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In this paper, an achievability region and a converse region for the two-user Gaussian interference channel with noisy channel-output feedback (G-IC-NOF) are presented. The achievability region is obtained using a random coding argument and three well-known techniques: rate splitting, superposition coding and backward decoding. The converse region is obtained using some of the existing perfect-output feedback outer-bounds as well as a set of new outer-bounds that are obtained by using genie-aided models of the original G-IC-NOF. Finally, it is shown that the achievability region and the converse region approximate the capacity region of the G-IC-NOF to within a constant gap in bits per channel use.

I. NOTATION Throughout this paper, (•) + denotes the positive part operator, i.e., (•) + = max(•, 0) and E X [•] denotes the expectation with respect to the distribution of the random variable X. The logarithm function log is assumed to be base 2.

II. SYSTEM MODEL Consider the two-user G-IC-NOF in Figure 1. Transmitter i, with i ∈ {1, 2}, communicates with receiver i subject to the interference produced by transmitter j, with j ∈ {1, 2}\{i}. There are two independent and uniformly distributed messages, W i ∈ W i , with W i = {1, 2, . . . , 2 N Ri }, where N denotes the block-length in channel uses and R i is the transmission rate in bits per channel use. At each block, transmitter i sends the codeword X i = (X i,1 , X i,2 , . . . , X i,N )

T ∈ X N i , where X i and X N i are respectively the channel-input alphabet and the codebook of transmitter i. The channel coefficient from transmitter j to receiver i is denoted by h ij ; the channel coefficient from transmitter i to receiver i is denoted by -→ h ii ; and the channel coefficient from channel-output i to transmitter i is denoted by ←h ii . All channel coefficients are assumed to be non-negative real numbers. At a given channel use n ∈ {1, 2, . . . , N }, the channel output at receiver i is denoted by -→ Y i,n . During channel use n, the input-output relation of the channel model is given by

- → Y i,n = - → h ii X i,n + h ij X j,n + - → Z i,n , (1) 
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Rx1 where -→ Z i,n is a real Gaussian random variable with zero mean and unit variance that represents the noise at the input of receiver i. Let d > 0 be the finite feedback delay measured in channel uses. At the end of channel use n, transmitter i observes ← -Y i,n , which consists of a scaled and noisy version of

+ W1 W2 c W2 c W1 + + + ! h 11 ! h 22 h 22 h 11 h12 h 21 Delay Delay X 1,n X 2,n ! Y 1,n ! Y 2,n ! Z 1,n ! Z 2,n Y 1,n Y 2,n Z 1,n Z 2,n
- → Y i,n-d . More specifically, ← - Y i,n = ® ← - Z i,n for n ∈ {1,2, . . . , d} ← - h ii - → Y i,n-d + ← - Z i,n , for n ∈ {d+1,d+2, . . . ,N }, (2) 
where ← -Z i,n is a real Gaussian random variable with zero mean and unit variance that represents the noise in the feedback link of transmitter-receiver pair i. The random variables -→ Z i,n and ← -Z i,n are independent and identically distributed. In the following, without loss of generality, the feedback delay is assumed to be one channel use, i.e., d = 1. The encoder of transmitter i is defined by a set of deterministic functions f

(1) i , . . . , f (N ) i , with f (1) i : W i → X i and for all n ∈ {2, . . . , N }, f (n) i : W i × R n-1 → X i , such that X i,1 =f (1) i (W i ) , and (3a) 
X i,n =f (n) i Ä W i , ← - Y i,1 , . . . , ← - Y i,n-1 ä . ( 3b 
)
The components of the input vector X i are real numbers subject to an average power constraint:

1 N N n=1 E X i,n 2 ≤ 1, (4) 
where the expectation is taken over the joint distribution of the message indexes W 1 , W 2 , and the noise terms, i.e.,

- → Z 1 , - → Z 2 , ← - Z 1 , and ← - Z 2 .
The dependence of X i,n on W 1 , W 2 , and the previously observed noise realizations is due to the effect of feedback as shown in ( 2) and (3).

Assume that during a given communication, T blocks are transmitted. Hence, the decoder of receiver i is defined by a deterministic function ψ i : R N T i → W T i . At the end of the communication, receiver i uses the vector

Ä - → Y i,1 , - → Y i,2 , . . . , - → Y i,N T ä T
to obtain an estimate of the message indices

Ä W (1) i , W (2) i , . . . , W (T ) i ä =ψ i Ä - → Y i,1 , - → Y i,2 , . . . , - → Y i,N T ä , (5) 
where

W (t) i
is an estimate of the message index sent during block t ∈ {1, 2, . . . , T }. The decoding error probability in the two-user G-IC-NOF during block t of a codebook of blocklength N , denoted by P (t) e (N ), is given by

P (t) e (N )=max Å Pr ï " W 1 (t) = W (t) 1 ò , Pr ï " W 2 (t) = W (t) 2 òã . (6) 
The definition of an achievable rate pair

(R 1 , R 2 ) ∈ R 2 + is given below. Definition 1 (Achievable Rate Pairs): A rate pair (R 1 , R 2 ) ∈ R 2
+ is achievable if there exists at least one pair of codebooks X N 1 and X N 2 with codewords of length N , and the corresponding encoding functions f

(1) 1 , . . . , f (N ) 1 and f (1) 2 , . . . , f (N ) 2
such that the decoding error probability P (t) e (N ) can be made arbitrarily small by letting the blocklength N grow to infinity, for all blocks t ∈ {1, . . . , T }.

The two-user G-IC-NOF in Figure 1 can be fully described by six parameters:

--→ SNR i , ←--SNR i , and INR ij , with i ∈ {1, 2} and j ∈ {1, 2}\{i}, which are defined as follows:

--→

SNR i = - → h 2 ii , (7) INR ij =h 2 ij and (8) ←-- SNR i = ← - h 2 ii Ä - → h 2 ii + 2 - → h ii h ij + h 2 ij + 1 ä . (9) 

III. MAIN RESULTS

This section introduces an achievable region (Theorem 1) and a converse region (Theorem 2), denoted by C G-IC-NOF and C G-IC-NOF respectively, for the two-user G-IC-NOF with fixed parameters

--→ SNR 1 , --→ SNR 2 , INR 12 , INR 21 , ←-- SNR 1
, and ←--SNR 2 . In general, the capacity region of a given multi-user channel is said to be approximated to within a constant gap according to the following definition.

Definition 2 (Approximation to within ξ units): A closed and convex set T ⊂ R m + is approximated to within ξ units by the sets T and T if T ⊆ T ⊆ T and for all t = (t 1 , . . . , t m ) ∈ T then ((t 1ξ) + , . . . , (t mξ) + ) ∈ T . Denote by C GIC-NOF the capacity region of the 2-user G-IC-NOF. The achievable region C G-IC-NOF and the converse region C G-IC-NOF approximate the capacity region C GIC-NOF to within 4.4 bits per channel use (Theorem 3).

A. An Achievable Region for the Two-User G-IC-NOF

The description of the achievable region C G-IC-NOF is presented using the constants a 1,i ; the functions a 2,i : [0, 1] → R + , a l,i : [0, 1] 2 → R + , with l ∈ {3, . . . , 6}; and a 7,i : [0, 1] 3 → R + , which are defined as follows, for all i ∈ {1, 2}, with j ∈ {1, 2} \ {i}:

a 1,i = 1 2 log Ç 2 + ---→ SNR i INR ji å - 1 2 , (10a) a 2,i (ρ)= 1 2 log b 1,i (ρ) + 1 - 1 2 , (10b) 
a 3,i (ρ, µ)= 1 2 log Ñ ←-- SNR i b 2,i (ρ) + 2 + b 1,i (1) + 1 ←-- SNR i (1-µ)b 2,i (ρ)+2 +b 1,i (1)+1 é , (10c) 
a 4,i (ρ, µ)= 1 2 log Å 1 -µ b 2,i (ρ) + 2 ã - 1 2 , ( 10d 
)
a 5,i (ρ, µ)= 1 2 log Ç 2 + --→ SNR i INR ji + 1 -µ b 2,i (ρ) å - 1 2 , (10e) 
a 6,i (ρ, µ)= 1 2 log Ç --→ SNR i INR ji Å 1-µ b 2,j (ρ)+1 ã +2 å - 1 2 , and (10f) 
a 7,i (ρ,µ 1 ,µ 2 )= 1 2 log --→ SNR i INR ji Å 1-µ i b 2,j (ρ)+1 ã + 1-µ j b 2,i (ρ) + 2 - 1 2 , (10g) 
where the functions b l,i : [0, 1] → R + , with (l, i) ∈ {1, 2} 2 are defined as follows:

b 1,i (ρ)= --→ SNR i + 2ρ » --→ SNR i INR ij + INR ij and (11a) b 2,i (ρ)= 1 -ρ INR ij -1, (11b) 
with j ∈ {1, 2} \ {i}.

Note that the functions in (10) and (11) depend on

--→ SNR 1 , --→ SNR 2 , INR 12 , INR 21 , ←-- SNR 1
, and ←--SNR 2 , however as these parameters are fixed in this analysis, this dependence is not emphasized in the definition of these functions. Finally, using this notation, Theorem 1 is presented on the next page.

Proof: The proof of Theorem 1 is presented in [START_REF] Quintero | Approximate capacity of the two-user Gaussian interference channel with noisy channeloutput feedback[END_REF].

B. Comments on the Achievability

The achievable region is obtained using a random coding argument and combining three classical tools: rate splitting, superposition coding, and backward decoding. This coding scheme is described in [START_REF] Quintero | Approximate capacity of the two-user Gaussian interference channel with noisy channeloutput feedback[END_REF] and it is specially designed for the two-user IC-NOF. Consequently, only the strictly needed number of superposition code-layers is used. Other achievable schemes, as reported in [START_REF] Le | Approximate capacity region for the symmetric Gaussian interference channel with noisy feedback[END_REF], can also be obtained as special cases of the more general scheme presented in [START_REF] Tuninetti | On interference channel with generalized feedback (IFC-GF)[END_REF]. However, in this more general case, the resulting code for the IC-NOF contains a handful of unnecessary superposing code-layers, which complicates the error probability analysis.

C. A Converse Region for the Two-User G-IC-NOF

The description of the converse region C G-IC-NOF is determined by the ratios

INRij --→ SNRj

, and

INRji

--→ SNRj

, for all i ∈ {1, 2}, with j ∈ {1, 2} \ {i}. All relevant scenarios regarding these ratios Theorem 1: The capacity region C GIC-NOF contains the region C G-IC-NOF given by the closure of the set of all possible non-negative achievable rate pairs (R 1 , R 2 ) that satisfy R 1 min a 2,1 (ρ), a 6,1 (ρ, µ 1 ) + a 3,2 (ρ, µ 1 ), a 1,1 + a 3,2 (ρ, µ 1 ) + a 4,2 (ρ, µ 1 ) , (12a)

R 2 min a 2,2 (ρ), a 3,1 (ρ, µ 2 ) + a 6,2 (ρ, µ 2 ), a 3,1 (ρ, µ 2 ) + a 4,1 (ρ, µ 2 ) + a 1,2 , (12b) 
R 1 + R 2 min a 2,1 (ρ) + a 1,2 , a 1,1 + a 2,2 (ρ), a 3,1 (ρ, µ 2 ) + a 1,1 + a 3,2 (ρ, µ 1 ) + a 7,2 (ρ, µ 1 , µ 2 ), a 3,1 (ρ, µ 2 ) + a 5,1 (ρ, µ 2 ) + a 3,2 (ρ, µ 1 ) + a 5,2 (ρ, µ 1 ), a 3,1 (ρ, µ 2 ) + a 7,1 (ρ, µ 1 , µ 2 ) + a 3,2 (ρ, µ 1 ) + a 1,2 , (12c) 
2R 1 + R 2 min a 2,1 (ρ) + a 1,1 + a 3,2 (ρ, µ 1 ) + a 7,2 (ρ, µ 1 , µ 2 ), (12d) 
a 3,1 (ρ, µ 2 ) + a 1,1 + a 7,1 (ρ, µ 1 , µ 2 ) + 2a 3,2 (ρ, µ 1 ) + a 5,2 (ρ, µ 1 ), a 2,1 (ρ) + a 1,1 + a 3,2 (ρ, µ 1 ) + a 5,2 (ρ, µ 1 ) , R 1 + 2R 2 min a 3,1 (ρ, µ 2 ) + a 5,1 (ρ, µ 2 ) + a 2,2 (ρ) + a 1,2 , a 3,1 (ρ, µ 2 ) + a 7,1 (ρ, µ 1 , µ 2 ) + a 2,2 (ρ) + a 1,2 , 2a 3,1 (ρ, µ 2 ) + a 5,1 (ρ, µ 2 ) + a 3,2 (ρ, µ 1 ) + a 1,2 + a 7,2 (ρ, µ 1 , µ 2 ) , (12e) 
with (ρ, µ 1 , µ 2 ) ∈ 0, Ä 1 -max Ä 1 INR12 , 1 INR21 ää + × [0, 1] × [0, 1].
are described by two events denoted by S l1,1 and S l2,2 , where (l 1 , l 2 ) ∈ {1, . . . , 5} 2 . The events are defined as follows:

S 1,i : --→ SNR j < min (INR ij , INR ji ) , (13a) 
S 2,i : INR ji --→ SNR j < INR ij , (13b) 
S 3,i : INR ij --→ SNR j < INR ji , (13c) 
S 4,i : max (INR ij , INR ji ) --→ SNR j < INR ij INR ji , (13d) 
S 5,i : --→ SNR j max (INR ij , INR ji , INR ij INR ji ) . (13e) 
Note that for all i ∈ {1, 2}, the events S 1,i , S 2,i , S 3,i , S 4,i , and S 5,i are mutually exclusive. This observation shows that given any 4-tuple (

--→ SNR 1 , --→ SNR 2 , INR 12 , INR 21 )
, there always exists one and only one pair of events (S l1,1 , S l2,2 ), with (l 1 , l 2 ) ∈ {1, . . . , 5} 2 , that identifies a unique scenario. Note also that the pairs of events (S 2,1 , S 2,2 ) and (S 3,1 , S 3,2 ) are not feasible. In view of this, twenty-three different scenarios can be identified using the events in (13). Once the exact scenario is identified, the converse region is described using the functions κ l,i : [0, 1] → R + , with (l, i) ∈ {1, . . . , 3} × {1, 2}; κ l : [0, 1] → R + , with l ∈ {4, 5}; κ 6,l : [0, 1] → R + , with l ∈ {1, . . . , 4}; and κ 7,i,l : [0, 1] → R + , with (i, l) ∈ {1, 2} 2 . These functions are defined as follows for all i ∈ {1, 2}, with j ∈ {1, 2} \ {i}:

κ 1,i (ρ)= 1 2 log b 1,i (ρ) + 1 , (14a) 
κ 2,i (ρ)= 1 2 log 1 + b 5,j (ρ) + 1 2 log 1+ b 4,i (ρ) 1 + b 5,j (ρ) , (14b) 
κ 3,i (ρ)= 1 2 log Ü ←-- SNR j Å b 4,i (ρ) + b 5,j (ρ) + 1 ã Å b 1,j (1)+1 ãÅ b 4,i (ρ)+ 1 ã +1 ê + 1 2 log b 4,i (ρ) + 1 , (14c) 
κ 4 (ρ)= 1 2 log 1 + b 4,1 (ρ) 1 + b 5,2 (ρ) + 1 2 log b 1,2 (ρ) + 1 , (14d) κ 5 (ρ)= 1 2 log 1+ b 4,2 (ρ) 1+b 5,1 (ρ) + 1 2 log b 1,1 (ρ)+1 , (14e) κ 6 (ρ)=                        κ 6,1 (ρ) if (S 1,2 ∨ S 2,2 ∨ S 5,2 ) ∧(S 1,1 ∨ S 2,1 ∨ S 5,1 ) κ 6,2 (ρ) if (S 1,2 ∨ S 2,2 ∨ S 5,2 ) ∧(S 3,1 ∨ S 4,1 ) κ 6,3 (ρ) if (S 3,2 ∨ S 4,2 ) ∧(S 1,1 ∨ S 2,1 ∨ S 5,1 ) κ 6,4 (ρ) if (S 3,2 ∨ S 4,2 ) ∧ (S 3,1 ∨ S 4,1 ) (14f) κ 7,i (ρ)= ® κ 7,i,1 (ρ) if (S 1,i ∨ S 2,i ∨ S 5,i ) κ 7,i,2 (ρ) if (S 3,i ∨ S 4,i ) (14g) 
where 

κ 6,1 (ρ) = 1 2 log b 1,1 (ρ)+b 5,1 (ρ)INR 21 - 1 2 log 1+INR 12 + 1 2 log Ç 1 + b 5,2 (ρ) ←-- SNR 2 b 1,2 (1) + 1 å + 1 2 log b 1,2 (ρ) + b 5,1 (ρ)INR 21 - 1 2 log 1+INR 21 + 1 2 log Ç 1+ b 5,1 (ρ) ←-- SNR 1 b 1,1 (1) + 1 å + log(2πe), ( 15a 
)
κ 6,2 (ρ) = 1 2 log Ç b 6,2 (ρ) + b 5,1 (ρ)INR 21 --→ SNR 2 --→ SNR 2 + b 3,2 å - 1 2 log 1+INR 12 + 1 2 log Ç 1 + b 5,1 (ρ) ←-- SNR 1 b 1,1 (1) + 1 å + 1 2 log b 1,1 (ρ)+b 5,1 (ρ)INR 21 - 1 2 log 1 + INR 21 + 1 2 log 1 + b 5,2 (ρ) --→ SNR 2 Ç INR 12 + b 3,2 ←-- SNR 2 b 1,2 (1) + 1 å - 1 2 log Ç 1 + b 5,1 (ρ)INR 21 --→ SNR 2 å + log(2πe), ( 15b 
) T x1 T x2 Rx2 Rx1 + W1 W2 c W2 c W1 + + + ! h 11 ! h 22 h 22 h 11 h12 h21 Delay Delay X1,n X2,n ! Y 1,n ! Y 2,n ! Z 1,n ! Z 2,n Y 1,n Y 2,n Z 1,n Z 2,n c W1 Rx1 W2 (a) (b) (c) T x1 T x2 Rx2 Rx1 + W1 W2 c W2 c W1 + + + ! h 11 ! h 22 h 22 h 11 h12 h21 Delay Delay X1,n X2,n ! Y 1,n ! Y 2,n ! Z 1,n ! Z 2,n Y 1,n Y 2,n Z 1,n Z 2,n W2 T x1 T x2 Rx2 Rx1 + W1 W2 c W2 c W1 + + + ! h 11 ! h 22 h 22 h 11 h12 h21 Delay Delay X1,n X2,n ! Y 1,n ! Y 2,n ! Z 1,n ! Z 2,n Y 1,n Y 2,n Z 1,n Z 2,n
2R 1 + R κ 6,3 (ρ) = 1 2 log b 6,1 (ρ) + 5,1 (ρ)INR 21 --→ SNR 1 SNR 1 + 3,1 - 1 2 log 1 + INR 12 + 1 2 log Ç 1 + b (ρ) ←-- SNR 2 b 1,2 (1) + 1 å + 1 2 log b 1,2 (ρ)+b 5,1 (ρ)INR 21 - 1 2 log 1+INR 21 + 1 2 log 1 + b 5,1 (ρ) --→ SNR 1 Ç INR 21 + b 3,1 ←-- SNR 1 b 1,1 (1) + 1 å - 1 2 log Ç 1 + b 5,1 (ρ)INR 21 --→ SNR 1 å + log(2πe), (15c) κ 6,4 (ρ) 
= 1 2 log Ç b 6,1 (ρ) + b 5,1 (ρ)INR 21 --→ SNR 1 --→ SNR 1 + b 3,1 å - 1 2 log 1 + INR 12 - 1 2 log 1 + INR 21 + 1 2 log Ç 1 + b 5,2 (ρ) --→ SNR 2 Ç INR 12 + b 3,2 ←-- SNR 2 b 1,2 (1) + 1 åå - 1 2 log Ç 1 + b 5,1 (ρ)INR 21 --→ SNR 2 å - 1 2 log Ç 1 + b 5,1 (ρ)INR 21 --→ SNR 1 å + 1 2 log Ç b 6,2 (ρ) + b 5,1 (ρ)INR 21 --→ SNR 2 --→ SNR 2 + b 3,2 å + 1 2 log 1 + b 5,1 (ρ) --→ SNR 1 Ç INR 21 + b 3,1 ←-- SNR 1 b 1,1 (1) + 1 å + log(2πe), (15d) 
and

κ 7,i,1 (ρ) = 1 2 log b 1,i (ρ) + 1 - 1 2 log 1 + INR ij + 1 2 log Ç 1 + b 5,j (ρ) ←-- SNR j b 1,j (1) + 1 å + 1 2 log b 1,j (ρ) + b 5,i (ρ)INR ji + 1 2 log 1+b 4,i (ρ)+b 5,j (ρ) - 1 2 log 1+b 5,j (ρ) +2 log(2πe), (16a) 
κ 7,i,2 (ρ) = 1 2 log b 1,i (ρ) + 1 - 1 2 log 1 + INR ij - 1 2 log 1 + b 5,j (ρ) + 1 2 log 1 + b 4,i (ρ) + b 5,j (ρ) + 1 2 log 1 + 1 -ρ 2 INR ji --→ SNR j INR ij + b 3,j ←-- SNR j b 1,j (1) + 1 - 1 2 log Ç 1 + b 5,i (ρ)INR ji --→ SNR j å + 1 2 log Ç b 6,j (ρ)+ b 5,i (ρ)INR ji --→ SNR j --→ SNR j + b 3,j å +2 log(2πe), (16b) 
where the functions b l,i , with (l, i) ∈ {1, 2} 2 are defined in (11); b 3,i are constants; and the functions b l,i : [0, 1] → R + , with (l, i) ∈ {4, 5, 6} × {1, 2} are defined as follows, with j ∈ {1, 2} \ {i}:

b 3,i = --→ SNR i -2 » --→ SNR i INR ji + INR ji , (17a) b 4,i (ρ)= 1 -ρ 2 --→ SNR i , (17b) b 5,i (ρ)= 1 -ρ 2 INR ij , (17c) 
b 6,i (ρ)= --→ SNR i + INR ij + 2ρ INR ij Å» --→ SNR i -INR ji ã + INR ij INR ji --→ SNR i Å INR ji -2 » --→ SNR i ã . (17d) 
Note that the functions in ( 14), ( 15), ( 16) and ( 17) depend on

--→ SNR 1 , --→ SNR 2 , INR 12 , INR 21 , ←-- SNR 1
, and ←--SNR 2 . However, these parameters are fixed in this analysis, and therefore, this dependence is not emphasized in the definition of these functions. Finally, using this notation, Theorem 2 is presented below.

Theorem 2: The capacity region C GIC-NOF is contained within the region C G-IC-NOF given by the closure of the set of non-negative rate pairs (R 1 , R 2 ) that for all i ∈ {1, 2}, with j ∈ {1, 2} \ {i} satisfy: Proof: The proof of Theorem 2 is presented in [START_REF] Quintero | Approximate capacity of the two-user Gaussian interference channel with noisy channeloutput feedback[END_REF].

R i min (κ 1,i (ρ), κ 2,i (ρ)) , (18a) R i κ 3,i (ρ), (18b) R 1 + R 2 min (κ 4 (ρ), κ 5 (ρ)) , (18c) R 1 + R 2 κ 6 (ρ), ( 18d 
) 2R i + R j κ 7,i (ρ), (18e) 

D. Comments on the Converse Region

The outer bounds (18a) and (18c) correspond to the outer bounds for the case of perfect channel-output feedback [START_REF] Suh | Feedback capacity of the Gaussian interference channel to within 2 bits[END_REF]. The bounds (18b), (18d) and (18e) correspond to new outer bounds that generalize those presented in [START_REF] Le | Approximate capacity region for the symmetric Gaussian interference channel with noisy feedback[END_REF] for the two-user symmetric G-IC-NOF. These new outer-bounds were obtained using the genie-aided models shown in Figure 2.

E. A Gap Between the Achievable Region and the Converse Region

Theorem 3 describes the gap between the achievable region C G-IC-NOF and the converse region C G-IC-NOF using the approximation notion described in Definition 2.

Theorem 3: The capacity region of the two-user G-IC-NOF is approximated to within 4.4 bits per channel use by the achievable region C G-IC-NOF and the converse region C G-IC-NOF .

Proof: The proof of Theorem 3 is presented in [START_REF] Quintero | Approximate capacity of the two-user Gaussian interference channel with noisy channeloutput feedback[END_REF]. The gap, denoted by δ, between the sets C G-IC-NOF and C G-IC-NOF can be approximated (Definition 2) as follows:

δ max Å δ R1 , δ R2 , δ 2R 2 , δ 3R1 3 , δ 3R2 3 ã , (19) 
where

δ R1 min κ 1,1 (ρ), κ 2,1 (ρ), κ 3,1 (ρ) -min a 2,1 (ρ), a 6,1 (ρ, µ 1 )+a 3,2 (ρ, µ 1 ), a 1,1 +a 3,2 (ρ, µ 1 )+a 4,2 (ρ, µ 1 ) , (20a) 
δ R2 min κ 1,2 (ρ), κ 2,2 (ρ), κ 3,2 (ρ) -min a 2,2 (ρ), a 3,1 (ρ, µ 2 )+a 6,2 (ρ, µ 2 ), a 3,1 (ρ, µ 2 )+a 4,1 (ρ, µ 2 )+a 1,2 , (20b) 
δ 2R min κ 4 (ρ), κ 5 (ρ), κ 6 (ρ) -min a 2,1 (ρ) + a 1,2 , a 1,1 + a 2,2 (ρ), a 3,1 (ρ, µ 2 ) + a 1,1 + a 3,2 (ρ, µ 1 ) + a 7,2 (ρ, µ 1 , µ 2 ), a 3,1 (ρ, µ 2 ) + a 5,1 (ρ, µ 2 ) + a 3,2 (ρ, µ 1 ) + a 5,2 (ρ, µ 1 ), a 3,1 (ρ, µ 2 ) + a 7,1 (ρ, µ 1 , µ 2 ) + a 3,2 (ρ, µ 1 ) + a 1,2 , (20c) 
δ 3R1 κ 7,1 (ρ)min a 2,1 (ρ) + a 1,1 + a 3,2 (ρ, µ 1 ) +a 7,2 (ρ, µ 1 , µ 2 ), a 3,1 (ρ, µ 2 ) + a 1,1 + a 7,1 (ρ, µ 1 , µ 2 ) +2a 3,2 (ρ, µ 1 ) + a 5,2 (ρ, µ 1 ), a 2,1 (ρ) + a 1,1 + a 3,2 (ρ, µ 1 ) +a Finally, it is important to highlight that, as suggested in [START_REF] Le | Approximate capacity region for the symmetric Gaussian interference channel with noisy feedback[END_REF], [START_REF] Suh | Feedback capacity of the Gaussian interference channel to within 2 bits[END_REF], and [START_REF] Etkin | Gaussian interference channel capacity to within one bit[END_REF], the gap between C G-IC-NOF and C G-IC-NOF can be calculated more precisely. However, the choice in (19) eases the calculations at the expense of less precision. . Note that in this case, the maximum gap is 1.1 bits per channel use and occurs when α = 1.05 and β = 1.2.

IV. CONCLUSIONS

An achievable region and a converse region for the twouser G-IC-NOF have been introduced. It has been shown that these regions approximate the capacity region of the two-user G-IC-NOF to within 4.4 bits per channel use.
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 1 Fig. 1. Gaussian interference channel with noisy channel-output feedback at channel use n.
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 2 Fig. 2. Genie-Aided G-IC-NOF models for channel use n. (a) Model used to calculate the outer-bound on R 1 ; (b) Model used to calculate the outer-bound on R 1 + R ; and (c) Model used to calculate the outer-bound on 2R 1 + R
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 3 Fig. 3. Gap between the converse region C G-IC-NOF and the achievable region C G-IC-NOF of the two-user G-IC-NOF, under symmetric channel conditions, i.e., --→ SNR 1 = --→ SNR 2 = --→ SNR, INR 12 = INR 21 = INR, and ←--SNR 1 = ←--SNR 2 = ←--SNR, as a function of α = log INR log --→ SNR and β = log ← --SNR log --→ SNR .

Figure 3

 3 presents the exact gap existing between the achievable region C G-IC-NOF and the converse region C G-IC-NOF for the case in which --→ SNR 1 = --→ SNR 2 = --→ SNR, INR 12 = INR 21 = INR, and ←--SNR 1 = ←--SNR 2 = ←--SNR as a function of α = log INR log --→ SNR and β = log ← --SNR log --→ SNR
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  5,2 (ρ, µ 1 ) , (20d)δ 3R2 κ 7,2 (ρ)min a 3,1 (ρ, µ 2 ) + a 5,1 (ρ, µ 2 ) + a 2,2 (ρ) +a 1,2 , a 3,1 (ρ, µ 2 ) + a 7,1 (ρ, µ 1 , µ 2 ) + a 2,2 (ρ) + a 1,2 , 2a 3,1 (ρ, µ 2 ) + a 5,1 (ρ, µ 2 ) + a 3,2 (ρ, µ 1 ) + a 1,2 +a 7,2 (ρ, µ 1 , µ 2 ) . (20e)Note that δ R1 and δ R2 represent the gap between the active achievable single-rate bound and the active converse singlerate bound; δ 2R represents the gap between the active achievable sum-rate bound and the active converse sum-rate bound; and, δ 3R1 and δ 3R2 represent the gap between the active achievable weighted sum-rate bound and the active converse weighted sum-rate bound.