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HIGHER FROBENIUS-SCHUR INDICATORS FOR

DRINFELD DOUBLES OF FINITE GROUPS

THROUGH CHARACTERS OF CENTRALIZERS

PETER SCHAUENBURG

Abstract. We present a new approach to calculating the higher
Frobenius-Schur indicators for the simple modules over the Drin-
feld double of a finite group. In contrast to the formula by Kashina-
Sommerhäuser-Zhu that involves a sum over all group elements
satisfying a certain condition, our formula operates on the level
of conjugacy classes and character tables. It can be implemented
in the computer algebra system GAP, efficiently enough to deal,
on a laptop, with symmetric groups up to S18 (providing further
evidence that indicators are non-negative in this case) or simple
groups of order up to 2 · 108. The approach also allows us to test
whether all indicators over the double of a given group are ratio-
nal, without computing them. Among simple groups of order up
to about 5 ·1011 an inspection yields exactly one example (of order
about 5 · 109) where irrational indicators occur.

1. Introduction

If the reader has seen Drinfeld doubles of finite groups and Frobenius-
Schur indicators, the present paper’s title will seem to her to announce
an utter triviality: Higher Frobenius-Schur indicators are invariants of
(simple) objects of suitable fusion categories. Here, we are dealing with
the indicators defined in [17] for the (simple) modules over a semisimple
complex Hopf algebra, and more specifically over the Drinfeld double
D(G) of a finite group. Those simple modules are well known to be
parametrized by the irreducible characters of the centralizers in G of
elements of G. It thus seems natural that their indicators should also
be described in terms of those irreducible characters of centralizers,
and indeed the groundbreaking paper [12] already gives formulas for
the indicators involving the description alluded to above.

So what is new in the present paper?
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The formula in [12] for Frobenius-Schur indicators for (the simple
modules over) the Drinfeld double of the complex group algebra of a
finite group was studied in [9, 14, 15, 16, 4]. Let V be a simple D(G)-
module described by a couple (g, η) where g ∈ G, and η is a character
of the centralizer CG(g). Then the formula in question does describe
the m-th Frobenius-Schur indicator νm(V ) in terms of η and CG(g).
However, it does not stay on the level of characters and conjugacy
classes, but rather involves a sum over all elements x of G satisfying
the somewhat awkward condition xm = (gx)m. This equation seems
to defy nice structural analysis, it is just satisfied or not by x ∈ G,
solutions do not form a subgroup, or conjugacy class, or other nice or
nicely parametrized subset. Attempts to calculate indicators explicitly,
and this includes calculating them with the help of computer algebra
systems —GAP [6] being a prime choice— have to face the awkward
equation and usually have to find, by nothing much more sophisticated
than element-wise inspection, the solutions x for given g.

The present paper will give an indicator formula that does not involve
individual group elements, as it were, but rather only information “on
the character table level”, that is, the behavior of conjugacy classes
and characters. There is a certain price to pay: We need to procure
the character tables of all the centralizers of elements of G. But then,
all the characters of all possible centralizers are needed to describe all
the simples of D(G) in the first place, so it should be no surprise if all
this information is needed to calculate the indicators. To acknowledge
the formula’s drawback more clearly: To compute the indicators of the
objects associated to the conjugacy class of only one element g, we
now need the character tables of all (or at least some of) the other
centralizers, not only of the centralizer of g.

Apart from being a new way to calculate indicators, the formula also
leads to criteria testing whether all the indicators for the double of a
given group are (rational) integers, or, in the terminology of Iovanov,
Mason, and Montgomery [9], whether a given group is FSZ. These
criteria do not involve all of the character tables of all centralizers,
and are thus more efficient for their purpose than computing all the
indicators outright.

We are able to demonstrate that the novel way to calculate indicators
is vastly more efficient than previous methods when put to work in a
computer algebra system such as GAP [6]. This relies, of course, on
the fact that GAP is breathtakingly efficient in calculating character
tables, and thus on the hard work put at the present author’s fingertips
by the creators of GAP. When comparing our method to the previously
available methods, this reliance on GAP is not an issue, simply because
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knowledge of the character tables of centralizers is necessary anyhow if
one wants to describe the simple modules of the Drinfeld double.

The present paper contains no precise analysis of the efficiency of
our GAP code in comparison to the code developed, say, in Courter’s
thesis [4] or used for example in [9]. We believe, however, that the
few comparisons that we will draw in section 7 are convincing enough
without precise analysis: We can deal with groups so much larger than
those previously manageable, and the time needed for treating exam-
ples that were previously considered very large is such a small fraction
of the time needed using the previously available methods that it seems
out of the question to attribute all but an insignificant part of the im-
provement to the usual development of hardware over time. Once we
consider the operations of finding conjugacy classes and character ta-
bles (and, as we shall find necessary, conjugating concrete elements
into each other) as “provided”, it is clear where the immense efficiency
leap comes from: In a reasonably noncommutative group, there can
be many orders of magnitude between the number of conjugacy classes
(also of the centralizers in that group) and the number of elements of
the group.

We will thus put an algorithm based on the indicator formula into
GAP code. A certain amount of data management seems useful to
avoid having to calculate certain ingredients needed for the calculation
over and over again for the different indicators.

Motivated by a result on representations of symmetric groups by
Scharf [19], Rebecca Courter [4] investigated the conjecture that the
indicators of simple modules over the double of a symmetric group
(proven to be integers in [9]) are nonnegative. She verified this experi-
mentally up to S10 and had to give up the pursuit on hardware available
to her beyond that. With our approach can verify the conjecture up
to S18.

We also verified “naively” (by computing all the indicators) that ev-
ery simple group of order less than 200, 000, 000 is FSZ. Here the
author’s laptop refused to continue, stalling during the computation of
a character table. The question as to whether every simple group is an
FSZ-group was put forward as “[t]he most tantalizing open question”
on FSZ-groups in [9]. Since our rationality criteria do not need all the
character tables (and can do with storing much less information at a
time), they allow us to pursue the question further than the order cited
above, and indeed we find that the exceptional Chevalley group G2(5)
of order 5, 859, 000, 000 is not FSZ5. It is the only counterexample we
found while continuing the search up to order 499, 631, 102, 880.



4 PETER SCHAUENBURG

Acknowledgements: The author thanks Susan Montgomery and
Marc Keilberg for their comments, and Rebecca Courter for sharing her
GAP code and data on the doubles of symmetric groups. Some calcula-
tions were performed using HPC resources from DSI-CCUB (Université
de Bourgogne).

2. Preliminaries and notation

We write t ⊲ x := txt−1 for conjugation in a group, but often xG

for a conjugacy class. Cl(G) denotes the set of conjugacy classes of
G, and Irr(G) the set of irreducible complex characters. If H ≤ G is
a subgroup and t ∈ G, so t ⊲ H is a conjugate subgroup, then for a
character η of H we denote by t ⊲ η the character of t ⊲ H defined by
(t ⊲ η)(x) = η(t−1 ⊲ x).

We denote by ψr the Adams operator on the algebra of class functions
on G, defined by ψr(χ)(g) = χ(gr). When r is coprime to the exponent
of G, then ψr preserves characters, and ψr(χ)(g) = σr(χ(g)) where σr is
the automorphism of the cyclotomic field Q(ζexp(G)) defined by sending
a root of unity to its r-th power. We write o(g) for the order of a group
element g.

3. Counting formulas

As we shall review below, a key ingredient in the formula from [12]
computing Frobenius-Schur indicators of the modules over the Drinfeld
double D(G) of a finite group G is the cardinality of the set

(3.1) Gm(g, z) := {x ∈ G|xm = (gx)m = z},
where g ∈ G is involved in the parametrization of the simple mod-
ules over D(G). This section will deal with counting the elements
of Gm(g, z). We note that the equation xm = (gx)m for fixed g
whose solutions determine the sets does not lend itself easily to group-
theoretical reasoning, as it were: Its solutions do not form a subgroup
or union of conjugacy classes. The condition is an equivalent rewriting
of g(x ⊲ g)(x2 ⊲ g) . . . (xm−1 ⊲ g) = e, which is the form used in [12];
but the mapping, depending on x, whose “kernel” should thus contain
g is not a group homomorphism and lacks good properties (although
expressions of this type are not unknown in group theory, see [8]).

We will derive counting formulas for Gm(g, z) that are character
theoretic: They are not based on inspecting all the elements of G for
picking out solutions, but on manipulations on the level of conjugacy
classes, characters, and class functions —on the centralizers of elements
of G.
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We start by noting, see [9], that Gm(g, z) is empty, unless g and z
commute in G, or in other words, belong to each other’s centralizer
in G. As it turns out, the first step to successfully dealing with our
problem is very simple: Instead of looking at |Gm(g, z)| as functions
of z, parametrized by g, we consider these cardinalities as functions
of g parametrized by z. To emphasize this trivial change of viewpoint
notationally, we define

(3.2) γzm : CG(z) → C; g 7→ |Gm(g, z)|,
and we observe:

Lemma and Definition 3.1. The map γzm is a class function on

CG(z). Thus we can write

(3.3) γzm =
∑

χ∈Irr(CG(z))

βm(z, χ)χ

for g ∈ CG(z), with coefficients βm(z, χ) ∈ C.

Further, for a group H and a, b, c ∈ H , let MH(a, b, c) denote the
class multiplication coefficient which counts how many ways there exist
to write c ∈ H as a product xy where x and y belong to the conjugacy
classes aH and bH , respectively. This depends only on the conjugacy
class of c (and by definition only on the conjugacy classes of a and b.)

Lemma 3.2. Assume that g and z commute in G, and m is an integer.

Then

(3.4) γzm(g) =
∑

a,b∈Cl(CG(z))
am=bm=z

MCG(z)(a, b−1, g).

for any set Cl(CG(z)) of representatives of the conjugacy classes of

CG(z).

Proof. Whenever xm = (gx)m = z, then clearly x and gx commute
with z, so

|{x ∈ Gxm = (gx)m = z}|
=

∣

∣

{

(x, y) ∈ CG(z)
2
∣

∣ xm = ym = z ∧ y = gx
}∣

∣

=
∑

a,b∈Cl(CG(z))
am=bm=z

∣

∣

{

(x, y) ∈ bCG(z) × aCG(z)
∣

∣ g = yx−1
}∣

∣

=
∑

a,b∈Cl(CG(z))
am=bm=z

MCG(z)(a, b−1, g),

�
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The formula of the lemma has the advantage of expressing the car-
dinalities of the Gm sets in terms of information on the character table
level: Not individual elements, but rather their conjugacy classes are
summed over. The class multiplication coefficients are also defined on
the conjugacy class level. In fact the class multiplication coefficients
contain essentially the same information as the character table (the two
data determine each other, this is discussed in detail in [10, Ch.21]).

We will proceed to use Burnside’s classical formula expressing class
multiplication coefficients in terms of character values in order to derive
a formula for γzm in terms of character values. In fact we will write out
several easily equivalent such expressions for the coefficient βm(z, χ)
below. We could not quite decide which way of writing them we should
prefer.

Definition 3.3. Let G be a finite group and z ∈ G. For an integer m,
define

(3.5) wz
m : CG(z) → C; x 7→

{

1 if xm = z

0 otherwise

It is easy to see that wz
m is a class function on CG(z).

For a character χ of CG(z) and an integer m let

(3.6) φm(χ, z) =
∑

x∈CG(z)
xm=z

χ(x) =
∑

a∈Cl(CG(z))
am=z

|aCG(z)|χ(a).

Lemma 3.4. Let G be a finite group, z ∈ G, and χ an irreducible

character of CG(z). Then

φz
m(χ) = |CG(z)|〈χ,wz

m〉(3.7)

|φz
m(χ)| = |CG(z)| · |χwz

m|(3.8)

βm(z, χ) =
|φz

m(χ)|2
|CG(z)|χ(e)

(3.9)

=
|〈χ,wz

m〉|2|CG(z)|
χ(e)

(3.10)

=
|χwz

m|2|CG(z)|
χ(e)

.(3.11)

Proof. We use Burnside’s formula [10, Ch.21, Thm.1.2] expressing class
multiplication coefficients in terms of characters:

MCG(z)(a, b−1, g) =
|aCG(z)| · |bCG(z)|

|CG(z)|
∑

χ∈Irr(CG(z))

χ(a)χ(b)χ(g)

χ(e)
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giving

|Gm(g, z)| =
∑

a,b∈Cl(CG(z))
am=bm=z

|aCG(z)| · |bCG(z)|
|CG(z)|

∑

χ∈Irr(CG(z))

χ(a)χ(b)χ(g)

χ(e)

=
1

|CG(z)|
∑

x,y∈CG(z)
xm=ym=z

∑

χ∈Irr(CG(z))

χ(x)χ(y)χ(g)

χ(e)

=
1

|CG(z)|
∑

χ∈Irr(CG(z))

χ(g)

χ(e)

∑

x,y∈CG(z)
xm=ym=z

χ(x)χ(y)

=
1

|CG(z)|
∑

χ∈Irr(CG(z))

χ(g)

χ(e)







∑

x∈CG(z)
xm=z

χ(x)















∑

y∈CG(z)
ym=z

χ(y)









=
1

|CG(z)|
∑

χ∈Irr(CG(z))

χ(g)

χ(e)
|φz

m(χ)|2

This proves (3.9), and (3.10), (4.9) are only variations based on (3.8),
(3.9), which in their turn are trivial. �

Lemma 3.5. Let G be a finite group and z ∈ G. Put e(z) := exp(CG(z)).
Then

(1) γzm+e(z) = γzm for all m.

(2) If (a, e(z)) = 1 then γz
a

am = γzm, ψaγ
za

m = γzm, and ψaγ
z
m = γzam.

(3) If m|e(z) and mo(z) 6 |e(z) then γzm = 0.

(4) The class functions γzm are determined by those where m| e(z)
o(z)

.

(5) If (m, e(z)) = 1, then γzm(g) = δg,1.

Proof. The periodicity in m is trivial. If (a, e(z)) = 1, then xm = z is
equivalent to xam = za and (gx)m = z equivalent to (gx)am = za for
x ∈ CG(z), proving the first equality in (2). For the second, note that
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wz
m = ψaw

za

m and calculate

∑

χ∈Irr(CG(z))

|〈χ,wz
m〉|2

χ(e)
χ =

∑

χ∈Irr(CG(z))

|〈ψaχ,w
z
m〉|2

χ(e)
ψaχ

=
∑

χ∈Irr(CG(z))

|ψaχ, ψa(w
za

m )〉|2
χ(e)

ψaχ

=
∑

χ∈Irr(CG(z))

|〈χ,wza

m 〉|2
χ(e)

ψaχ

so that ψaγ
za

m = γzm and thus ψaγ
z
m = ψaγ

za

am = γzam.
If m′ = (m, e(z)) then one can choose a, b with m′ = am+be(z) such

that (a, e(z)) = 1. (This is surely elementary and common knowledge,

but for completeness: If am ≡ m′ mod e(z) then also (a + k e(z)
m′

)m ≡
m′ mod e(z) for every integer k. Choose k such that every prime

dividing e(z) but not e(z)
m′

divides either a or k but not both; then

a + k e(z)
m′

is relatively prime to e(z).) Now γzm′ = γzam = ψaγ
z
m, so that

γzm is determined by γzm′ .
Assume m|e(z) and γzm 6= 0; thus there is x ∈ CG(z) with xm =

z. But then ze(z)/m = xe(z) = 1 and thus o(z)|(e(z)/m) proving (3)
and thus what remained of (4). Finally (5) amounts to the trivial
observation that γz1(g) = δg,1 �

4. Indicator formulas for characters of the double

We recall that simple modules over the Drinfeld double D(G) of a
finite group are parametrized by pairs (g, η) where g ∈ G and η ∈
Irr(CG(g)). Conjugate elements g yield isomorphic simple modules: If
t, g ∈ G then CG(t ⊲ g) = t ⊲ CG(g), and thus (irreducible) characters
of CG(t ⊲ g) are in bijection with (irreducible) characters of CG(g); the
(simple) D(G)-module corresponding to (g, η) is isomorphic to the one
corresponding to (t ⊲ g, t ⊲ η).

The following lemma sums up the formulas for the indicators of sim-
ple modules for the Drinfeld double of a finite group as found in [12,
9]:

Lemma 4.1. Let G be a finite group, g ∈ G, and η a character of

the centralizer CG(g). Then the m-th Frobenius-Schur indicator of the
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D(G)-module associated to g and η is

νm(g, η) =
1

|CG(g)|
∑

x∈G
xm=(gx)m

η(xm)(4.1)

=
1

|CG(g)|
∑

z∈CG(g)

|Gm(g, z)|η(z).(4.2)

After the results of the previous section, we already have a formula
for the indicators of the doubles of finite groups that is based solely on
conjugacy classes and characters:

Corollary 4.2. Let G be a finite group, g ∈ G, and η a character of

CG(g). Then

νm(g, η) =
1

|CG(g)|
∑

z∈CG(g)

γzm(g)η(z)(4.3)

=
1

|CG(g)|
∑

z∈Cl(CG(g))

|zCG(g)|γzm(g)η(z)(4.4)

with

γzm = |CG(z)|
∑

χ∈Irr(CG(z))

|〈χ,wz
m〉|2

χ(e)
χ.(4.5)

where wz
m(x) = δxm,z.

We note that to calculate the indicators of the objects associated
to one conjugacy class (of g), we need to have the character tables of
other elements as well. If we are interested in the indicators for one
specific object (or conjugacy class), this may be a serious drawback in
comparison to the formula (4.1). If, however, we are interested in all
the indicators of the modules for the double of G, then we need “all”
centralizers and their characters just to describe the objects. After this
attempt to defend the merits of corollary 4.2, we need to point out an
aspect that needs to be improved: To describe the simple modules of
the double, we need the character table of the centralizer of one repre-
sentative of each conjugacy class of G. But (4.3) involves the character
table of the centralizer of a representative of each conjugacy class in
CG(g); distinct such representatives may be conjugate in G. Their cen-
tralizers are thus conjugate in G, but not equal. The formula requires
the character tables of all these conjugate centralizers separately, thus,
if put blindly into GAP code, say, requires the computation of many
redundant character tables.
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We will now rewrite the indicator formula (4.3) in terms of characters
of the Drinfeld double of G, after recalling briefly the character theory
of D(G).

Let P (G) := {(x, y) ∈ G2|xy = yx} denote the set of pairs of com-
muting elements in G. The group G acts on P (G) by simultaneous
conjugation t ⊲ (x, y) = (t ⊲ x, t ⊲ y) and we denote by P (G) the set of
orbits under this action; we will write (x, y)G for the orbit of (x, y). By
P (G) we will denote a chosen set of representatives of P (G).

A double class function is a function f : P (G) → C invariant under
simultaneous conjugation, i. e. a function that is invariant on the classes
in P (G).

A representation of the Drinfeld double D(G) has a character which
is a double class function. If the representation is described by the pair
(g, η) with η a character of CG(g), then the corresponding double class
function is

Ξ: G×G→ C

(x, y) 7→
{

χ(tyt−1) if txt−1 = y

0 if x is not conjugate to y.
(4.6)

The characters of the irreducible representations of D(G) form a basis
of the space of double class functions.

Lemma 4.3. Let Ξ be a character of the Drinfeld double D(G) of a

finite group G, and m an integer. Then

νm(Ξ) =
∑

(h,z)∈P (G)

1

|CG(h, z)|
γzm(h)Ξ(h, z)(4.7)

=
1

|G|
∑

(h,z)∈P (G)

γzm(h)Ξ(h, z)

Proof. It suffices to show the claim when Ξ is the character associated
to g ∈ G and η ∈ Irr(CG(g)).

We have γt⊲zm = t ⊲ γzm for z, t ∈ G since Gm(t ⊲ g, t ⊲ z) = t ⊲Gm(g, z)
for (g, z) ∈ P (G). Therefore,

∑

(h,z)∈P (G)

1

|CG(h, z)|
γzm(h)Ξ(h, z) =

1

|G|
∑

(h,z)∈P (G)

γzm(h)Ξ(h, z)

is independent of the choice P (G) of representatives, and it suffices to
prove the first formula for one particular choice of representatives; we
opt for

P (G) =
⊔

f∈Cl(G)

{f} × Cl(CG(f)).
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where Cl(G) is chosen to contain g. But then

∑

(h,z)∈P (G)

1

|CG(h, z)|
γzm(h)Ξ(h, z)

=
∑

h∈Cl(G)

∑

z∈Cl(CG(h))

1

|CG(h, z)|
γzm(h)Ξ(h, z)

=
∑

z∈Cl(CG(g))

1

|CG(g, z)|
γzm(g)η(z) = νm(g, η) = νm(Ξ)

since |zCG(g)| · |CG(g, z)| = |zCG(g)| · |CCG(g)(z)| = |CG(g)| and Ξ(h, z) =
δg,hη(z) for our choice of P (G). �

Remark 4.4. As pointed out in [9], we can reinterpet (4.2) as

|Gm(g, z)| =
∑

η∈Irr(CG(g))

νm(g, η)η(z)

which we can rewrite in turn, by adding vanishing terms, as

|Gm(g, z)| =
∑

Ξ∈Irr(D(G))

νm(Ξ)Ξ(g, z).

Thus, the Frobenius-Schur indicators are the coefficients needed to de-
velop the double class function |Gm(g, z)| in terms of irreducible char-
acters. In the same way, we can extend (3.3) to read

|Gm(g, z)| =
∑

Ξ∈Irr(D(G))

βm(Ξ)Ξ(z, g)

by parametrizing the irreducible characters of D(G) by pairs (z′, χ)
with z′ ∈ Cl(G) and Cl(G) chosen to contain z, and χ ∈ Irr(CG(z

′)).
Thus, both the indicators νm(Ξ) and the somewhat more easily cal-

culable βm(Ξ) result from writing the double class function |Gm| as a
linear combination of irreducible characters. The only difference is the
order of the two arguments of Gm. Now switching the two arguments
of an irreducible character of D(G) is a way to describe the S-matrix
that is part of the modular data of the modular category of irreducible
representations of the Drinfeld double. Thus, the vector of the values
νm(Ξ) of the m-th indicator function on all the irreducible characters
of D(G) is related to the vector of the values βm(Ξ) by the action of
the S-matrix on the irreducible characters. The indicator formula (4.7)
is the result of making this transformation between νm and βm explicit.
Note that (4.7) is computationally less costly than it would be to ob-
tain all the coefficients of the S-matrix. This relates to the fact that the
vectors of all the m-th indicators seem to be a weaker invariant than
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the modular data: While the S-matrix is invertible, many irreducible
characters of D(H) usually share the same indicator values (for all m).

Remark 4.5. For any modular fusion category, there is a way of cal-
culating the Frobenius-Schur indicators in terms of the modular data:
The Verlinde formula (cf. [1]) expresses the fusion coefficients in terms
of the S-matrix:

(4.8) N j
ik =

1

dim(A)

∑

r

SirSkrSj̄r

S0r
,

(where Sij is the trace of the double braiding on X∗

i ⊗ Xj, the tensor

product of two simples, and N j
ik is the multiplicity of Xj in Xi ⊗Xk.)

The Bantay-type formula for indicators from [18] expresses the indica-
tors in terms of the fusion coefficients and the S- and T-matrices, in
our special case:

(4.9) νm(Xj) =
1

|G|2
∑

i,k

N j
ikdidk

(

ωi

ωk

)m

,

where ωi are the components of the (diagonal) T-matrix, or the ribbon
structure, and dj is the dimension of Xj . Using this approach directly
for doubles of finite groups is probably more involved than using our
formulas, since the calculation of the S-matrix is “expensive”; however,
one may suspect that this way of calculating the indicators might lead
to our formulas after suitable simplifications. A structural similarity is
certainly that the Bantay-type formula involves all the simple objects
of a modular fusion category in the calculation of the indicators of one
of them. Although it would be interesting to derive our formula this
way (despite the fact that our proof needs no more than the formula
from [12] and some classical character theory of finite groups), we did
not pursue the question. In this context it is perhaps worth noting that
several authors [13, 5] have pointed out the similarity between Burn-
side’s formula used in the proof of lemma 3.2 (albeit for the centralizers,
not only the group itself) and the Verlinde formula.

5. Computing indicators through character tables

If we want to explicitly calculate indicators, then it is convenient
to use a somewhat “opposite” parametrization of orbits of commuting
pairs to the one used before, namely

(5.1) P (G) =
⊔

z∈Cl(G)

Cl(CG(z))× {z}
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which yields

νm(Ξ) =
∑

z∈Cl(G)

∑

h∈Cl(CG(z))

1

|CG(h, z)|
∑

χ∈Irr(CG(z))

βm(z, χ)χ(h)Ξ(h, z)

(5.2)

This formula is somewhat deceptively simple: When we specialize it to
the character Ξ afforded by g ∈ G and η ∈ Irr(CG(g)), we need to go
back to (4.6) in calculating Ξ(h, z) by checking if, and how, g and h
are conjugate:

Proposition 5.1. Let G be a finite group. Choose a set Cl(G) of

representatives of the conjugacy classes of G, and, for each z ∈ Cl(G), a

set Cl(CG(z)) of representatives for the conjugacy classes of CG(z). For

h ∈ Cl(CG(z)) choose an element t(h, z) such that g(h) := t(h, z) ⊲ h ∈
Cl(G). Then

νm(Ξ) =
∑

z∈Cl(G)

∑

h∈Cl(CG(z))

1

|CG(h, z)|
γzm(h)Ξ(g(h), t(h, z) ⊲ z)(5.3)

νm(g, η) =
1

|CG(g)|
∑

z∈Cl(G)

∑

h∈Cl(CG(z))
g(h)=g

|zCG(h)|γzm(h)η(t(h, z) ⊲ z).(5.4)

for a character Ξ of D(G), or for g ∈ G and η ∈ Irr(CG(g)), respec-

tively.

The last two formulas are “convenient” for practical calculations in
the following sense: One needs to know only as many explicit charac-
ter tables as are needed to describe the simple modules of the double,
namely, the character table of CG(g) for g in a cross section of the
conjugacy classes of G. Then, one has to determine systems of rep-
resentatives for the conjugacy classes of each centralizer, and one has
to know how the representatives of the conjugacy classes of CG(g) are
conjugate to the chosen representatives of the classes of G (in particu-
lar, how the conjugacy classes of the centralizers fall into the conjugacy
classes of G). We have already explained that βm(z, χ) is computed in
terms of class functions and conjugacy classes of centralizers, whence
so is the class function γzm; all that has to be done beyond is applying
ordinary group characters or class functions to group elements.

We note one final variant of the indicator formula; if we linearly
extend group characters to the group algebra, then we can write the
indicator of the object associated to the pair (g, η) as the value of η
on a suitable element of C[CG(g)]. The formula for the element µm(g)
below would easily admit being “patched” together for all values of g
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to obtain an element µm of the double D(G) such that νm(Ξ) = Ξ(µm)
for any character Ξ of the double. The only reason we did not write
this down is that this would be the only point in the paper where
we need elements of the Drinfeld double, and would thus have to fix
the necessary conventions. Note also that the unique central element of
the Drinfeld double mapped to the m-th indicator by the character of a
representation is them-th Sweedler power of the integral [17]. Patching
the elements µm(g) below would not yield that central element because
we chose representatives rather than sums over class elements.

Corollary 5.2. For g ∈ G define µm(g) ∈ C[CG(g)] by

(5.5) µm(g) :=
∑

z∈Cl(G)

∑

h∈Cl(CG(z))
g(h)=g

|zCG(h)|γzm(h)(t(h, z) ⊲ z) ∈ C[CG(g)].

Then νm(g, η) = η(µm(g)) for η ∈ Irr(CG(g)).

6. Implementation

We have implemented the indicator formulas obtained in the previous
section in GAP [6]. Since oddly enough GAP does not provide the
absolute value of cyclotomic numbers, we have to provide it, along with
a “Kronecker delta” function; as a further piece of code less specific to
our problems we provide a class function whose value, for a character
table and an element of the underlying group, is the number in the
table of the conjugacy class containing the element.

SquaredModulus := function ( z )

return z∗ComplexConjugate ( z ) ;

end ;

kronde l := function (x , y )
i f x=y then return 1 ;

else return 0 ;
f i ;

end ;

c l a s s p o s := function (CT)
return

ClassFunct ion (
CT,

[ 1 . . S i z e ( ConjugacyClasses (CT) ) ] ) ;
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end ;

Next, we program the class function wz
m as a GAP function cfw, the

coefficient βm(z, χ) as a GAP function beta, and the class function γzm
as a GAP function gamma. All three depend on a character table CT
(the character table of the centralizer CG(z)) and the element z; beta
also depends on the character chi.

cfw := function (CT, z ,m)

return

ClassFunct ion (CT, L i s t ( ConjugacyClasses (CT) ,

c−>kronde l ( Representat i ve ( c )^m, z ) ) ) ;
end ;

beta := function (CT, z ,m, ch i )

local skp ;
skp :=ScalarProduct (CT, chi , cfw (CT, z ,m) ) ;

return SquaredModulus ( skp )
∗ S i ze ( UnderlyingGroup (CT) )

/DegreeOfCharacter ( ch i ) ;

end ;

gamma:= function (CT, z ,m)
local chi , i c h i , c l f ;

c l f := L i s t ( [ 1 . . S i z e ( ConjugacyClasses (CT) ) ] , i −>0);
for i c h i in [ 1 . . S i z e ( ConjugacyClasses (CT) ) ] do

ch i := I r r (CT) [ i c h i ] ;
c l f := c l f+beta (CT, z ,m, ch i )∗ ch i ;

od ;
return c l f ;

end ;

Note that our version of gamma does not take advantage of the redun-
dancies observed in lemma 3.5. We will use these before calling the
function.

Before writing the actual functions calculating indicators, let us note
that a large amount of auxiliary information is needed to do so: mainly
centralizers and their characters, the class functions γxm, and the result
of conjugating elements into each other’s centralizers. To calculate one
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indicator, not all of this information may be required1, but it would
be a good idea to keep any that have already been obtained while cal-
culating one indicator, lest they be needed again for the calculation of
another. Thus, whenever we start calculating indicators for the double
of the underlying group of a character table, we will enrich this char-
acter table by adding several (record) fields of useful data for indicator
calculations, which do not at first contain a lot of information, but can
be used for storing it. More precisely, we will compute indicators for
the double of the underlying group G of a character table GT. We will
provide for storing with GT the following information: the exponent of
G and its divisors; a list CTlist of the character tables of the centraliz-
ers in G; a list of the class functions that compute the list position of
the conjugacy class of an element in a centralizer; a list of lists of the
class functions γzm; a list of lists of the elements µm from corollary 5.2
and a list of lists of “mates” that we will explain below.

MakeDFSI:= function (GT)

i f IsBound (GT! . CTl ist ) then return ; f i ;
GT! . exp :=Exponent ( UnderlyingGroup (GT) ) ;

GT! . div := Div i s o r s I n t (GT! . exp ) ;
GT! . CTl ist : = [ ] ;

GT! . c l a s s p o s l i s t : = [ ] ;
GT! . gammalist := L i s t ( ConjugacyClasses (GT) , c−>[]) ;

GT! . mul i s t := L i s t (GT! . div ,m−>[]) ;
GT! . mates := L i s t ( ConjugacyClasses (GT) , c−>[]) ;

end ;

Whenever we need the character table of the centralizer of an element
of G (rather, of an element of a cross section of its conjugacy classes),
we make sure it is entered into the list by calling:

prov i d e cha r a c t e r t ab l e := function (GT, i g )

i f IsBound(GT! . CTl i s t [ i g ] ) then return ;

f i ;

GT! . CTl i s t [ i g ]

:=OrdinaryCharacterTable (

Cen t r a l i z e r (

1An unnecessary caveat, of course, if we calculate all the indicators for the double
of a certain group; however, computers caught between an inept administrator and
an undisciplined user, be they the same person, do sometimes break down, and
thus calculations for large groups may end up being done in several portions.
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UnderlyingGroup (GT) ,

Representat ive (

ConjugacyClasses (GT) [ i g ] ) ) ) ;

I r r (GT! . CTl i s t [ i g ] ) ; ;

GT! . c l a s s p o s l i s t [ i g ]

:= c l a s s po s (GT! . CTl i s t [ i g ] ) ;

return ;

end ;

The next function provides an element of the list (numbered like the
conjugacy classes of G) of lists (numbered like the divisors of exp(G))
of the class functions γzm.

providegamma := function (GT, iz , im)

local x ;

i f IsBound(GT! . gammalist [ i z ] [ im ] ) then return ;

f i ;

GT! . gammalist [ i z ] [ im ] :=

gamma(GT! . CTl i s t [ i z ] ,

Representat ive ( ConjugacyClasses (GT) [ i z ] ) ,

GT! . div [ im ] ) ;

return ;

end ;

To practically apply the formula (5.5), we need to determine, for z ∈
Cl(G) and h ∈ Cl(CG(z)), first the class representative g ∈ Cl(G) of
the conjugacy class of h ∈ G (this is built into GAP), then an element
t such that t ⊲ h = g, and then the representative z′ ∈ Cl(CG(g)) of the
class of t ⊲ z in CG(g). In other words, the fact that g is conjugate to
the element h in the centralizer of z makes that z is conjugate to the
element z′ in the centralizer of g. For lack of a better idea, we call z′

the mate of (z, h); it is needed repeatedly, namely for all values of m,
so it seems worth storing mates:

providemate := function (GT, iz , ih )

local ig , t ;

i f IsBound(GT! . mates [ i z ] [ ih ] ) then return ;

f i ;

i g :=FusionConjugacyClasses (GT! . CTl i s t [ i z ] ,GT) [ ih ] ;

t := Representat iveAct ion (

UnderlyingGroup (GT) ,

Representat ive (



18 PETER SCHAUENBURG

ConjugacyClasses (GT! . CTl i s t [ i z ] ) [ ih ] ) ,

Representat ive (

ConjugacyClasses (GT) [ i g ] ) ) ;

GT! . mates [ i z ] [ ih ] :=

( Representat ive ( ConjugacyClasses (GT) [ i z ] )^ t )

^GT! . c l a s s p o s l i s t [ i g ] ;

end ;

The next function computes µm(g), if it is not yet known, where m and
g are represented by their positions in the lists of divisors of exp(G),
resp. the list of conjugacy classes of G.

providemu := function (GT, ig , im)

local nmulist , i z , i zc , ih , i z s e t , ez , oz , merep ,mm, imm, a , c , i hc ;

i f IsBound(GT! . mul i s t [ im ] [ i g ] ) then

return ;

f i ;

p rov i d e cha ra c t e r t ab l e (GT, i g ) ;

nmul i s t := L i s t ( ConjugacyClasses (GT! . CTl i s t [ i g ] ) , i −>0);

i z s e t :=Set ( [ 1 . . S i z e ( ConjugacyClasses (GT! . CTl i s t [ i g ] ) ) ] ,

i z−>FusionConjugacyClasses (GT! . CTl i s t [ i g ] ,GT) [ i z ] ) ;

for i z in i z s e t do

prov i d e cha ra c t e r t ab l e (GT, i z ) ;

ez :=Exponent ( UnderlyingGroup (GT! . CTl i s t [ i z ] ) ) ;

oz :=Order ( Representat i ve ( ConjugacyClasses (GT) [ i z ] ) ) ;

merep:=Gcdex (GT! . div [ im ] , ez ) ;

mm:=merep . gcd ;

imm:= Pos i t i on (GT! . div ,mm) ;

i f not RemInt ( ez ,mm∗oz)=0 then continue ;

f i ;

a:=merep . c o e f f 1 ;

cc :=Gcdex (a , ez ) ;

while cc . gcd<>1 do

a:=a+merep . c o e f f 3 ;

cc :=Gcdex ( a , ez ) ;

od ;

c := cc . c o e f f 1 ;

providegamma (GT, iz , imm) ;

for i h in [ 1 . . S i z e ( ConjugacyClasses (GT! . CTl i s t [ i z ] ) ) ] do

i f FusionConjugacyClasses (GT! . CTl i s t [ i z ] ,GT) [ ih ]<>i g

then continue ;

f i ;

providemate (GT, iz , i h ) ;

i z c :=GT! . mates [ i z ] [ i h ] ;

i hc :=PowerMap(GT! . CTl i s t [ i z ] , c , i h ) ;

nmul i s t [ i z c ] := nmul i s t [ i z c ]+

Si zesConjugacyClas s es (GT! . CTl i s t [ i g ] ) [ i z c ]

∗GT! . gammalist [ i z ] [ imm ] [ i hc ] ;

od ;
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od ;

GT! . mul i s t [ im ] [ i g ] := nmul i s t ;

end ;

Finally the function DoubleIndicator computes an indicator of a mod-
ule of the Drinfeld double D(G), given a character table GT with un-
derlying group G, the class position of an element g ∈ G, the number of
an irreducible character η ∈ Irr(CG(g)), and a number m which is sup-
posed to divide exp(G). It begins by making sure that the appropriate
element µm(g) is provided.

Doubl e Ind i cator:= function (GT, ig , i e ta ,m)

local im ;

MakeDFSI(GT) ;

im:= Pos i t i on (GT! . div ,m) ;

i f i g=1 then

return Ind i ca to r (GT,m) [ i e t a ] ;

f i ;

providemu (GT, ig , im ) ;

return 1/ S i z e ( UnderlyingGroup (GT! . CTl i s t [ i g ] ) ) ∗

Sum ( [ 1 . . S i z e ( ConjugacyClasses (GT! . CTl i s t [ i g ] ) ) ] ,

i z−>I r r (GT! . CTl i s t [ i g ] ) [ i e t a ] [ i z ]

∗GT! . mul i s t [ im ] [ i g ] [ i z ] ) ;

end ;

7. Sample runs

One interesting test case for our algorithm was the computation of
the indicator values for the doubles of D(Sn). Scharf [19] proved that
the higher indicator of all ordinary representations of the symmetric
groups themselves are positive integers. Courter [4] investigated the
analogous conjecture for the representations of the doubles of sym-
metric groups (where Iovanov, Mason, and Montgomery [9] show that
the indicators are in fact integers), and was able to verify the conjec-
ture up to S10. She reports having taken a week of computer time
to finish this largest case, and that S11 was too heavy a task for her
hardware. We do not have precise information on that hardware, but
should of course assume that today’s hardware is considerably more
powerful. The present author had a laptop running under linux with
a quad core CPU (Intel(R) Core(TM) i7-3520M CPU @ 2.90GHz ac-
cording to the system’s internal information) and 8GB of RAM. On this
machine, code borrowed directly from Courter will deal with the indi-
cators for the double of S10 in 8 hours and 25 minutes. (More precisely,
this is the time taken to compute the elements µm(g) for all nontrivial
divisors of exp(G) and g from a system of representatives of the conju-
gacy classes of G, but g 6= e. No character tables of centralizers were
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computed, hence no actual indicator values.) The code presented in
section 6, on the other hand, computes all the indicator values νm(g, η)
for the double of the symmetric group S10, again excepting m = 1 and
m = exp(G), in about one minute. The comparison was greatly facil-
itated by the fact that Rebecca Courter was kind enough to send all
her code and computation results; also, having this material was very
helpful in early stages of the author’s clumsy programming, because
direct comparison of the results for small examples helped eliminate
errors. We did not make a real effort to investigate Courter’s code for
possible improvements; however, its limitations for increasing size of
the group seem evident: A key to speeding up computations is that
the program stores a list of m-th powers of all the group elements to
avoid recalculations. The length of this list grows more than expo-
nentially with the degree of the symmetric group. The order of the
symmetric group on 18 letters is 6, 402, 373, 705, 728, 000≈ 6 · 1015 and
thus more than a hundred times the square of the order of the largest
group S10 treated in [4]. To brag in a different way: More than 10
petabytes of storage would be needed, or, if we were to do without the
speedup, some 1015 elements would have to be looped through many
times. Our algorithms, on the other hand, only loop through lists of
conjugacy classes, in the order of up to a thousand elements; even with
nested loops, no more than millions of iterations are needed to deal
with S18. This relies quite shamelessly on the ability of GAP to also
deal with the calculation of centralizer subgroups, conjugacy classes,
and character tables in an efficient way (not, it seems, ever looping
through all the group elements). Note also that we rely on GAP to
decide whether two given elements are conjugate in G, and if they are,
to find an element conjugating one into the other. If we mentioned
the symmetric group on 18 letters above, it is because it is the largest
symmetric group for which the code from section 6 has been able to
compute all the indicators of the double (putting in a little less than
12 hours of CPU time according to GAP, a little under 7 hours being
spent in computing character tables). None of them were negative. For
the symmetric group on 19 letters, the author’s laptop stalled, during
the attempt to find the irreducible characters of one of the centralizers.

If we want to push ahead in the quest for a counterexample (to
nonnegativity of the indicators), there are various ways to go beyond
S18. The easiest is to turn to more muscled hardware, and we admit
with some embarrassment having used the computing power provided
by the Centre de Calcul of the Université de Bourgogne to treat S19.
More intelligently, one could use the fact that the centralizers of ele-
ments of the symmetric group are known: They are direct products of
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wreath products of symmetric and cyclic groups. It should be possible
to put this information to use and thus make GAP compute the char-
acter tables of centralizers in a more intelligent way without appealing
blindly to the Dixon-Schneider algorithm it usually uses, or to break
down the class functions γzm along this decomposition of the centraliz-
ers. As it stands, the conjecture motivated calculations that, by their
size, demonstrate the efficiency of the algorithm in its form described
in section 6, which is valid for any group.

Another interesting test case was suggested by [9]: Using the iterator
providing finite simple groups, we have set GAP on the task of calcu-
lating the indicators of the irreducible modules of the doubles of simple
groups (excluding the groups PSL2(q)). This worked up to orders be-
low 200, 000, 000, whereafter the author’s laptop stalled while trying
to calculate a character table. The original motivation for this quest
was the question whether all the indicators for the doubles of simple
groups are integers (the indicators we computed were), but as it will
turn out in section 8, that question can be attacked without actually
calculating the indicators.

8. Rationality questions and FSZ-groups

Recall that Iovanov, Mason, and Montgomery [9] call a finite group
G an an FSZm-group if for every simple D(G)-module V we have
νm(V ) ∈ Z, and an FSZ-group if it is an FSZm-group for every m
(dividing the exponent of G). In general, it is known that the indicators
are algebraic integers in the cyclotomic field Q(ζexp(G)), and that they
are real. Moreover, the m-th indicators νm(V ) lie in the cyclotomic
field Q(ζm). Instead of asking whether all indicators for a given group
double are (rational) integers, one may of course ask which cyclotomic
field, possibly smaller than prescribed by m and exp(G) alone, they
belong to.

By and large, our results on the rationality of indicators stem from
the behavior of the β and γ maps under Adams operators; we begin
with the following:

Lemma 8.1. Let G be a finite group, and (r, exp(G)) = 1.

(1) νm(g
r, η) = νm(g, ψrη) = σrνm(g, η) for each g ∈ G and η ∈

Irr(CG(g)); in particular {νm(g, η)|η ∈ Irr(CG(g))} depends only

on the rational conjugacy class of g ∈ G.

(2) βm(z
r, χ) = βm(z, ψrχ) = σrβm(z, χ) for each z ∈ G and

χ ∈ Irr(CG(z)); in particular {βm(z, χ)|χ ∈ Irr(CG(z))} de-

pends only on the rational conjugacy class of z ∈ G.
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Proof. In fact the formula in (1) was already proved in [20]; it can
also be deduced from (and is equivalent to) some of the properties of
the class functions gamma proved in lemma 3.5: By (4.3) we have, for
rs ≡ 1 mod exp(G):

|CG(g)|νm(gr, η) =
∑

z∈CG(g)

ψrγ
z
m(g)η(z) =

∑

z∈CG(g)

γz
s

m (g)η(z) =

=
∑

z∈CG(g)

γzm(g)η(z
r) = |CG(g)|νm(g, ψrη) = |CG(g)|σrνm(g, η)

since η(zr) = ψrη(z) = σrη(z). The calculation

|〈χ,wzr

m 〉| = |〈χ, ψsw
z
m〉| = |〈ψrχ,w

z
m〉| = |σr〈χ,wz

m〉| = σr|〈χ,wz
m〉|

proves the corresponding formula in (2). �

By [9, Cor.3.2], G is an FSZm-group if and only if, for every r
coprime to the exponent of G one has |Gm(g, z)| = |Gm(g, z

r)|. The
same arguments used there show in fact that this condition is satisfied
for all r such that (r, exp(G)) = 1 and r ≡ 1 mod d if and only if
νm(g, η) ∈ Q(ζd) for all g and η.

Corollary 8.2. Let G be a finite group and d| exp(G). The following

are equivalent:

(1) νm(g, η) ∈ Q(ζd) for all g ∈ G and η ∈ Irr(CG(g)).
(2) ψrγ

z
m = γzm for all z ∈ G and all integers r satisfying (r, exp(G)) =

1 and r ≡ 1 mod d.

Proof. The condition from [9] asks for γzm = γz
r

m for r in (Zm)
∗; let s

be the inverse of r and recall that we have shown in lemma 3.5 that
ψsγ

zs

m = γzm. �

An consequence of the above rationality criterion is a generalization
of (the less interesting part of) results from [11, 7]. To wit, these
papers show how to calculate the second indicators of the D(G)-module
associated to a character η of CG(g) in terms of the indicators of η
and the character induced from the centralizer to a certain normalizer.
We will fall considerably short of such an explicit result, but will at
least generalize the fact that the indicator only depends on the induced
character.

Recall that the normalizer of an element g ∈ G is NG(g) = NG(〈g〉),
the normalizer of the cyclic subgroup generated by g. Thus t ∈ NG(g)
iff t ⊲ g = gr with (r, o(g)) = 1; in fact we can choose r such that
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(r, exp(G)) = 1. We will use the following “restricted normalizer”: For
an integer d let

Nd
G(g) := {t ∈ G|t ⊲ g = gr with (r, exp(G)) = 1 and r ≡ 1 mod d},

so that in particular N1
G(g) = NG(g). Another special case is

N2
G(g) = {t ∈ G|t ⊲ g ∈ {g, g−1}},

which would be called an “extended stabilizer” in [11] and the nor-
malizer of the set {g, g−1} in [7]. In these papers, it is shown how to
calculate the second indicator of the object associated to η ∈ Irr(CG(g))
in terms of the character of N2

G(g) induced from η.
Note that the centralizer CG(g) is normal in the normalizer NG(g).

Thus, by Clifford theory, η, η′ ∈ Irr(CG(g)) induce up to the same
character of Nd

G(g) if and only if they are conjugate under the action
of Nd

G(g).

Proposition 8.3. Let G be a finite group , g ∈ G, and d| exp(G). As-

sume that νm(g, η) ∈ Q(ζd) for all η ∈ Irr(CG(g)). Then νm(g, η) de-

pends only on the induced character Ind
Nd

G
(g)

CG(g)(η); equivalently, νm(g, η)

is invariant under the action of Nd
G(g) on the characters of CG(g).

Proof. Let t ∈ Nd
G(g) and t−1 ⊲ g = gr with (r, exp(G)) = 1 and r ≡ 1

mod d. Then νm(g, t ⊲ η) = νm(t
−1 ⊲ g, η) = νm(g

r, η) because the
two couples (g, t ⊲ η) and (t−1 ⊲ g, η) induce isomorphic D(G)-modules.
By assumption νm(g, η) = σrνm(g, η) and so the formula reviewed in
lemma 8.1 (1) proves the claim. �

Next, we use the same reasoning as in [9] to play the behavior of γ
under Adams operators back to the arithmetic properties of the coeffi-
cients β:

Proposition 8.4. We have νm(g, η) ∈ Q(ζd) for all g ∈ G and η ∈
Irr(CG(g)) if and only if βm(z, χ) ∈ Q(ζd) for all z ∈ G and χ ∈
Irr(CG(z)).

Proof. γzm is a rational valued class function. Thus by [21, Thm.25] it
is a linear combination of characters with coefficients in Q(ζd) if and
only if ψrγ

z
m = γzm for all r with (r, exp(G)) = 1 and r ≡ 1 mod d. �

While the proposition shows that for the double D(G) irrational
indicator values occur if and only if irrational values of βm occur, we
shall see in an example below that this will not necessarily happen for
the same conjugacy classes, although we note:

Lemma 8.5. If βm(z, χ) 6∈ Q(ζd) for some z ∈ G and χ ∈ Irr(CG(z)),
then there is a D(CG(z))-module V with νm(V ) 6∈ Q(ζd).



24 PETER SCHAUENBURG

Proof. To write the argument properly, we have to introduce the more
precise notation βG

m(z, χ) := βm(z, χ) to take into account that the
centralizer CG(z) depends on the ambient group, not only on the ele-

ment z. That said, we have βG
m(z, χ) = β

CG(z)
m (z, χ) since z is central in

CG(z). Thus a module of D(CG(z)) with indicator not in Q(ζd) exists
by proposition 8.4. �

Lemma 8.6. Let G be a finite group, z ∈ G, χ ∈ Irr(CG(z)), and

m| exp(CG(z))/o(z). Then βm(z, χ) ∈ Q(ζ(o(z),m)). In particular, if

(o(z), m) ∈ {1, 2, 3, 4, 6}, then βm(z, χ) ∈ Q.

Proof. If r ≡ 1 mod o(z) then ψrγ
z
m = ψrγ

zr

m = γzm showing βm(z, χ) ∈
Q(ζo(z)). Since m-th indicators are in Q(ζm) ∩ R, we are done. �

Proposition 8.4 gives a criterion for deciding whether all the higher
indicators for the double of a given group are rational, particularly
efficient if we use lemma 8.6 to skip combinations of m and z that
are useless to check (which may happen because o(z) is “too small”
as it needs to have a “large” divisor, or because o(z) is “too large”
because exp(CG(z))/o(z) needs to have a “large” divisor). We note that
the result is related to, but stronger than, results relating the FSZ+-
property of a group to the FSZ-property of its centralizer subgroups
in [9]. A GAP function performing the test is:

FSZtest := function (G)

local C,CT, z , c l , div , ch i ;
for c l in Rat iona lC la s s e s (G) do

z := Representat ive ( c l ) ;
i f Order ( z ) in [ 1 , 2 , 3 , 4 , 6 ] then continue ;

f i ;

C:= Cen t r a l i z e r (G, z ) ;
CT:=OrdinaryCharacterTable (C) ;

div := Div i s o r s I n t ( Exponent (C)/ Order ( z ) ) ;
d iv := F i l t e r e d ( div ,m−> not m in [ 1 , 2 , 3 , 4 , 6 ] ) ;

for m in div do

d:=Gcd(m, Order ( z ) ) ;

i f d in [ 1 , 2 , 3 , 4 , 6 ] then continue ;
f i ;

for ch i in I r r (CT) do

i f not IsRat ( beta (CT, z ,m, ch i ) ) then

Pr int ( Order (C) , " , " ,m, "\n" ) ;
return fa l se ;

f i ;
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od ;

od ;
od ;

return true ;
end ;

We used it to test simple groups as provided to us by the iterator
SimpleGroupsIterator, skipping the groups PSL2(q) for which [9] al-
ready showed that they are FSZ (but not caring to skip other groups
treated there). We can report that the exceptional Chevalley group
G2(5) of order 56(56 − 1)(52 − 1) = 5, 859, 000, 000 is the only coun-
terexample whose double affords a representation with an irrational
(fifth) FS-indicator among the simple groups up to order |PSL(3, 29)| =
499, 631, 102, 880 (where we turned to the stronger hardware setup pro-
vided by the Centre de Calcul of the Université de Bourgogne after
treating PSL(3, 27) of order 282, 027, 786, 768 on the above-mentioned
laptop.)

While the code included above can report rather swiftly that G2(5)
is not FSZ, the code from section 6 fails to compute the indicators.
The reason for this, however, is that we asked GAP to compute the
character tables of all the centralizers by its standard methods. This
is no problem for all the nontrivial centralizers, which have relatively
harmless orders. It is the character table of G2(5) itself that stalls the
computation. Now G2(5) is an “atlas group” whose character table is
available from the atlas of finite groups [3]; to the GAP user, it is of
course more practical to invoke the character table library package [2]
that will load the character table of the group G2(5) from a database.
Since the atlas tables in GAP do not initially know their underlying
groups, one has to use the CharacterTableWithStoredGroup function
to explicitly ask for the connection of the table with the group, and this
done one has to explicitly enter this character table as the table of the
centralizer of the neutral element in the data structures described in
section 6, before leaving all the rest of the calculation (along with the
calculation of the character tables of all the other centralizers) to the
code given in that section, which will only take a little more than two
minutes of laptop CPU time to complete its job. We summarize some of
the results in table 1, rewriting the integer linear combinations of fifth
roots of unity ζk5 output by GAP as elements of Q(

√
5) = R ∩ Q(ζ5),

e.g. −60(ζ5 + ζ45)− 10(ζ25 + ζ35 ) = 35− 25
√
5

If we had not listed the sixth indicators, classes 10c and 10d would
look identical. Thus, certain representations that share the same fifth
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g in CG(g) ∼= ν5(g, η) ν6(g, η) multiplicity

10b

order

600

with

45

conjugacy

classes

81 10621 5

35± 25
√
5 21163 5+5

116± 50
√
5 31783 5+5

70 42326 5

72 42330 5

152 52951 5

230 63561 5

10c C10 × C5

299± 25
√
5 119597 5+5

301± 25
√
5 119605 5+5

424 119657 5

426 119665 5

10d C10 × C5

299± 25
√
5 117091 8+8

299± 25
√
5 117093 2+2

301± 25
√
5 117099 8+8

301± 25
√
5 117101 2+2

424 117151 4

424 117153 1

426 117159 4

426 117161 1

25a C25
(1325± 25

√
5)/2 237342 10

725 237352 5

Table 1. Values of ν5(g, η) and ν6(g, η) for η ∈
Irr(CG(g)) and g from four conjugacy classes of G2(G);
all other classes lead to only rational indicators.

indicators are distinguished by their sixth indicators. The choice of
ν6 is not completely arbitrary (though theoretically unfounded): The
indicators associated to class 10d that share the same fifth indicator
also have the same νm for any m| exp(G) that is a prime power (that is,
m ∈ {2, 4, 8, 3, 5, 25, 7, 31}). We also note that, at least for the classes
shown, two objects that have the same fifth and sixth indicators also
share identical values for all the other higher indicators; i.e. the listed
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“multiplicity” is the multiplicity with which an entire indicator sequence

occurs in this class.
The four classes listed in table 1 are the only ones (among 44) for

which irrational indicators occur. The irrationality test FSZtest above,
on the other hand, does not compute indicators, but rather the values
βm(z, χ) for characters χ of CG(z). The unique conjugacy class zG2(5)

for which an irrational value βm(z, χ) occurs is the one labeled 5a.
For the various characters of CG2(5)(z) we get the following values of

β5(z, χ): 0 occurs 58 times, 150 and (175± 25
√
5)/2 occur twice each,

and 450 ± 150
√
5, 300 ± 50

√
5, 25, 100, and 600 occur once each. We

have |CG2(5)| = 375, 000 = 23 · 3 · 56; the first counterexample to the
FSZ-property found in [9] is for a group of order 56. In fact, one can
(GAP) check that the 5-Sylow Subgroups of G2(5) are not FSZ. One
might suspect that the FSZp property of a group might be related
to the FSZp property for its p-subgroups, but perhaps the scarcity of
known non-FSZ groups makes this a quite speculative question; we
can merely prove the rather weak:

Lemma 8.7. Let q be a power of a prime p and G a finite group.

(1) If G is not FSZq, then there is a p-element z ∈ G such that

CG(z) is not FSZq.

(2) If y ∈ Z(G), and yp denotes the p-part of y then βq(y, χ) =
βq(yp, χ).

Proof. Let y be such that βq(y, χ) = βG
q (y, χ) 6∈ Q. Let z be the p-part

of y. Since CCG(z)(y) = CG(y), we have β
CG(z)
q (y, χ) = βG

q (y, χ), and
thus CG(z) is not FSZ.

If y ∈ Z(G), then yp as well as the p′-part yp′ of y are central.
Let exp(G) = pkn with (n, p) = 1, and qr ≡ 1 mod n. Let x ∈ G
with p-part xp and p′-part xp′. Then xq = z is equivalent to xqp = zp
and xqp′ = yp′. Since xp′ and yp′ are p′-elements, xqp′ = yp′ implies
xp′ = ynp′ =: a; on the other hand a is central in G and thus (ab)q = y
is equivalent to bq = yp for p-elements b. Therefore

〈χ,wy
q〉 =

∑

xq=y

χ(x) =
∑

bq=yp

χ(ab) =
∑

bq=yp

χ(a)

χ(e)
χ(b) =

χ(a)

χ(e)
〈χ,wyp

q 〉,

where χ(a)/χ(e) is a root of unity. �

The lemma implies that a non-FSZq-group G has a p-element z such

that CG(z) has a central p-element y such that β
CG(z)
q (y, χ) is irrational

for some χ ∈ Irr(CG(z)).
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