Saikat Mazumdar 
email: saikat.mazumdar@univ-lorraine.fr
  
STRUWE'S DECOMPOSITION FOR A POLYHARMONIC OPERATOR ON A COMPACT RIEMANNIAN MANIFOLD WITH OR WITHOUT BOUNDARY

Keywords: 

. Unlike the case of second-order operators, bubbles close to the boundary might appear. Our result includes the case of a smooth bounded domain of R n .

Introduction

Let (M, g) be a smooth, compact Riemannian manifold of dimension n with or without boundary. In the latter case we understand that M is a compact, oriented submanifold of ( M , g) which is itself a smooth, compact Riemannian manifold without boundary and with the same metric g. As one checks, this includes smooth bounded domains of R n . When the boundary ∂M = ∅, we let ν be its outward oriented normal vector in M . Let k be a positive integer such that 2k < n. We define the Sobolev space H 2 k,0 (M ) as the completion of C ∞ c (M ) for the norm u → k i=0 ∇ i u 2 . This norm is equivalent (see Robert [START_REF] Robert | Admissible Q-curvatures under isometries for the conformal GJMS operators[END_REF]) to the Hilbert norm u H where ∆ g := -div g (∇) is the Laplace-Beltrami operator and, for α odd, ∆ α g u∆ α g v := (∇∆ α-1 2 g u, ∇∆

α-1 2 g v) g for all u, v ∈ H 2 k (M ). For details we refer to Aubin [START_REF] Aubin | Some nonlinear problems in Riemannian geometry[END_REF] and Hebey [START_REF] Hebey | Nonlinear analysis on manifolds: Sobolev spaces and inequalities[END_REF].

We consider the functional

I(u) := 1 2 M (∆ k/2 g u) 2 dv g + 1 2 k-1 l=0 M A l (∇ l u, ∇ l u) dv g - 1 2 ♯ k M |u| 2 ♯ k dv g
where for all l ∈ {0, . . . , k -1}, A l is a smooth T 0 2l -tensor field on M and A l is symmetric (that is A l (X, Y ) = A l (Y, X) for all T l 0 -tensors X, Y on M ). Here, 2 ♯ k := 2n n-2k is the critical Sobolev exponent such that H 2 k,0 (M ) ֒→ L 2 ♯ k (M ) is continuous, which makes the definition of I consistent for all u ∈ H 2 k,0 (M ). Critical points u ∈ H 2 k,0 (M ) for I are weak solutions to the pde

P u = |u| 2 ♯ k -2 u in M ∂ α ν u = 0 on ∂M for |α| ≤ k -1 (1)
where for any u ∈ C 2k (M ), we define

P u := ∆ k g u + k-1 l=0
(-1) l ∇ j l ...j1 (A l ) i1...i l ,j1...j l ∇ i1...i l u and where we say that u ∈ H 2 k,0 (M ) is a weak solution to [START_REF] Almaraz | The asymptotic behavior of Palais-Smale sequences on manifolds with boundary[END_REF] if

M ∆ k/2 g u, ∆ k/2 g ϕ dv g + k-1 l=0 M A l (∇ l u∇ l ϕ) dv g = M |u| 2 ♯ k -2 uϕ dv g
for all ϕ ∈ H 2 k,0 (M ). As shown by the regularity theorem in Mazumdar [START_REF] Mazumdar | GJMS-type Operators on a compact Riemannian manifold: Best constants and Coron-type solutions[END_REF], a weak solution u to (1) is indeed a strong solution, u ∈ C 2k (M ). Definition 1.1. Let (X, • ) be a Banach space and F ∈ C 1 (X). A sequence (u α ) in X is said to be a Palais-Smale sequence for F if (F (u α )) α has a limit in R when α → +∞, while DF (u α ) → 0 strongly in X ′ as α → +∞.

In this paper, we describe the lack of relative compactness of Palais-Smale sequences for I, which is due to the noncompact embedding

H 2 k,0 (M ) ֒→ L 2 ♯ k (M ).
For Ω any open domain of R n , we let D 2 k (Ω) be the completion of C ∞ c (Ω) for the norm u → ∆ k/2 u 2 . The limiting equations of (1) are

(2) ∆ k u = |u| 2 ♯ k -2 u in R n , u ∈ D 2 k (R n ) (3) ∆ k u = |u| 2 ♯ k -2 u in R n - ∂ α ν u = 0 on ∂R n - , u ∈ D 2 k (R n -)
where ∆ := ∆ Eucl is the Laplacian on R n endowed with the Euclidean metric Eucl. Associated to the functional I is the limiting functional

E(u) := 1 2 R n (∆u) 2 dx - 1 2 ♯ k R n |u| 2 ♯ k dx for all u ∈ D 2 k (R n ).
Our main theorem below shows that the lack of convergence to a solution of equation ( 1) is described by a sum of Bubbles:

Theorem 1.1. Let (u α ) be a Palais-Smale sequence for the functional I on the space H 2 k,0 (M ). Then there exists d ∈ N bubbles [(x

(j) α ), (r (j) 
α ), u (j) ], j = 1, ..., d, (see Definition 2.1 below) there exists u ∞ ∈ H 2 k,0 (M ) a solution to [START_REF] Almaraz | The asymptotic behavior of Palais-Smale sequences on manifolds with boundary[END_REF] such that, up to a subsequence,

u α = u ∞ + d j=1 B x (j) α ,r (j) α (u (j) ) + o(1) where lim α→+∞ o(1) = 0 in H 2 k,0 (M )
and

I(u α ) = I(u ∞ ) + d j=1 E(u (j) ) + o(1) as α → +∞.
In Section 2, Bubbles are defined up to a term going to 0 strongly, which is relevent here. As one checks, given u ∈ D 2 k (R n ) a nontrivial weak solution to (2) or (3), then multiplying the equation by u and integrating by parts yields ( 4)

E(u) ≥ β ♯ := k n K 0 (n, k) -n/2k
where K 0 (n, k) be the best constant of the embedding

D 2 k (R n ) ֒→ L 2 ♯ k (R n ), that is (5) K 0 (n, k) -1 = inf u∈D 2 k (R n )\{0} R n (∆ k/2 u) 2 dx R n |u| 2 ♯ k dx 2 2 ♯ k
When the Palais-Smale sequence is nonnegative, the bubbles are positive and correspond to positive solutions to [START_REF] Ambrosetti | Dual variational methods in critical point theory and applications[END_REF]. As shown in Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case. I, II[END_REF], Swanson [START_REF] Swanson | The best Sobolev constant[END_REF], Ge-Wei-Zhou [START_REF] Ge | A critical elliptic problem for polyharmonic operators[END_REF], these solutions are exactly the extremals for [START_REF] Hamidi | Sharp Sobolev asymptotics for critical anisotropic equations[END_REF] and are of the form

u = U a,λ := α n,k λ 1 + λ 2 | • -a| 2 n-2k 2 a ∈ R n , λ > 0 (6)
where α n,k > 0 is explicit. We then get the following: Theorem 1.2. Let (u α ) be a Palais-Smale sequence for the functional I on the space H 2 k,0 (M ). We assume that u α ≥ 0 for all α ∈ N. Then there exists u ∞ ∈ H 2 k,0 (M ) a solution to [START_REF] Almaraz | The asymptotic behavior of Palais-Smale sequences on manifolds with boundary[END_REF], there exists d ∈ N, there exist (x

α ), . . . , (x

(d) α ) ∈ M , (r (1) 
α ), . . . , (r

(d) α ) ∈ (0, +∞) such that r (j) α → 0 and r (j) α = o(d(x (j)
α , ∂M )) as α → +∞ for all j = 1, ..., d, such that, up to a subsequence,

u α = u ∞ + d j=1 η (r (j) α ) -1 exp -1 x (j) α (•) α n,k r (j) α (r (j) α ) 2 + d g (•, x (j) α ) 2 n-2k 2 + o(1)
where lim α→+∞ o(1) = 0 in H 2 k,0 (M ), and η and (r (j) α ) ′ s are as in [START_REF] Ghoussoub | Duality and perturbation methods in critical point theory[END_REF]. Moreover,

I(u α ) = I(u ∞ ) + dβ ♯ + o(1) as α → +∞
where β ♯ is as in [START_REF] Bartsch | A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator[END_REF].

When k = 1 and M is a smooth bounded domain of R n , Theorem 1.1 is the pioneering result of Struwe [START_REF] Struwe | A global compactness result for elliptic boundary value problems involving limiting nonlinearities[END_REF]. There have been several extensions. Without being exhaustive, we refer to Hebey-Robert [START_REF] Hebey | Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients[END_REF] for k = 2 and manifolds without boundary, Saintier [START_REF] Saintier | Asymptotic estimates and blow-up theory for critical equations involving the p-Laplacian[END_REF] for the p-Laplace operator, El-Hamidi-Vétois [START_REF] Hamidi | Sharp Sobolev asymptotics for critical anisotropic equations[END_REF] for anisotropic operators and Almaraz [START_REF] Almaraz | The asymptotic behavior of Palais-Smale sequences on manifolds with boundary[END_REF] for nonlinear boundary conditions. A general reference for description as bubbles is the monograph by Fieseler-Tintarev [START_REF] Tintarev | Concentration compactness[END_REF]. Another possible description is in the sense of measures as in Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case. I, II[END_REF]: a general result of this flavour for high order elliptic operators on manifolds is in Mazumdar [START_REF] Mazumdar | GJMS-type Operators on a compact Riemannian manifold: Best constants and Coron-type solutions[END_REF].

Palais-Smale sequence are produced via critical point techniques, like the Mountain-Pass Lemma of Ambrosetti-Rabinowitz [START_REF] Ambrosetti | Dual variational methods in critical point theory and applications[END_REF] or other topological methods (see for instance the monograph Ghoussoub [START_REF] Ghoussoub | Duality and perturbation methods in critical point theory[END_REF] and the references therein). Concerning higher-order problems, we refer to Bartsch-Weth-Willem [START_REF] Bartsch | A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator[END_REF], Ge-Wei-Zhou [START_REF] Ge | A critical elliptic problem for polyharmonic operators[END_REF], Mazumdar [START_REF] Mazumdar | GJMS-type Operators on a compact Riemannian manifold: Best constants and Coron-type solutions[END_REF], the general monograph Gazzola-Grunau-Sweers [START_REF] Gazzola | Polyharmonic boundary value problems[END_REF] and the references therein. Theorem 1.1 is used by the author in [START_REF] Mazumdar | GJMS-type Operators on a compact Riemannian manifold: Best constants and Coron-type solutions[END_REF] to get Coron-type solutions to equation [START_REF] Almaraz | The asymptotic behavior of Palais-Smale sequences on manifolds with boundary[END_REF].
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Definition of Bubbles

In the spirit of the exponential map, we first cook up a chart around any boundary point. We fix x 0 ∈ ∂M . Since M is a smooth submanifold of M , there exist Ω an open subset of M with x 0 ∈ Ω, there exists U ⊂ R n open with 0 ∈ U , such that for any x ∈ Ω ∩ ∂M there exists T x ∈ C ∞ (U, M ) having the following properties.

(

)                        • T x (0) = x • T x is a smooth diffeomorphism onto its image T x (U ). • T x (U ∩ {x 1 < 0}) = T x (U ) ∩ M • T x (U ∩ {x 1 = 0}) = T x (U ) ∩ ∂M • (x, z) → T x (z) is smooth from Ω × U to M • dT x (0) : R n → T x M is an isometry • dT x (0)[e 1 ] = ν x 7 
where ν x is the outer unit normal vector to ∂M at the point x.

This map is defined uniformly with respect to x in a neighborhood Ω of a fixed point x 0 ∈ ∂M . By a standard abuse of notation, we will always consider x → T x without any reference to Ω or x 0 : this will make sense in the sequel since the relevant points will always be in the neighborhood of a fixed point.

Definition 2.1. A "Bubble" is a triplet [(x α ), (r α ), u] where x α ∈ M is a convergent sequence, r α > 0 for all m ∈ N with lim α→+∞ r α = 0 and

either x α ∈ M, lim α→+∞ d(x α , ∂M ) r α = +∞ and u ∈ D 2 k (R n ) satisfies (2) or x α ∈ ∂M and u ∈ D 2 k (R n -) satisfies (3) If x α ∈ M , we let rα > 0 be such that (8) lim α→+∞ rα = r∞ ∈ 0, i g ( M ) 2 , lim α→+∞ r α rα = 0 and rα < d g (x α , ∂M ) 2
and we define

B xα,rα (u) := η exp -1 xα (x) rα r -n-2k 2 α u exp -1 xα (x) r α where η ∈ C ∞ c (B 0 (i g ( M ))) is identically 1 in a neighborhood of 0.
Here, the exponential map is taken on the ambient manifold ( M , g).

If

x α ∈ ∂M , we let x 0 := lim α→+∞ x α , and we define

B xα,rα (u) := η T -1 xα (x) r -n-2k 2 α u T -1 xα (x) r α
where T x is as in [START_REF] Ge | A critical elliptic problem for polyharmonic operators[END_REF], Ω is a neighborhood of x 0 ∈ ∂M and η ∈ C ∞ c (U ) is identically 1 in a neighborhood of 0.

Beside [(x α ), (r α ), u], the definition of a bubble depends on the choice of the cut-off function η, the radius rα and the chart T x . However, as shown in the proposition below, after quotienting by sequences going to 0, the class of a Bubble is independent of these later parameters.

Proposition 2.1. The definition of Bubbles depend only on [(x α ), (r α ), u], up to a sequence going to 0 strongly in H 2 k,0 (M ).

Proof of Proposition 2.1. We first assume that u ∈ D 2 k (R n ) satisfies [START_REF] Ambrosetti | Dual variational methods in critical point theory and applications[END_REF] and that ( 9) lim

α→+∞ d g (x α , ∂M ) r α = +∞.
For i = 1, 2, we set the bubbles

B i α := η i (r i α ) -1 exp -1 xα (•) r -n-2k 2 α u r -1 α exp -1 xα (•) , where η i ∈ C ∞ c (B 0 (2a i )), η i ≡ 1 in B 0 (a i ) with 0 < 2a i ≤ ι g ( M )
; ri α > 0 are as in [START_REF] Ghoussoub | Duality and perturbation methods in critical point theory[END_REF]. We let r max 

∆ l/2 g B 1 α -B 2 α 2 2 ≤ k l=0 B 2r max α (xα)\B r min α (xα) ∆ l/2 g B 1 α -B 2 α 2 dv g ≤ i=1,2 k l=0 M\BRr α (xα) ∆ l/2 g B i xα,rα (u) 2 dv g .
Therefore, using (33), we get that

B 1 α -B 2 α = o(1) in H 2 k (M )
as α → +∞. Now we consider the case of a boundary bubble, that is x α ∈ ∂M and and u ∈ D 2 k (R n -) satisfies [START_REF] Aubin | Some nonlinear problems in Riemannian geometry[END_REF]. For i = 1, 2, we set

B i α := η i T 1 -1 xα (•) r -n-2k 2 α u r -1 α T i -1
xα (•) where T x , i = 1, 2, are as in [START_REF] Ge | A critical elliptic problem for polyharmonic operators[END_REF], U is a neighborhood of x 0 ∈ ∂M and η 1 , η 2 ∈ C ∞ c (U ) are identically 1 in a neighborhood of 0. One has

k l=0 M ∆ l/2 g B 1 α -B 2 α 2 dv g ≤ k l=0 Dα(R)∩M ∆ l/2 g B 1 α -B 2 α 2 dv g + k l=0 M\Dα(R) ∆ l/2 g B 1 α -B 2 α 2 dv g where D α (R) := T 1 xα (B 0 (r α R)) ∪ T 2 xα (B 0 (r α R
)) It follows as in the comparison Lemma 9.1 of [START_REF] Mazumdar | GJMS-type Operators on a compact Riemannian manifold: Best constants and Coron-type solutions[END_REF] that there exists C > 0 such that for α large

k l=0 Dα(R)∩M ∆ l/2 g B 1 α -B 2 α 2 dv g ≤ C k l=0 (B0(rαR)∪Φ -1 α (B0(rαR)))∩R n - ∆ l/2 B 1 α • T 1 xα -B 2 α • T 1 xα 2 dx ≤ C k l=0 B0(R)∩R n - ∆ l/2 (η a (r α •)u) -∆ l/2 η b (Φ α (r α •)) u r -1 α Φ α (r α •) 2 dx = o(1)
where

Φ α := T 2 xα -1 • T 1 xα and d(Φ α ) 0 = Id.
Similarly to the case (9), we get that lim

R→+∞ lim α→+∞ k l=0 M\Dα(R) ∆ l/2 g B 1 α -B 2 α 2 dv g = 0.
This completes the proof of Proposition 2.1.

Preliminary analysis

The proof of Theorem 1.1 goes through four steps. All results are up to a subsequence. We let (u α ) α ∈ H 2 k,0 (M ) be a Palais-Smale sequence for I.

Step 1:

We claim that (u α ) α is bounded in H 2 k,0 (M ). Proof of the claim: Since (u α ) is a Palais-Smale sequence, we have that DI(u α ), u α = M (∆ k/2 g u α ) 2 dv g + k-1 α=0 M A l (∇ l u α , ∇ l u α ) dv g - M |u α | 2 ♯ k dv g = o u α H 2 k Therefore (10) M |u α | 2 ♯ k dv g = n k I(u α ) + o u α H 2 k ≤ C + o u α H 2 k
Since (I(u α )) α is bounded, then putting together these equalities yields

u α 2 H 2 k ≤ C + C u α 2 H 2 k-1 + C M |u α | 2 ♯ k dv g Now since the embedding of H 2 k,0 (M ) in H 2 0,k-1 (M ) is compact, then for any ε > 0 there exists a B ε > 0 such that u 2 H 2 k-1 ≤ ε u 2 H 2 k + B ε u 2 2 ♯ k for all u ∈ H 2 k (M )
. Therefore, taking ε > 0 small enough, we get that

u α 2 H 2 k ≤ C + C M |u α | 2 ♯ k dv g
Then using [START_REF]Introduction à l'analyse non linéaire sur les Variétés[END_REF] we get that u α

2 H 2 k ≤ C + C u α H 2 k
for all α, and therefore the sequence (u α ) is bounded in H 2 k,0 (M ). This proves the claim.

Since (u α ) is bounded in H 2 k,0 (M ), there exists u ∞ ∈ H 2 k,0 (M ) such that      u α ⇀ u ∞ weakly in H 2 k,0 (M ) and L 2 ♯ k (M ), u α → u ∞ strongly in H 2 l,0 (M ) and in L q (M ) for l < k, q < 2 ♯ k , u α (x) → u ∞ (x) a.e in M (11) We define v α := u α -u ∞ .
Step 2: We claim that

(1) DI(u ∞ ) = 0 (2) (v α ) is a Palais-Smale sequence for the functional J on the space H 2 k,0 (M ), (3) J(v α ) = I(u α ) -I(u ∞ ) + o(1) as α → +∞.
where

J(u) := 1 2 M (∆ k/2 g u) 2 dv g - 1 2 ♯ k M |u| 2 ♯ k dv g for u ∈ H 2 k,0 (M )
Proof of the claim: We fix ϕ ∈ H 2 k,0 (M ). We have that

DI(u α ), ϕ = M ∆ k/2 g u α ∆ k/2 g ϕ dv g + k-1 α=0 M A l (g)(∇ l u α , ∇ l ϕ) - M |u α | 2 ♯ k -2 u α ϕ dv g = o(1) (12) 
The following classical integration Lemma will be often used in the sequel (see Lemma 6.2.7 in Hebey [START_REF]Introduction à l'analyse non linéaire sur les Variétés[END_REF] for a proof):

Lemma 3.1. Let (M, g) be a Riemannian manifold. If (f α ) is a bounded sequence in L p (M ), 1 < p < +∞, such that f α → f a.e in M , then f ∈ L p (M ) and f α ⇀ f weakly in L p (M ). Since (|u α | 2 ♯ k -2 u α ) α is bounded in L 2 ♯ k 2 ♯ k
-1 and converges a.e., Lemma 3.1 yields

(13) M |u α | 2 ♯ k -2 u α ϕ dv g = M |u ∞ | 2 ♯ k -2 u ∞ ϕ dv g + o(1)
Therefore, the weak convergence of (u α ) to u ∞ , ( 12) and ( 13) yield that u ∞ is a weak solution to (1). This proves point (1) of Step 2.

We now estimate I(u α ). From [START_REF] Hebey | Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients[END_REF] we have

M (∆ k/2 g u α ) 2 dv g - M (∆ k/2 g u ∞ ) 2 dv g = M (∆ k/2 g v α ) 2 dv g + o(1), k-1 l=0 M A l (∇ l u α , ∇ l u α ) dv g = k-1 l=0 M A l (∇ l u ∞ , ∇ l u ∞ ) dv g + o(1)
The following two inequalities will be of constant use in the sequel: for any 1 < p < +∞, there exists C > 0 such that

(14) | |a + b| p -|a| p -|b| p | ≤ C |a| p-1 |b| + |b| p-1 |a| (15) | |a + b| p (a + b) -|a| p a -|b| p b | ≤ C (|a| p |b| + |b| p |a|)
for all a, b ∈ R. It then follows from [START_REF] Robert | Admissible Q-curvatures under isometries for the conformal GJMS operators[END_REF] that

|u α | 2 ♯ k -|u ∞ | 2 ♯ k -|v α | 2 ♯ k ≤ C |v α | 2 ♯ k -1 |u ∞ | + |u ∞ | 2 ♯ k -1 |v α | ,
and then using Lemma 3.1, we get that

M |u α | 2 ♯ k dv g - M |u ∞ | 2 ♯ k dv g = M |v α | 2 ♯ k dv g + o(1) Hence I(u α ) -I(u ∞ ) = J(v α ) + o(1) as α → +∞, which proves point (3) of Step 2.
Next we show the sequence (v α ) is a Palais-Smale sequence for the functional J on

H 2 k,0 (M ). Let ϕ ∈ H 2 k,0 (M ), we have (16) DJ(v α ), ϕ = DI(u α ), ϕ -DI(u ∞ ), ϕ + M Φ α ϕ dv g + o( ϕ H 2 k )
where 15) and Hölder's inequality yield [START_REF] Swanson | The best Sobolev constant[END_REF]

Φ α := |v α + u ∞ | 2 ♯ k -2 (v α + u ∞ ) -|u ∞ | 2 ♯ k -2 u ∞ -|v α | 2 ♯ k -2 v α Inequality (
) M Φ α ϕ dv g ≤ C   |v α | 2 ♯ k -2 u ∞ 2 ♯ k 2 ♯ k -1 + |u ∞ | 2 ♯ k -2 v α 2 ♯ k 2 ♯ k -1   ϕ 2 ♯ k Since v α ⇀ 0 in L 2 ♯ k (M ), Lemma 3.1 yields |v α | 2 ♯ k -2 u ∞ 2 ♯ k 2 ♯ k -1 + |u ∞ | 2 ♯ k -2 v α 2 ♯ k 2 ♯ k -1 = o(1)
Since (u α ) is a Palais-Smale for I, then ( 16), ( 17) and the continuous embedding

H 2 k,0 (M ) ֒→ L 2 ♯ k (M ) yields DJ(v α ), ϕ = o( ϕ H 2 k ) as α → +∞ uniformly wrt ϕ ∈ H 2 k,0 (M )
. This proves the claim and ends Step 2. The next lemma adresses the compactness of a Palais-Smale sequence for small energy. It will be generalized to the case of small local energy in Proposition 4.1.

Step 3: Let (v α ) be a Palais-Smale sequence for J on H 2 k,0 (M ). We assume that v α ⇀ 0 weakly in H 2 k,0 (M ), and that J(v α ) → β with β < β ♯ , where β ♯ is as in (4). We claim that v α → 0 strongly in

H 2 k,0 (M ). Proof of the claim: Since (v α ) is bounded and DJ(v α ), v α = o( v α H 2 k ), we get that (18) J(v α ) = k n M (∆ k/2 g v α ) 2 dv g + o(1) = k n M |v α | 2 ♯ k dv g + o(1) = β + o(1).
As a consequence, β ≥ 0. It follows from Mazumdar [START_REF] Mazumdar | GJMS-type Operators on a compact Riemannian manifold: Best constants and Coron-type solutions[END_REF] that for any ε > 0 there exists

B ε > 0 such that (19) u 2 2 ♯ k ≤ (K 0 (n, k) + ε) M (∆ k/2 g u) 2 dv g + B ε u 2 H 2 k-1
for all u ∈ H 2 k ( M ). Applying this inequality to v α , the strong convergence to 0 in

H 2 k-1 and (18) yield n k β 2/2 ♯ k ≤ (K 0 (n, k) + ε) n k β
Letting ε → 0 and using 0 ≤ β < β ♯ , we get that β = 0, and then (18) yields v α → 0 strongly in H 2 k,0 (M ). This proves the claim and ends Step 3.

Step 4: Proof of Theorem 1.1. Let (u α ) be a Palais-Smale sequence for the functional I on the space H 2 k,0 (M ). By substracting the weak limit u ∞ , we get a Palais-Smale sequence (v α ) for the functional J with energy

J(v α ) = I(u α ) - I(u ∞ ) + o(1) as α → +∞. If v α → 0 strongly in H 2
k,0 (M ), then we end the process. If not, we apply Lemma 4.1 to substract a bubble modeled on v ∈ D 2 k (R n ) \ {0} and we get a new Palais-Smale sequence for J, but with the energy decreased by E(v). If the resulting sequence goes strongly to 0, we stop the process, if not, we iterate it again. This process must stop since the energy E(v) ≥ β ♯ and after finitely many steps, the energy goes below the critical threshold β ♯ and then the convergence is strong by Step 3. This proves Theorem 1.1.

The rest of the paper is devoted to the proof of Lemma 4.1.

Extraction of a Bubble

In the sequel, for any (M, g) as in the introduction, we let

H 2 k (M ) be the com- pletion of {u ∈ C ∞ (M ) : u H 2 k < +∞} for the norm • H 2 k . The space H 2 k,0 (M ) is then a closed subspace of H 2 k (M ).
The following lemma is the main ingredient in the proof of Theorem 1.1 Lemma 4.1. Let (v α ) be a Palais-Smale sequence for the functional J on H 2 k,0 (M ) such that v α ⇀ 0 weakly in H 2 k,0 (M ) but not strongly. Then there exists a bubble (B xα,rα (v)) such that upto a subsequence, the following holds:

•

w α := v α -B xα,rα (v) is a Palais-Smale sequence for J, • J(w α ) = J(v α ) -E(v) + o(1) as α → +∞.
The proof of this lemma goes through 10 steps.

Step 1: We prove a strong convergence Lemma for small energies. This is a localized version of Step 3 of Section 3.

Proposition 4.1. Let (N, g ∞ ) be a Riemannian manifold with positive injectivity radius.

• Let (g i ) i be metrics on N such that g i → g ∞ in C p loc as i → +∞ for all p. • Let (P i ) i be a family of operators on C ∞ (N ) such that

P i := ∆ k gi + k-1 l=0 (-1) l ∇ i1...i l (A i l ) i1...i l j1...j l ∇ j1...j l
with families of symmetric tensors (A i l ) → A l in C p loc as i → +∞ for all p. • We fix Ω ⊂ N an open smooth domain, and we define

(20) J i (u) := 1 2 Ω uP i u dv gi - 1 2 ♯ k Ω |u| 2 ♯ k dv gi for u ∈ H 2 k (Ω), such that J i is C 1 . Here, the background metric is g ∞ . • We let (u i ) ∈ H 2 k,0 (Ω) and u ∞ ∈ H 2 k,0 (Ω) be such that u i ⇀ u ∞ weakly in H 2 k,0 (Ω) as i → +∞.
• We assume that there exist a compact K ⊂ N such that

lim i→+∞ sup u∈H 2 k,0 (Ω), Supp ϕ⊂K DJ i (u i ), ϕ ϕ H 2 k (Ω)
= 0

• We assume that there exists K ∞ > 0 and C ≥ 0 such that

(21) N |u| 2 ♯ k dv g∞ 2 2 ♯ k ≤ K ∞ N (∆ k/2 g∞ u) 2 dv g∞ +C u 2 H 2 k-1 for all u ∈ C ∞ c (N ).
We fix x 0 ∈ Ω and δ ∈ (0, i g∞ (N )/2). We assume that

(22)        B x0 (2δ) ⊂ K (the ball is wrt g ∞ ), Bx 0 (2δ)∩Ω |u i | 2 ♯ k dv gi ≤ 1 2K ∞ 2 ♯ k 2 ♯ k
-2 for all i ∈ N.

Then u i → u ∞ strongly in H 2 k (B x0 (δ) ∩ Ω).
Proof of Proposition 4.1: Up to extracting a subsequence, we assume that u i → u ∞ strongly in H 2 k-1 (ω) as i → +∞ for ω ⊂ Ω relatively compact and u i (x) → u ∞ (x) as i → +∞ for a.e. x ∈ Ω. Let η ∈ C ∞ (N ) such that η(x) = 1 for x ∈ B x0 (δ) and η(x) = 0 for x ∈ N \ B x0 (2δ). Since η has compact support, we get that

η 2 (u i -u ∞ ) ∈ H 2 k,0 (Ω) is uniformly bounded in H 2 k,0 (Ω). Since B x0 (2δ) ⊂ K, it then follows from hypothesis (20) that DJ i (u i ), η 2 (u i -u ∞ ) = o(1) as i → +∞. Since η 2 (u i -u ∞ ) → 0 strongly in H 2
k-1 (Ω), we then get that ( 23)

Ω ∆ k/2 gi u i ∆ k/2 gi (η 2 (u i -u ∞ )) dv gi = Ω |u i | 2 ♯ k -2 u i η 2 (u i -u ∞ ) dv gi + o(1)
as i → +∞. The weak convergence of u i to u ∞ and the strong convergence of g i to g ∞ on compact sets yields ( 24)

Ω ∆ k/2 gi u i ∆ k/2 gi (η 2 (u i -u ∞ )) dv gi = Ω ∆ k/2 gi (u i -u ∞ )∆ k/2 gi (η 2 (u i -u ∞ )) dv gi + o(1)
as i → +∞. As one checks, for any ϕ ∈ H 2 k (Ω), we have that ∆

k/2 gi ϕ∆ k/2 gi (η 2 ϕ) = ∆ k/2 gi (ηϕ) 2 + p<k,l≤k ∇ p ϕ ⋆ ∇ l ϕ,
where A ⋆ B denotes a linear combination of bilinear forms in A and B. Therefore, using again the strong convergence of η 2 (u iu ∞ ) to 0 in H 2 k-1 , we get that (25)

Ω ∆ k/2 gi u i ∆ k/2 gi (η 2 (u i -u ∞ )) dv gi = Ω ∆ k/2 gi (η(u i -u ∞ )) 2 dv gi + o(1) as i → +∞. Moreover, since |u i | 2 ♯ k -2 η 2 (u i -u ∞ ) is uniformly bounded in L 2 ♯ k /(2 ♯ k -1)
and goes to 0 almost everywhere as i → +∞, then it goes weakly to 0 in L 2 ♯ k /(2 ♯ k -1) , and then

Ω |u i | 2 ♯ k -2 η 2 (u i -u ∞ )u ∞ dv gi → 0 as i → +∞.
Therefore, plugging (24) and ( 25) into (23), we get that

Ω ∆ k/2 gi (η(u i -u ∞ )) 2 dv gi = Ω |u i | 2 ♯ k -2 (η(u i -u ∞ )) 2 dv gi + o(1)
as i → +∞. Since g i → g ∞ as i → +∞ in C p locally on compact sets and η(u i -u ∞ ) is uniformly bounded in H 2 k (Ω), we get that

Ω ∆ k/2 g∞ (η(u i -u ∞ )) 2 dv g∞ = Ω |u i | 2 ♯ k -2 (η(u i -u ∞ )) 2 dv g∞ + o(1)
as i → +∞. Hölder's inequality, the Sobolev inequality (21), the convergence of (g i ), the strong convergence in H 2 k-1 and (22) then yields

Ω ∆ k/2 g∞ (η(u i -u ∞ )) 2 dv g∞ ≤ Bx 0 (2δ)∩Ω |u i | 2 ♯ k dv g∞ 2 ♯ k -2 2 ♯ k N |η(u i -u ∞ )| 2 ♯ k dv g∞ 2 2 ♯ k + o(1) ≤ 1 2K ∞ K ∞ N ∆ k/2 g∞ (η(u i -u ∞ )) 2 dv g∞ + C η(u i -u ∞ ) 2 H 2 k-1 + o(1) ≤ Bx 0 (2δ)∩Ω |u i | 2 ♯ k dv gi 2 ♯ k -2 2 ♯ k K ∞ Ω ∆ k/2 g∞ (η(u i -u ∞ )) 2 dv g∞ + o(1)
as i → +∞. Therefore, we get that ∆

k/2 g∞ (η(u i -u ∞ )) 2 → 0 as i → +∞. Since η(u i -u ∞ ) → 0 strongly in H 2
k-1 and η has compact support, we get that η(u iu ∞ ) → 0 strongly in H 2 k (Ω), and therefore

u i → u ∞ in H 2 k (B x0 (δ)∩Ω)
. Note that this is up to a subsequence. Indeed, by uniqueness, the convergence holds for the initial sequence (u i ). This proves Proposition 4.1.

Step 2: Since DJ(v α ), v α = o(1), one has

J(v α ) = k n M |v α | 2 ♯ k dv g + o(1) = β + o(1) as α → +∞
where β := lim α→+∞ J(v α ). By Step 3 of Section 3, β ≥ β ♯ . Therefore, since M is compact, for any r 0 > 0, there exists y 0 ∈ M and λ 0 > 0 such that

By 0 (r0)∩M |v α | 2 ♯ k dv g ≥ λ 0
For any r > 0, we set

(26) µ α (r) := max x∈M Bx(r)∩M |v α | 2 ♯ k dv g ,
the Levy concentration function. In particular, µ α (r 0 ) ≥ λ 0 for all α. We fix 0 < λ < ǫ 0 := min λ 0 , 1

(2K 0 (n, k)) 2 ♯ k /(2 ♯ k -2)
where K 0 (n, k) is the best constant in the Euclidean Sobolev inequality [START_REF] Hamidi | Sharp Sobolev asymptotics for critical anisotropic equations[END_REF]. Since µ α (0) = 0, there exists (r α ) α ∈ (0, r 0 ) and (x α ) α ∈ M such that:

(27) λ = µ α (r α ) = Bx α (rα)∩M |v α | 2 ♯ k dv g
Step 3: We claim that lim α→+∞ r α = 0. Proof of the claim. We argue by contradiction. If (r α ) does not go to 0 up to a subsequence, we get that there exists δ ∈ (0, i g ( M )/2) such that for all x ∈ M , we have that Bx(2δ)∩M |v α | 2 ♯ k dv g ≤ λ for all α. We apply Proposition 4.1 with (N, g ∞ ) = ( M , g), Ω = M , P α = P , g α = g, J α = J, and the Sobolev inequality [START_REF] Reichel | A priori bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems[END_REF] of [START_REF] Mazumdar | GJMS-type Operators on a compact Riemannian manifold: Best constants and Coron-type solutions[END_REF], and we get v α → 0 as α → +∞ in H 2 k (M ∩B x (δ)) for all x ∈ M . With a finite covering, we get that v α → 0 as α → +∞ strongly in H 2 k,0 (M ), contradicting our initial hypothesis. This proves the claim and ends Step 3.

First assume that (28) lim

α→+∞ d(x α , ∂M ) r α = +∞. We define ṽα (x) := r n-2k 2 α u α (exp xα (r α x)) for |x| < i g ( M ) r α and |x| < d(x α , ∂M ) r α
Step 4: Suppose that (28) holds. We claim that there exists

v ∈ D 2 k (R n ) such that for any η ∈ C ∞ c (R n ), we have that ηṽ α ⇀ ηv weakly in D 2 k (R n ) as k → +∞.
Proof of the claim. Fix η ∈ C ∞ c (R n ), and let R 0 > 0 be such that Supp η ⊂ B 0 (R 0 ). We define

η α (x) := η exp -1 xα (x) r α for x ∈ B xα (R 0 r α )
, and η α (x) := 0 outside.

Up to a subsequence, there exists x 0 ∈ M and τ > 0 such that B xα (R 0 r α ) ⊂ B x0 (τ ) ⊂ M . It then follows from the comparison Lemma 9.1 of Mazumdar [START_REF] Mazumdar | GJMS-type Operators on a compact Riemannian manifold: Best constants and Coron-type solutions[END_REF] that there exists C > 0 such that

B0(R0rα) ∆ k/2 [(η α v α ) • exp xα ] 2 dx ≤ C Bx α (R0rα) ∆ k/2 g (η α v α ) 2 dv g
for all α. With a change of variable, rough estimates of the differential terms and Hölder's inequality, we then get

B0(R0) ∆ k/2 (ηṽ α ) 2 dx ≤ C k l=0 Bx α (R0rα) |∇ l u α | 2 g |∇ k-l η α | 2 g dv g ≤ C k l=0 Bx α (R0rα) r 2(l-k) α |∇ l v α | 2 g dv g ≤ C k l=0 ∇ l v α 2 2n n-2(k-l) (29) It follows from Sobolev's embedding theorem that H 2 k-l (M ) ⊂ L 2n n-2(k-l) (M )
for all l = 0, ..., k and that this embedding is continuous. Since

(v α ) α is bounded in H 2 k , then (∇ l v α ) α is uniformly bounded in H 2
k-l (with tensorial values), and then there exists C > 0 such that (30)

∇ l v α 2n n-2(k-l) ≤ C v α H 2 k ≤ C ′ for all α > 0 and l = 0, ..., k. It then follows from (29) that (ηṽ α ) α is bounded in D 2 k (R n ).
Therefore, up to a subsequence, there exists

v η ∈ D 2 k (R n ) such that ηṽ α ⇀ v η weakly in D 2 k (R n ) as α → +∞. A classical diagonal argument then yields the existence v ∈ H 2 k,loc (R n ) such that ηṽ α ⇀ ηv weakly in D 2 k (R n ) as α → +∞.
We fix R > 0. For any R ′ > R, a change of variables and (30) yields

B0(R) |∇ l η R ′ ṽα | 2n n-2(k-l) gα dv gα ≤ Bx α (R0rα) |∇ l v α | 2n n-2(k-l) g dv g ≤ C
where g α := exp ⋆ xα g(r α •). Using weak convergence and convexity, letting α → +∞ and then R → +∞ yields |∇ l v| ∈ L 2n n-2(k-l) (R n ). As one checks, we then have that the sequence (η R v) R is a Cauchy sequence in D 2 k (R n ), and then we get that v ∈ D 2 k (R n ). This ends the proof of the claim, and ends Step 4.

Step 5: We assume that (28) holds. We let v ∈ D 2 k (R n ) as in Claim 3. We claim that v ≡ 0 is a weak solution to

∆ k v = |v| 2 ♯ k -2 v in D 2 k (R n ).
Proof of the claim. We fix R > 0 and we apply Proposition 4.1 with (N, g ∞ ) := (R n , Eucl) and Ω := R n . As above, we define a family of smooth metrics (g α ) α such that g α (x) := exp ⋆ xα g(r α x) for x ∈ B 0 (3R), g α (x) = Eucl for x ∈ R n \ B 0 (4R), and

g α → Eucl in C p loc (R n ) as α → +∞ for all p. Let ϕ ∈ C ∞ c (R n ) be such that Supp ϕ ⊂ B 0 (R). We define ϕ α (x) := r -n-2k 2 α ϕ exp -1 xα (x) r α
for all x ∈ M . As one checks, ϕ α is well-defined and has support in B xα (Rr α ). Moreover, using the comparison Lemma 9.1 in Mazumdar [START_REF] Mazumdar | GJMS-type Operators on a compact Riemannian manifold: Best constants and Coron-type solutions[END_REF] and arguing as in

Step 4, we get that

ϕ α H 2 k,0 (M) ≤ C(R) ϕ H 2 k,0 (R n ) for all α > 0. Since (u α ) is a Palais-Smale sequence, we have that DJ(v α ), ϕ α = o( ϕ α H 2 k,0 ) = o( ϕ H 2 k,0 (R n ) ) as α → +∞ uniformly for all ϕ ∈ C ∞ c (R n ) such that Supp ϕ ⊂ B 0 (R). With a change of variable, we get DJ(v α ), ϕ α = DJ α (η R ṽα ), ϕ where J α (u) := 1 2 R n (∆ k/2 gα u) 2 dv gα - 1 2 ♯ k R n |u| 2 ♯ k dv gα for all u ∈ H 2 k (R n ). Therefore, DJ α (η R ṽα ), ϕ = o( ϕ H 2 k,0 (R n ) ) as α → +∞ uniformly for all ϕ ∈ C ∞ c (R n ) such that Supp ϕ ⊂ B R (0). We fix x 0 ∈ R n such that B x0 (1/2) ⊂ B 0 (R). A change of variable yields Bx 0 (1/2)∩B0(2R) |η R ṽα | 2 ♯ k dv gα = exp xα (rαBx 0 (1/2)) |u α | 2 ♯ k dv g .
For α > 0 large enough, we have that exp xα (r α B x0 (1/2)) ⊂ B exp xα (x0) (r α ). Therefore, it follows from the definition of µ α that

Bx 0 (1/2)∩B0(2R) |η R ṽα | 2 ♯ k dv gα ≤ µ α (r α ) = λ < ǫ 0
for all α large enough and

x 0 ∈ R n such that 1/2 + |x 0 | < R.
With the Sobolev inequality (5) on R n , we apply Proposition 4.1 to (η R ṽα ) α , and we get that

lim α→+∞ η R ṽα = η R v strongly in H 2 k (B x0 (1/4)).
Using a finite covering, we then have ṽα → v strongly in

H 2 k (B 0 (R/2)) as α → +∞. Sobolev's embedding theorem yield the convergence in L 2 ♯ k (B 0 (1)). Since B0(1) |ṽ α | 2 ♯ k dv gα = Bx α (rα) |v α | 2 ♯ k dv g = µ α (r α ) = λ > 0,
passing to the limit α → +∞ yields B0(1) |v| 2 ♯ k dx = λ = 0, and therefore v ≡ 0. This proves the claim and ends Step 5.

Note that indeed, we have proved that

(31) lim α→+∞ ṽα = v strongly in H 2 k (B 0 (R)) for all R > 0.
We choose a sequence (r α ) of positive real numbers as in [START_REF] Ghoussoub | Duality and perturbation methods in critical point theory[END_REF] with η ∈ C ∞ c (B 0 (δ)) (with δ ∈ (0, i g ( M ))) identically 1 around 0. As in Definition 2.1, we set

V α (x) := B xα,rα (v) := η exp -1 xα (x) rα r -n-2k 2 α v exp -1 xα (x) r α
We have that

V α ∈ H 2 k,0 (M ). Step 6: We claim that V α ⇀ 0 in H 2 k,0 (M ) as α → +∞. ( 32 
)
Proof of the claim. We argue essentially as in [START_REF] Mazumdar | GJMS-type Operators on a compact Riemannian manifold: Best constants and Coron-type solutions[END_REF]. We fix 0 ≤ l ≤ k and we define ǫ α := r α /r α such that lim α→+∞ ǫ α = 0. We fix R ≥ 0 (potentially 0). It follows from the comparison Lemma 9.1 of [START_REF] Mazumdar | GJMS-type Operators on a compact Riemannian manifold: Best constants and Coron-type solutions[END_REF] that there exists C > 0 such that

M\Bx α (Rrα) (∆ l/2 g V α ) 2 dv g ≤ C B0(δrα)\B0(Rrα) (∆ l/2 (V α • exp xα )) 2 dx ≤ Cr 2(k-l) α B0(δǫ -1 α )\B0(R) ∆ l/2 (η (ǫ α •) v) 2 dx ≤ Cr 2(k-l) α B0(δǫ -1 α )\B0(R) |∇ l (η (ǫ α •) v)| 2 dx ≤ Cr 2(k-l) α l i=0 R n \B0(R) |∇ l-i η (ǫ α •) ||∇ i v| 2 dx ≤ Cr 2(k-l) α l i=0 R n \B0(R) ǫ 2(l-i) α |∇ i v| 2 dx Since v ∈ D 2 k (R n ), we have that ∇ i v ∈ D 2 k-i (R n ), and therefore |∇ i v| ∈ L 2 ♯ (k-i) (R n ) where 2 ♯ (k-i) := 2n n-2(k-i) .
Therefore, Hölder's inequality yields

M\Bx α (Rrα) (∆ l/2 g V α ) 2 dv g ≤ C r2(k-l) α l i=0 R n \B0(R) |∇ i v| 2 ♯ (k-i) dx 2 2 ♯ (k-i) (33) 
Taking R = 0 and l = 0, ..., k yields the boundedness of (V α ) α in H 2 k,0 (M ). Arguing as in above, we get that for any R > 0 and any l = 0, ..., k, we have that (34)

Bx α (Rrα) (∆ l/2 g V α ) 2 dv g ≤ Cr 2(k-l) α l i=0 B0(R) ǫ 2(l-i) α |∇ i v| 2 dx Since ∇ i v ∈ L 2 loc (R n
) for all i = 0, ..., k, then taking l = 0 in (33) and (34), letting α → +∞ and then R → +∞ yields V α → 0 in L 2 (M ). Then the weak compactness of bounded sequences yields (32). This proves the claim and ends Step 6.

Step 7: We claim that (35) DJ(V α ) -→ 0 strongly as α → +∞ Proof of the claim. We set ϕ ∈ C ∞ c (M ). We have that

DJ(V α ), ϕ = M ∆ k/2 g V α ∆ k/2 g ϕ dv g - M |V α | 2 ♯ k -2 V α ϕ dv g
We fix R > 0 and we define

I R,α (ϕ) := Bx α (Rrα) ∆ k/2 g V α ∆ k/2 g ϕ dv g - Bx α (Rrα) |V α | 2 ♯ k -2 V α ϕ dv g and II R,α (ϕ) := M\Bx α (Rrα) ∆ k/2 g V α ∆ k/2 g ϕ dv g - M\Bx α (Rrα) |V α | 2 ♯ k -2 V α ϕ dv g .
Step 7.1: we estimate II R,α (ϕ). Via Hölder's and Sobolev inequality, we have that

|II R,α (ϕ)| ≤ Dα(R) (∆ k/2 g V α ) 2 dv g 1 2 × ∆ k/2 g ϕ 2 (36) + Dα(R) |V α | 2 ♯ k dv g 2 ♯ k -1 2 ♯ k × ϕ 2 ♯ k ≤     Dα(R) (∆ k/2 g V α ) 2 dv g 1 2 + Dα(R) |V α | 2 ♯ k dv g 2 ♯ k -1 2 ♯ k     • ϕ H 2 k with D α (R) := M \ B xα (Rr α ). Lemma 9.1 in [13] and v ∈ L 2 ♯ k (R n ) yield (37) M\Bx α (Rrα) |V α | 2 ♯ k dv g ≤ C R n \B0(Rrα) |V α • exp xα | 2 ♯ k dx ≤ C R n \B0(R) |v| 2 ♯ k dx
Plugging (33) with l = k and (37) into (36), letting R → +∞ and α → +∞ yields

(38) lim R→+∞ lim α→+∞ II R,α (ϕ) ϕ H 2 k = 0 uniformly wrt ϕ ∈ H 2 k,0 (M ) \ {0}
Step 7.2: We now estimate I R,α (ϕ). We define

ϕ α (x) = η(ǫ α x)r n-2k 2 α ϕ (exp xα (r α x))
where ǫ α := r α /r α . As one checks, ϕ α ∈ C ∞ c (R n ). Using the comparison Lemma 9.1 in [START_REF] Mazumdar | GJMS-type Operators on a compact Riemannian manifold: Best constants and Coron-type solutions[END_REF] and arguing as in (33)-(34), we get that

ϕ α D 2 k (R n ) ≤ C ϕ H 2 k
where C > 0 is independent of ϕ. As one checks,

I R,α (ϕ) = B0(R) ∆ k/2 gα v∆ k/2 gα ϕ α dv gα - B0(R) |v| 2 ♯ k -2 vϕ α dv gα Since g α → Eucl as α → +∞ in C p loc (R n ) for all p ≥ 1, we get (39) I R,α (ϕ) = B0(R) ∆ k/2 v∆ k/2 ϕ α dx - B0(R) |v| 2 ♯ k -2 vϕ α dx + o ϕ α D 2 k (R n )
where the convergence is uniform wrt ϕ α . Since v is a weak solution to (1), then (39) yields (40) lim

R→+∞ lim α→+∞ I R,α (ϕ) ϕ H 2 k = 0 uniformly wrt ϕ ∈ H 2 k,0 (M ) \ {0}
The limits (38) and (40

) yield DJ(V α ), ϕ = o( ϕ H 2 k ) as α → +∞ uniformly wrt ϕ ∈ C ∞ c (M ).
The boundedness of (V α ) in H 2 k,0 (M ) then yields DJ(V α ) → 0 strongly in (H 2 k,0 (M )) ′ as α → +∞. This proves (35) and ends Step 7.

We define w α := v α -V α . It follows from (32) that w α ⇀ 0 weakly in H 2 k,0 (M ).

Step 8: We claim that (41) DJ(w α ) -→ 0 strongly

Proof of the claim. For ϕ ∈ H 2 k,0 (M ), we write

(42) DJ(w α ), ϕ = DJ(v α ), ϕ -DJ(V α ), ϕ - M Φ α ϕ dv g where Φ α := |w α | 2 ♯ k -2 w α -|v α | 2 ♯ k -2 v α + |V α | 2 ♯ k -2 V α .
Then by applying the Hölder and Sobolev inequalities we get

M Φ α ϕ dv g ≤ C ϕ H 2 k Φ α 2 ♯ k /(2 ♯ k -1)
Step 8.1: We fix R > 0. Inequality (15) and Hölder's inequality yield

M\Bx α (Rrα) |Φ α | 2 ♯ k /(2 ♯ k -1) dv g ≤ C M\Bx α (Rrα) |v α | 2 ♯ k -2 |V α | + |V α | 2 ♯ k -2 |v α | 2 ♯ k /(2 ♯ k -1) dv g ≤ C M |v α | 2 ♯ k dv g 2 ♯ k -2 2 ♯ k -1 M\Bx α (Rrα) |V α | 2 ♯ k dv g 1 2 ♯ k -1 +C M |v α | 2 ♯ k dv g 1 2 ♯ k -1 M\Bx α (Rrα) |V α | 2 ♯ k dv g 2 ♯ k -2 2 ♯ k -1 Since (v α ) is uniformly bounded in H 2 k (M ), then (37) yields (43) lim R→+∞ lim α→+∞ M\Bx α (Rrα) |Φ α | 2 ♯ k /(2 ♯ k -1) dv g = 0.
This ends Step 8.1.

Step 8.2: We fix R > 0. A change of variable and inequality [START_REF] Saintier | Asymptotic estimates and blow-up theory for critical equations involving the p-Laplacian[END_REF] yield

Bx α (Rrα) |Φ α | 2 ♯ k /(2 ♯ k -1) dv g = B0(R) |ṽ α -v| 2 ♯ k -2 (ṽ α -v) -|ṽ α | 2 ♯ k -2 ṽα + |v| 2 ♯ k -2 v 2 ♯ k /(2 ♯ k -1) dv gα ≤ C B0(R)   |ṽ α -v| (2 ♯ k -2)2 ♯ k 2 ♯ k -1 |v| 2 ♯ k 2 ♯ k -1 + |v| (2 ♯ k -2)2 ♯ k 2 ♯ k -1 |ṽ α -v| 2 ♯ k 2 ♯ k -1   dx For any η ∈ C ∞ c (R n ), we have that ηṽ α ⇀ ηv weakly in D 2 k (R n ).
Therefore, up to extracting a subsequence, (ṽ α ) α is uniformly bounded in L 2 ♯ k (B 0 (R)) and goes to v almost everywhere as α → +∞. Therefore Lemma 3.1 yields that for any R > 0, (44) lim

α→+∞ Bx α (Rrα) |Φ α | 2 ♯ k /(2 ♯ k -1) dv g = 0.
The limits ( 43 Proof of the claim. As one checks,

J(v α ) -J(w α ) -J(V α ) = DJ(w α ), V α - 1 2 ♯ k M |w α + V α | 2 ♯ k -|w α | 2 ♯ k -2 ♯ k |w α | 2 ♯ k -2 w α V α -|V α | 2 ♯ k dv g
We fix R > 0. Arguing as in the proof of (44), we get that lim α→+∞ Bx α (Rrα)

|w α + V α | 2 ♯ k -|w α | 2 ♯ k -2 ♯ k |w α | 2 ♯ k -2 w α V α -|V α | 2 ♯ k dv g = 0.
As one checks, there exists C > 0 such that

|a + b| 2 ♯ k -|a| 2 ♯ k -2 ♯ k |a| 2 ♯ k -2 ab -|b| 2 ♯ k ≤ C |a| 2 ♯ k -2 |b| 2 + |a| • |b| 2 ♯ k -1
for all a, b ∈ R. As in the proof of (43), we get that lim R→+∞ lim α→+∞ Dα(R)

|w α + V α | 2 ♯ k -|w α | 2 ♯ k -2 ♯ k |w α | 2 ♯ k -2 w α V α -|V α | 2 ♯ k dv g = 0,
where

D α (R) := M \ B xα (Rr α ). These yield J(v α ) = J(w α ) + J(V α ) + o(1).
We now estimate J(V α ). The estimates (33) and (37) yield

lim R→+∞ lim α→+∞ M\Bx α (Rrα) (∆ k/2 g V α ) 2 + |V α | 2 ♯ k dv g = 0
For R > 0, we have that

Bx α (Rrα) (∆ k/2 g V α ) 2 2 - |V α | 2 ♯ k 2 ♯ k dv g = B0(R) (∆ k/2 gα v) 2 2 - |v| 2 ♯ k 2 ♯ k dv gα Since g α → Eucl locally uniformly in C p for all p and v ∈ D 2 k (R n ), we get that lim R→+∞ lim α→+∞ Bx α (Rrα) (∆ k/2 g V α ) 2 2 - |V α | 2 ♯ k 2 ♯ k dv g = R n (∆ k/2 v) 2 2 - |v| 2 ♯ k 2 ♯ k dx
All these estimates yield (45). This ends Step 9.

Step 10: Next we deal with the case

d g (x α , ∂M ) = O(r α ) as α → +∞
Since r α → 0 as α → +∞, then there exists x ∞ ∈ ∂M such that x α → x ∞ as α → +∞. For any α ∈ N, we let z α ∈ ∂M be such that

d g (x α , z α ) = d g (x α , ∂M )
In particular, lim α→+∞ z α = x ∞ . We choose a family of charts z → T z for z ∈ Ω ∩ ∂M as in [START_REF] Ge | A critical elliptic problem for polyharmonic operators[END_REF]. Since the d(T z ) 0 is an isometry, there exists

C 1 , C 2 > 0, τ 1 , τ 2 > 0 such that for any z ∈ Ω ∩ ∂M , r < τ 1 and y ∈ R n -∩ B 0 (τ 2 ), one has B Tz(y) (C 1 r) ∩ M ⊂ T z B y (r) ∩ R n -⊂ B Tz(y) (C 2 r) ∩ M For x ∈ r -1 α U ∩ {x 1 < 0}, we define ṽα (x) := r n-2k 2 α v α • T zα (r α x) and gα (x) := T zα ⋆ g (r α x)
As one checks, for any η ∈ C ∞ c (R n ), we have that ηṽ α ∈ D 2 k (R n -). Arguing as Step 4, we get that there exists v ∈ D 2 k (R n -) such that ηṽ α ⇀ ηv weakly in D 2 k (R n -) as α → +∞. Moreover, using Proposition 4.1 and arguing as in Step 5, we get that v ≡ 0 is a weak solution to (3) and ṽα → v as α → +∞ strongly in H 2 k (B 0 (R) ∩ R n -) for all R > 0. As in Definition 2.1, for α ∈ N and x ∈ M , we set

V α (x) := B zα,rα (v)(x) = η T -1 zα (x) r -n-2k 2 α v r -1 α T zα -1 (x)
We define w α := v α -V α . Arguing as in Steps 6 to 9, we get that

• w α ⇀ 0 weakly in H 2 k,0 (M ) • DJ(w α ) → 0 weakly in (H 2 k,0 (M )) ′ • J(w α ) = J(v α ) -E(v) + o(1)
as α → +∞. This completes the proof of Lemma 4.1.

Nonnegative Palais-Smale sequences

To prove Theorem 1.2, we first set the following property: We omit the proof that goes exactly as in Hebey-Robert [START_REF] Hebey | Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients[END_REF], by using the boundary chart [START_REF] Ge | A critical elliptic problem for polyharmonic operators[END_REF] for bubbles accumulating on the boundary.

We now prove Theorem 1.2. We let (u α ) α be as in the statement of the theorem, and we let [(x (j) α ), (r (j) α ), u (j) ], j = 1, ..., d, be the associated bubbles. We fix N ∈ {1, ..., d}. For simplicity, we define r α := r u α (exp xα (r α x)) for x ∈ R n . Up to extracting, the convergence holds a.e. Since u α ≥ 0, we then get that u N ≥ 0. It then follows from Lemma 4 in Ge-Wei-Zhou [START_REF] Ge | A critical elliptic problem for polyharmonic operators[END_REF] that there exists λ > 0 and a ∈ R n such that u N = U λ,a is of the form [START_REF] Gazzola | Polyharmonic boundary value problems[END_REF].

We claim that u N = U λ,0 , that is a = 0. We prove the claim. Indeed, rescaling (26) and (27) yields As one checks, since u N = U λ,a is as in [START_REF] Gazzola | Polyharmonic boundary value problems[END_REF], the maximum of the left-hand-side is achieved if and only if z = a. Therefore a = 0 and u N = U λ,0 . This proves the claim. As a consequence, as one checks, when r -1 α d(x α , ∂M ) → +∞ as α → +∞, the bubble rewrites

B xα,rα (u N ) = B xα,λrα (U 1,0 ) = η exp -1 xα (•) rα α n,k λr α λ 2 r 2 α + d g (•, x α ) 2 n-2k 2 
.

We fix N ∈ {1, ..., d}. We claim that (r N α ) -1 d(x N α , ∂M ) → +∞ as α → +∞. We argue by contradiction and we assume that the limit is finite. We argue as in the case above. Up to rescaling, and using the boundary chart [START_REF] Ge | A critical elliptic problem for polyharmonic operators[END_REF], we get that u α goes to u N strongly as α → +∞ in L 2 ♯ k loc (R n \ S), where S is finite. Therefore u N is a nonegative nonzero weak solution to (3), contradicting Lemma 3 in Ge-Wei-Zhou [START_REF] Ge | A critical elliptic problem for polyharmonic operators[END_REF]. Therefore the limit is infinite and we are back to the previous case. All these steps prove Theorem 1.2.

α = max{a 1

 1 r1 α , a 2 r2 α } and r min α = min{a 1 r1 α , a 2 r2 α }, and let ǫ max α = r α /r max α and ǫ min α = r α /r min α . Then lim α→0 ǫ max α = 0 and lim α→0 ǫ min α = 0. The comparison lemma 9.1 of [13] yields C > 0 such that for any R > 0 and α large k l=0

  )-(44) yield Φ α 2 ♯ k /(2 ♯ k -1) → 0 as α → +∞. Then by (42) we get DJ(w α ) → 0 in (H 2 k,0 (M )) ′ as α → +∞.This proves (41) and ends Step 8.Step 9: We claim that we have the following decomposition of energy.(45)J(w α ) = J(v α ) -E(v) + o(1)where o(1) → 0 as α → +∞.

Proposition 5 . 1 .=

 51 Let (u α ) be a Palais-Smale sequence for the functional I on the space H 2 k,0 (M ). Let d ∈ N and d bubbles [(x u (j) ], j = 1, ..., d, be as in Theorem 1.1. Then, for any N ∈ {1, . . . , d}, there exists L ≥ 0 sequences (y j α ) α>0 ∈ M and (λ j α ) α>0 ∈ (0, +∞),j = 1, • • • , L, such that for any R > 0 lim N ) )| 2 ♯ k dv g = 0where for any j, j = 1, • • • , L, d g (x N α , y j α ) = o(r N α ) and λ j α = o(r N α ) as α → +∞. Moreover, we have that lim α→+∞ +∞ for all i = j ∈ {1, ..., d}.

  assume that r -1 α d(x α , ∂M ) → +∞ as α → +∞. It then follows from Proposition 5.1 that there exists a finite set S ⊂ R n such that lim α→+∞ ṽα = u N strongly in L 2 ♯ k loc (R n \ S) where ṽα (x) := r n-2k 2 α

r - 1 αB0( 1 )

 11 exp -1 xα (B exp xα (rα x) (rα)) |ṽ α | 2 ♯ k dv gα ≤ |ṽ α | 2 ♯ k dv gαfor all z ∈ R n and α large enough. Since the exponential is a normal chart and isometric at x α , we get that for all z ∈ R n and all ǫ > 0exp xα (r α B z (1ǫ)) ⊂ B exp xα (rαz) (r α ).Plugging these two inequalities together, letting α → +∞, using the strong convergence (31), we get thatBz(1-ǫ) |u N | 2 ♯ k dx ≤ B0(1) |u N | 2 ♯ k dx. Letting ǫ → 0 yields Bz(1) |u N | 2 ♯ k dx ≤ B0(1)|u N | 2 ♯ k dx.
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