y. In addition, there is a bijection

Irr max (φ -1 (Z λ i )) ∼ = Irr max (Z λ i ) × Irr(F λ,d
), where Irr max (Z) stands for the set of irreducible components of maximal dimension in Z. (c) For a good pair

(O K i , λ), choose a point (L i , z i ) ∈ O K i . If the variety O G λ ∩ (z i + n L i ) is irreducible, then Z λ i is irreducible, φ -1 (Z λ i
) is equidimensional, and there is a bijection 

Irr(φ -1 (Z λ i )) ∼ = Irr(F λ,d ). Proof. (a) We have Z = φ(Y) = (O K i ,λ) Z λ i (where the union is over all pairs (O K i , λ), not necessarily good) hence (19) Y = (O K i ,λ) φ -1 (Z λ i ) = (O K i ,λ) φ -1 (Z λ i ). Let a component C ⊂ Y. By (19), there is a pair (O K i , λ) such that C ⊂ φ -1 (Z λ i ). Since Y is equidimensional, we know that dim C = dim Y. Whence dim Y = dim C ≤ dim φ -1 (Z λ i ) = dim Z λ i + dim F λ,d ≤ dim Y,
L i , z i ) ∈ O K i . Denote H = {h ∈ K : h(L i , z i ) = (L i , z i )}, which is a connected subgroup of K (it is connected since it is open in the linear space {u ∈ L(V 1 ) × L(V 2 ) : u(L i ) ⊂ L i , [u, z i ] = 0}). We choose a partition into H-stable locally closed subsets O G λ ∩ (z i + n L i ) = C 1 ⊔ . . . ⊔ C ℓ such that the irreducible components of O G λ ∩ (z i + n L i )
are exactly the closures of the subsets C j for j ∈ {1, . . . , ℓ}. In view of (18), we derive the partition

Z λ i = D 1 ⊔ . . . ⊔ D ℓ where D j := {h(L i , x) : h ∈ K, x ∈ C j }
for all j, the pairwise disjointness of the D j 's being shown as follows: the condition

D j ∩ D j ′ = ∅ yields h ∈ K, x ∈ C j , and x ′ ∈ C j ′ such that h(L i , x) = (L i , x ′ ); whence h ∈ H (since hz i = (hx) -θ = x ′-θ = z i ), x ′ = hx ∈ C j ∩ C j ′ (since C j is H-stable)
, and so j = j ′ . Each subset D j is a constructible subset of Z λ i whose closure is irreducible. Whence a clearly well-defined and bijective map (20) j ∈ {1, . . . , ℓ} : dim

D j = dim Z λ i → Irr max (Z λ i ), j → D j ∩ Z λ i .
For j ∈ {1, . . . , ℓ}, fix an element x j ∈ C j and let

G j := {g ∈ G : gx j ∈ C j }.
Note that G j is the inverse image of C j by the map G → O G λ , g → gx j . The latter map is a locally trivial fiber bundle of (connected) fiber Z G (x j ) := {g ∈ G : gx j = x j } (see [PV94, §2.6]). Hence G j is an irreducible locally closed subset of G. In addition we consider the Spaltenstein variety F x j ,d and we can find a partition

F x j ,d = G 1 ⊔ . . . ⊔ G s into Z G (x j
)-stable locally closed subsets such that the closures G t are exactly the components of F x j ,d . For every pair (j, t) ∈ {1, . . . , ℓ} × {1, . . . , s}, we set

Y j,t = {h(gW • , L i , gx j ) : h ∈ K, g ∈ G j , W • ∈ G t }.
Then Y j,t is a constructible subset of φ -1 (D j ) whose closure is irreducible. Note that

φ -1 (D j ) = Y j,1 ⊔ . . . ⊔ Y j,ℓ
where the disjointness of the union is verified as follows: if Y j,t ∩ Y j,t ′ = ∅, then we find in particular g ∈ G, W • ∈ G t , and

W ′ • ∈ G t ′ such that (gW • , gx j ) = (W ′ • , x j ); hence g ∈ Z G (x j ), W ′ • = gW • ∈ G t ∩ G t ′ (since G t is Z G (x j )-stable)
, and finally t = t ′ . We obtain

(21) φ -1 (D j ) = Y j,1 ∪ . . . ∪ Y j,ℓ and φ -1 (Z λ i ) = ℓ j=1 s t=1 Y j,t .
The Y j,t 's are irreducible closed subsets of φ -1 (Z λ i ). Moreover the restriction φ| Y j,t : Y j,t → D j has constant fiber (isomorphic to) G t . Since (O K i , λ) is a good pair, this yields dim Y j,t = dim

D j + dim G t = dim D j + dim F λ,d ≤ dim Z λ i + dim F λ,d = dim Y.
Therefore, Y j,t is an irreducible component of Y (or, equivalently, a component of φ -1 (Z λ i ) of maximal dimension) if and only if dim D j = dim Z λ i . Whence the map (22) j ∈ {1, . . . , ℓ} : dim D j = dim Z λ i × {1, . . . , s} → Irr max (φ -1 (Z λ i )), (j, t) → Y j,t is well defined. This map is surjective (by (21)) and injective (since Y j,t and Y j ′ ,t ′ are disjoint whenever (j, t) = (j ′ , t ′ ) and contain dense open subsets of Y j,t and Y j ′ ,t ′ , respectively). Comparing the bijections of (20) and ( 22) achieves the proof of part (b). (c) In the case where

O G λ ∩ (z i + n L i ) is irreducible, we have ℓ = 1. Hence (21) becomes φ -1 (Z λ i ) = Y 1,1 ∪ . . . ∪ Y 1,s . Since Y 1,1 , . . . , Y 1,
s are all of the same dimension, we get that φ -1 (Z λ i ) is equidimensional and Irr(φ -1 (Z λ i )) = {Y 1,1 , . . . , Y 1,s } ∼ = Irr(F λ,d ). 5.2. Outline of the proof of Theorem 2.12. In the rest of the section, we consider the situation in Theorem 2.12; namely, in addition to assuming Q mirabolic (as in the previous subsection), we assume that the parabolic subgroup P ⊂ G is maximal, of the form P = P (k,n-k) . In this special case, we consider the factorization of π : Y → E through the two maps

Y φ -→ Z ψ -→ E,
as explained in the previous subsection. The exotic nullcone E, which is the image π(Y) by definition, coincides with the one introduced in Notation 1.6 (c), i.e., E = P(V 1 ) × N (s) k 2 . By Corollary 2.7 the K-orbits of E are of the form O K ((r,s),µ) and they are parametrized by the pairs ((r, s), µ) ∈ Π k 2 . In particular for (L, z) ∈ O K ((r,s),µ) we have z 2 = 0 and rk z = r + s. Set Z ((r,s),µ) = ψ -1 (O K ((r,s),µ) ), and for every partition λ ⊢ n, we denote Z λ ((r,s),µ) = {(L, x) ∈ Z ((r,s),µ) : x ∈ O G λ }. We restrict our attention to partitions of the form λ = (nℓ, ℓ) 

The irreducible components of Y are exactly the subsets φ -1 (Z λ ((r,s),µ) ) for the good pairs (O K ((r,s),µ) , λ). Therefore, in order to complete the proof of Theorem 2.12, it suffices to show the following facts:

(26)

If ((r, s), µ) is of type (I), (II) 0 , or (III), then there is a unique partition λ ⊢ n such that the pair (O K ((r,s),µ) , λ) is good.

(27) If ((r, s), µ) is of type (II) * , then there are exactly two partitions λ, λ ′ ⊢ n such that the pairs (O K ((r,s),µ) , λ) and (O K ((r,s),µ) , λ ′ ) are good. The proof of (26) and (27) will be carried out in Section 5.4. 5.3. Fibers of the map ψ. The purpose of this subsection is to show property (23). So we fix a pair (L, z)

∈ E = P(V 1 ) × N (s) k 2 . Write (28) L = v C and z = 0 a b 0 with a nonzero v ∈ M p,1 (C) ∼ = V 1 , a ∈ M p,q ( 
C), and b ∈ M q,p (C). Our goal is to study the fiber ψ -1 ((L, z)) and the intersections O G λ ∩ (z + n L ), and the next lemma is a key. Lemma 5.3. Let z ∈ N (s) k 2 be as in (28), and set Φ(z) := {x ∈ N (g) :

x 2 = 0, x -θ = z, x θ ∈ n L }. (a) If bv = 0, then Φ(z) = {z}. (b) If bv = 0, then Φ(z) = x(u) = v • t u a b 0 : u ∈ ker t a, t u • v = 0 .
Moreover, in this case, denoting ℓ := rk z = rk a + rk b ∈ {0, . . . , min{p, q, k, n -k}},

(i) if v ∈ Im a, then Φ(z) ⊂ O G (n-ℓ,ℓ) * and dim Φ(z) = p -rk a. (ii) If v / ∈ Im a, then Φ(z) = Φ(z) ∩ O G (n-ℓ,ℓ) * ∪ Φ(z) ∩ O G (n-ℓ-1,ℓ+1) *
and we have

Φ(z) ∩ O G (n-ℓ,ℓ) * = {x(u) : u ∈ Im t b}, dim Φ(z) ∩ O G (n-ℓ,ℓ) * = rk b, and 
Φ(z) ∩ O G (n-ℓ-1,ℓ+1) * = {x(u) : u ∈ ker t a, t u • v = 0, u / ∈ Im t b},
which is nonempty if and only if ℓ < p -1, in which case we have The lemma easily follows from these observations and from Lemma 4.5.

dim Φ(z) ∩ O G (n-ℓ-1,ℓ+1) * = p -rk a -1. (c)
The fiber ψ -1 ((L, z)) is determined in the following proposition.

Proposition 5.4. Let (L, z) = ( v C , ( 0 a b 0 )) ∈ E = P(V 1 ) × N (s) k 2 as before and denote ℓ = rk z ∈ {0, . . . , min{p, q, k, n -k}}. (a) Assume that ℓ = min{k, n -k} or (ℓ < min{k, n -k} and

(v / ∈ ker b or v ∈ Im a or ℓ ≥ p -1)). Then ψ -1 ((L, z)) ⊂ P(V 1 ) × O G (n-ℓ,ℓ) * . Moreover, ψ -1 ((L, z)) is an affine space of dimension    0 if v / ∈ ker b, p -rk a if v ∈ Im a(⊂ ker b), rk b if v ∈ ker b \ Im a.
(b) Let ℓ < min{k, n -k} and assume that v ∈ ker b \ Im a and ℓ < p -1. Then, the fiber ψ -1 ((L, z)) decomposes as

ψ -1 ((L, z)) = ψ -1 ((L, z)) ∩ (P(V 1 ) × O G (n-ℓ,ℓ) * ) ⊔ ψ -1 ((L, z)) ∩ (P(V 1 ) × O G (n-ℓ-1,ℓ+1) * )
; both subsets in this union are irreducible; the first one is an affine space, and the second one is open and dense in ψ -1 ((L, z)), and we have

dim ψ -1 ((L, z)) ∩ (P(V 1 ) × O G (n-ℓ,ℓ) * ) = rk b, dim ψ -1 ((L, z)) ∩ (P(V 1 ) × O G (n-ℓ-1,ℓ+1) * ) = p -rk a -1.
Proof. From the fact that every element (L, x) ∈ ψ -1 ((L, z)) satisfies x ∈ O G P , and thus x 2 = 0 (see Section 5.1), and from the definition of Φ(z), we see that

ψ -1 ((L, z)) = {(L, x) : x ∈ Φ(z) and rk x ≤ min{k, n -k}}.
Then the proposition is a consequence of Lemma 5.3.

Corollary 5.5. Condition (23) of Section 5.2 is fulfilled.

Proof. Indeed, the map O G λ ∩ (z + n L ) → ψ -1 ((L, z)) ∩ (P(V 1 ) × O G λ ), x → (L, x
) is an isomorphism of algebraic varieties. Hence the statement follows from Proposition 5.4. 5.4. Good pairs. Let ((r, s), µ) ∈ Π k 2 , so ℓ := r + s ≤ min{p, q, k, n -k}. By Proposition 5.4, we know that Z λ ((r,s),µ) = ∅ unless λ = (nℓ, ℓ) * or λ = (nℓ -1, ℓ + 1) * and ℓ < min{k, n -k} .

It also follows from Proposition 5.4 that the restriction ψ λ : Z λ ((r,s),µ) → O K ((r,s),µ) of ψ has a constant fiber. In the rest of the section, we fix an element (L, z)

∈ O K ((r,s),µ) with z = 0 a b 0 and L = v C
where a ∈ M p,q (C) is of rank r, b ∈ M q,p (C) is of rank s, and v belongs to Im a, ker b\Im a, or V 1 \ ker b, depending on whether ((r, s), µ) is of type (I), (II), or (III) (see Proposition 2.5) and we compute the number

δ λ ((r,s),µ) := dim Z λ ((r,s),µ) + dim F λ,(k,n-k) = dim O K ((r,s),µ) + dim(ψ λ ) -1 ((L, z)) + dim F λ,(k,n-k) . Case 1: L ⊂ W , that is, i = 2. In this case L ⊂ W ∩ V 1 , hence W ∩ V 1 = 0.
This yields n 1 ≥ 1, thus there is at least one label 2 in the first column of τ .

Case 2: L ⊂ W + V 2 and L ⊂ W , that is, i = 1. Then (W + V 2 ) ∩ V 1 = W ∩ V 1 . This implies that W = (W ∩ V 1 ) ⊕ (W ∩ V 2 )
, whence k > n 1 + n 2 , and so ℓ ≥ 1. The latter inequality means that there is at least one label 1 in the first column of τ .

Case 3: L ⊂ W + V 2 , that is, i = 0.
We then have V = W +V 2 , thus p+q > dim(W +V 2 ) = k +q-n 2 , so p > k -n 2 = ℓ+n 1 . Thereby pn 1ℓ ≥ 1, which implies that the first column of τ contains at least one label 0.

In each case we conclude that i appears in the first column of τ , whence (35) is valid. This completes the verification of (32).

It remains to show (34). Let (W, L) ∈ O (τ,i) . Let n 1 (resp., n 2 ) be the number of 2's in the first (resp., second) column of τ and set ℓ = kn 1n 2 , which is therefore the number of 1's in the first and in the second column of τ . Choose a basis (e 1 , . . . , e n 1 ) of W ∩ V 1 and a basis (f 1 , . . . , f n 2 ) of W ∩ V 2 . Choose vectors v 1 , . . . , v ℓ ∈ W which complete (e 1 , . . . , e n 1 , f 1 , . . . , f n 2 ) into a basis of W . For every j ∈ {1, . . . , ℓ} we have v j = e n 1 +j + f n 2 +j for some e n 1 +j ∈ V 1 , f n 2 +j ∈ V 2 , and the vectors e 1 , . . . , e n 1 +ℓ , f 1 , . . . , f n 2 +ℓ are linearly independent. Choose vectors e n 1 +ℓ+1 , . . . , e p ∈ V 1 and f n 2 +ℓ+1 , . . . , f q ∈ V 2 which complete (e 1 , . . . , e n 1 +ℓ ) and (f 1 , . . . , f n 2 +ℓ ) into bases of V 1 and V 2 .

Let v ∈ V such that L = v C . In the case where i = 2, we have L ⊂ W , hence we can choose e 1 = v. In the case where i = 1, i.e., L ⊂ W + V 2 and L ⊂ W , we can choose e n 1 +1 = v. Finally if i = 0, i.e., L ⊂ W + V 2 , we can take e p = v.

Similarly, for a second element (W ′ , L ′ ) of O (τ,i) , we can construct bases (e ′ 1 , . . . , e ′ p ) and (f ′ 1 , . . . , f ′ q ) of V 1 and V 2 , respectively, such that

W ′ = e ′ 1 , . . . , e ′ n 1 , f ′ 1 , . . . , f ′ n 2 , e ′ n 1 +1 + f ′ n 2 +1 , . . . , e ′ n 1 +ℓ + f ′ n 2 +ℓ C and L ′ = e ′ 1 C if i = 2, L ′ = e ′ n 1 +1 C if i = 1, and L ′ = e ′ p C if i = 0. Let g ∈ K = GL(V 1 ) × GL(V 2 )
be the automorphism such that g(e j ) = e ′ j for all j ∈ {1, . . . , p} and g(f j ) = f ′ j for all j ∈ {1, . . . , q}. By construction we get (W ′ , L ′ ) = g(W, L). This shows (34). The proof of Proposition 2.16 is now complete. 6.2. Proofs of Examples 2.18 and 2.19. Before discussing in detail the special situations of Examples 2.18 and 2.19, let us describe the general technique for determining the surjection Φ : X/K → E/K of Corollaries 1.8 and 2.13:

• Let a K-orbit O ⊂ E and let us determine Φ -1 (O).

• Take any representative (L, z) ∈ O(⊂ P(V 1 ) × N (s) k 2 ). • Let a partition λ ⊢ n such that the pair (O, λ) is good (in the sense of Definition 5.1 or according to the explicit description of Proposition 5.6). • Take a generic element x ∈ O G λ such that Im x θ ⊂ L ⊂ ker x θ and x -θ = z. • Take a generic subspace W ∈ Gr k (V ) such that Im x ⊂ W ⊂ ker x. (2, 1 2 ) 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 (with v 1 , . . . , v m-ℓ , w 1 , . . . , w m-ℓ as above) realizes the equalities dim W ∩ V 1 = r and dim W ∩ V 2 = s, therefore those equalities hold for a generic W . This implies that the pair (τ, i) is such that τ is the (1, 2)-tableau containing r entries 2 in its first column and s entries 2 in its second column, and i = 0 (since L ⊂ W + V 2 ), which agrees with the statement of Example 2.19.

⊂ W ⊂ V 1 (2, 0) L ⊂ W +V 2 0 0 2 2 , 0 ( 
Finally assume ((r, s), µ) of type (II), thus v ∈ ker b\ Im a. By Lemma 5.3, the elements x ∈ O G λ fulfilling (37) are of the form

x = v • t u a b 0 with u ∈ Im t b.
We see that Im a ⊂ Im x ⊂ Im a ⊕ (Im b + L) and ker x = ker a ⊕ ker b. Every W ∈ Gr k (V ) such that Im x ⊂ W ⊂ ker x satisfies dim

W ∩ V 1 ≥ r (since Im a ⊂ W ∩ V 1 ) and dim W ∩ V 2 = dim W + dim V 2 -dim(W + V 2 ) (38) ≥ dim W + dim V 2 -dim(ker b ⊕ V 2 ) = s.

  establishes a bijection (exotic Springer correspondence) between the Sp 2n (C)-orbits of the exotic nilpotent cone C 2n × N (s) and the irreducible representations of the Weyl group of Sp 2n (C). Shoji and Sorlin [SS13] retrieve this correspondence via character sheaves on the exotic symmetric space C 2n × GL 2n (C)/Sp 2n (C) . Finally Henderson and Trapa [HT12] interpret Kato's correspondence in terms of a relation (an exotic version of Steinberg correspondence) between Sp 2n (C)-orbits in the exotic nilpotent cone C 2n × N (s) and Sp 2n (C)-orbits in the variety C 2n × GL 2n (C)/B (analogous to the double flag variety

3. 2 .

 2 Parabolic subgroups. If d = (d 1 , . . . , d r ) is a composition of n (i.e., unordered partition of n), we denote by P d ⊂ G the corresponding standard parabolic subgroup, i.e., the subgroup of blockwise upper triangular matrices with diagonal blocks of sizes d 1 , . . . , d r . Its Lie algebra p d ⊂ g ∼ = M n (C) is given by

) We can write x = η a b 0

 0 where η = v • t u for some u ∈ M p,1 (C) such that t u • v = 0, and with a ∈ M p,q (C), b ∈ M q,p (C). (b) We have rk x -θ ∈ {rk x, rk x -1}. Moreover, the equality rk x = rk x -θ holds if and only if(v ∈ Im a or u ∈ Im t b). (c) If x 2 = 0, then (x -θ ) 2 = 0.Proof. (a) The form of the matrix is a consequence of the property Im x θ ⊂ L ⊂ ker x θ . (b) For all α ∈ C * , the matrix x(α) = αη a b 0 has same rank as x. The lower semicontinuity of the rank yields rk x -θ = rk x(0) ≤ rk x. Assume that v ∈ Im a. Then, Im η ⊂ Im a and we get Im x ⊂ Im b ⊕ (Im a + Im η) = Im b ⊕ Im a = Im x -θ . Since rk x -θ ≤ rk x, the equality rk x -θ = rk x must hold. Assume that u ∈ Im t b. This implies that ker b ⊂ ker η. In this case, one has ker x -θ = ker b ⊕ ker a = (ker b ∩ ker η) ⊕ ker a ⊂ ker x.

4. 3 .

 3 Proof of Proposition 2.8. Here we consider the situation of Proposition 2.8: Q is a mirabolic subgroup of K as in (16) and P = P d ⊂ G is the maximal parabolic subgroup corresponding to the composition d = (k, nk). As noted in Section 3.2, the Richardson orbit corresponding to P is O G P = O G (max{k,n-k},min{k,n-k}) * , which means that every x ∈ O G P satisfies x 2 = 0 and rk x ≤ min{k, n -k}. Corollary 4.4, Lemma 4.5 (b) and (c), and the definition of E = P(V 1 ) × N (s) k 2 in Notation 1.6 (c) imply that the map

  which forces the pair (O K i , λ) to be good. Note that the pair (O K i , λ) is necessarily unique, since φ -1 (Z λ i )∩C must be open and dense in the irreducible component C. This completes the proof of part (a). (b) Let (

  In particular, in all cases, for every partition λ ⊢ n, the intersection Φ(z) ∩ O G λ is irreducible or empty.Proof. By assumption, we have z 2 = 0, hence (29) ab = 0 and ba = 0.By definition, an element x belongs to Φ(z) if and only if it is of the form x = η a b 0 and satisfies x 2 = 0 and Im η ⊂ L = v C ⊂ ker η. The latter condition forces that η = v • t u with u ∈ M p,1 (C) such that t u • v = 0. Thus, η 2 = 0. Note that 29)). Thereby, the condition x 2 = 0 is equivalent to ηa = 0 and bη = 0, which is equivalent to u ∈ ker t a and (v ∈ ker b or u = 0).

Table 1 .

 1 Proof of Example 2.18 in the case k = 1 ((r, s), µ)First assume ((r, s), µ) of type (I). Thus L ⊂ Im a ⊂ ker b. By Lemma 5.3, the elements x ∈ O G λ such that (37) Im x θ ⊂ L ⊂ ker x θ and x -θ = z are of the formx = v • t u a b 0 with u ∈ ker t a. Since v ∈ Im x, we get Im x = Im a ⊕ Im b. Hence every subspace W ∈ Gr k (V ) such that Im x ⊂ W ⊂ ker x satisfies dim W ∩ V 1 ≥ dim Im a = r, dim W ∩ V 2 ≥ dim Im b = s, and L ⊂ Im a ⊂ W .In fact choosing a basis (v 1 , . . . , v m-ℓ ) (resp., (w 1 , . . . , w m-ℓ )) of some supplementary subspace of Im a in ker b (resp., of Im b in ker a) and letting w ∈ V 2 such that v = aw, it turns out that the subspaceW := Im a ⊕ Im b ⊕ v j + w j -( t u • v j )w : 1 ≤ j ≤ mℓ C ∈ Gr k (V )satisfies Im x ⊂ W ⊂ ker x and realizes the equalities dim W ∩V 1 = r and dim W ∩V 2 = s. Therefore generically those equalities hold. Hence the pair (τ, i) is such that the (1, 2)tableau τ contains r entries 2 in its first column and s entries 2 in its second column, andi = 2 (since L ⊂ W ),as claimed in Example 2.19. Next assume ((r, s), µ) of type (III), that is, L ⊂ ker b. In that case by Lemma 5.3 the only element x ∈ O G λ satisfying (37) is x = z. Thus Im x = Im a ⊕ Im b and ker x = ker a ⊕ ker b. EveryW ∈ Gr k (V ) such that Im x ⊂ W ⊂ ker x satisfies dim W ∩ V 1 ≥ r, dim W ∩ V 2 ≥ s, and L ⊂ W + V 2 (since (W + V 2 ) ∩ V 1 ⊂ker b and L ⊂ ker b). In additionTable 2. Proof of Example 2.18 in the case k = 2 ((r, s), µ)

  Im a ⊕ Im b ⊕ v j + w j : 1 ≤ j ≤ mℓ C ∈ Gr k (V )

  2}. In that case the sets Π k 2 and Θ k 2 are described in Examples 2.11 and 2.15. The next table determines the map φ

from Section 1.5). The surjection Φ induces a surjective map φ : Θ k 2 → Π k 2 between the parameter sets. In Examples 2.18-2.19 we calculate the map φ in three situations. The proofs of these examples can be found in Section 6.2.

Example 2.18. Let (p, q) = (3, 1) and k ∈ {1,

  with ℓ ≤ min{k, n -k} (otherwise O G λ is not contained in the closure of the Richardson orbit O G P , thence Z λ

		((r,s),µ)
	is empty).
	In Section 5.3, we will show the following property:
	(23)	For every (L, z) ∈ E, the set O G λ ∩ (z + n L ) is always empty or irreducible.
	This fact together with (18) implies that Z λ ((r,s),µ) is empty or irreducible for every pair
	(O K ((r,s),µ) , λ). Moreover, if Z λ ((r,s),µ) is nonempty, then Proposition 3.2 implies that
	(24)	the Spaltenstein variety F λ,(k,n-k) is irreducible.
	Comparing (23) and (24) with Proposition 5.2 (c), we obtain:

* 
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Note that (30) the pair (O K ((r,s),µ) , λ) is good if and only if δ λ ((r,s),µ) = dim Y (see Definition 5.1). Note also that (31) dim

Case 1: Assume ((r, s), µ) of type (I). Thus Proposition 2.5 (c) yields dim O K ((r,s),µ) = ℓ(nℓ) + r -1. Moreover according to Proposition 2.5 (b) we have v ∈ Im a. By Proposition 5.4 (a), Z (n-ℓ-1,ℓ+1) * ((r,s),µ) = ∅, whereas δ (n-ℓ,ℓ) * ((r,s),µ) = ℓ(nℓ) + r -1 + pr + (kℓ)(nkℓ) = k(nk) + p -1 = dim Y (using Propositions 3.2, 5.4, and relation (31)). We conclude (from (30)) that, for ((r, s), µ) of type (I), the pair (O K ((r,s),µ) , λ) is good if and only if λ = (nℓ, ℓ) * . Case 2: Assume ((r, s), µ) of type (III).

By Proposition 2.5 (c), we have dim 

Therefore, the pair (O K ((r,s),µ) , (nℓ, ℓ) * ) is good. It remains to determine the nature of the pair (O K ((r,s),µ) , λ) for λ = (nℓ -1, ℓ + 1) * . First we note that if ℓ = min{k, n -k} or ℓ ≥ p -1 (which may hold only if ((r, s), µ) is of type (II) 0 ) then Z λ ((r,s),µ) = ∅ (by Proposition 5.4 (a)). Thus the pair (O K ((r,s),µ) , λ) is not good in that case.

Hereafter we assume that ℓ < min{k, nk, p -1}. Invoking Proposition 5.4 (b) we see that

If ((r, s), µ) is of type (II) 0 , then ℓ < q (by Definition 2.9, since the relations ℓ ≤ p -2 and ℓ < min{k, n -k} are already satisfied): the pair (O K ((r,s),µ) , λ) is not good in that case.

If ((r, s), µ) is of type (II) * , then we have in particular ℓ = q, hence δ λ ((r,s),µ) = dim Y: the pair (O K ((r,s),µ) , λ) is good in that case. Combining Cases 1-3 we have shown:

Relations ( 26) and ( 27) are consequences of Proposition 5.6. As explained in Section 5.2, the proof of Theorem 2.12 is now complete.

On the combinatorial correspondence

In this section, we show the results presented in Section 2.3. 6.1. Proof of Proposition 2.16. We need to show the following three facts:

Condition (33) easily follows from the definition of O (τ,i) and from the fact that V 1 and V 2 are stable by

Let us check (32). So let (W, L) ∈ Gr k (V ) × P(V 1 ). We set

Clearly n 1 ≤ p, n 2 ≤ q, and ℓ ≥ 0 (since

Similarly we get qn 2ℓ ≥ 0. Altogether these relations allow us to consider the (1, 2)-tableau τ of shape (p, q) and weight k, whose first column comprises n 1 entries 2, ℓ entries 1, and (pn 1ℓ) entries 0, and whose second column comprises n 2 entries 2, ℓ entries 1, and (qn 2ℓ) entries 0. Set

We claim that (35) the pair (τ, i) is an element of the set Θ k 2 . If this is so, then the construction of τ , i and the definition of O (τ,i) guarantee that (W, L) ∈ O (τ,i) , and that the pair (τ, i) is unique for this property. Hence (35) is sufficient for completing the justification of (32). For showing (35), we just need to check that the number i appears in the first column of τ . We distinguish three cases.

If there is a second partition λ ′ such that (O, λ ′ ) is good, then arguing similarly with λ ′ in place of λ we find a second K-orbit O ′ ⊂ X such that Φ(O ′ ) = O, and we have Φ

The justification is as follows. By definition of the map Φ in Corollary 1.8, we have Φ(O) = O if and only if the inclusion T * O X ⊂ π -1 (O) holds. Recall from Section 1.3 that the closure of the conormal bundle T * O X is an irreducible component of the conormal variety Y. On the other hand, we know from Sections 5.1-5.2 that the components of Y contained in π -1 (O) correspond to the good pairs of the form (O, λ). Specifically if (O, λ) is a good pair then the set

, and every such component is of this form. Therefore

Proof of Example 2.18. Here we have p = 3, q = 1, and k ∈ {1, 2}.

In Tables 1 and2 we calculate the correspondence φ : Θ k 2 → Π k 2 for k = 1 and k = 2, by using the technique described above. In the first column of each table we enumerate the various elements of Π k 2 . In the second column we choose a representative (L, z) of the corresponding orbit O K ((r,s),µ) . In the third column we indicate the partition(s) λ such that the pair (O K ((r,s),µ) , λ) is good (see Proposition 5.6). In the fourth column (with the help of Lemma 5.3) and in the fifth column we compute the pairs (W, x) ∈ Gr k (V ) × N (g) of elements satisfying (36) (possibly depending on scalars α, β). In the sixth column we indicate the values of n j = dim W ∩ V j (for j ∈ {1, 2}) and the relative position of L and W when the pair (W, x) is generic. In the last column, taking Proposition 2.16 into account, we deduce the (1, 2)-tableau (τ, i) such that the latter pair (W, L) belongs to O (τ,i) . In each case we recover the correspondence φ stated in Example 2.18, and this observation completes the proof.

Proof of Example 2.19. Here we suppose p = q = k = n 2 =: m. We consider an element ((r, s), µ) ∈ Π k 2 and we compute the element (τ, i) := φ -1 (((r, s), µ)) ∈ Θ k 2 with the technique described at the beginning of this subsection. Let ℓ = r + s.

We fix a representative (L, z) ∈ O K ((r,s),µ) and we write 

Then Im x ⊂ W ⊂ ker x and it is readily seen that this subspace W satisfies

Hence (39) holds for a generic W . Therefore by (38) a generic W also satisfies the inclusion

We conclude that (τ, i) is such that the (1, 2)-tableau τ has r entries 2 in its first column, s entries 2 in its second column, and i = 1. This coincides with the statement of Example 2.19. The verification of Example 2.19 is complete.

Appendix

In Table 3 we give a further example of the orbit correspondence in the case of (G, K) = (GL 6 (C), GL 3 (C)×GL 3 (C)), X = Gr 3 (C 6 )×P(C 3 ). In this case, the correspondence is a bijection (see Example 2.19). Table 3. Orbit correspondence for p = q = k = 3 , 2) ( 0 1 0 2 1 2 , 0) ( 0 1 0 2 1 2

, 1) (