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Approximate Capacity of the Gaussian Interference
Channel with Noisy Channel-Output Feedback

Victor Quintero, Samir M. Perlaza, Iñaki Esnaola and Jean-Marie Gorce

Abstract—In this paper, an achievability region and a converse
region for the two-user Gaussian interference channel with
noisy channel-output feedback (G-IC-NOF) are presented. The
achievability region is obtained using a random coding argument
and three well-known techniques: rate splitting, superposition
coding and backward decoding. The converse region is obtained
using some of the existing perfect-output feedback outer-bounds
as well as a set of new outer-bounds that are obtained by using
genie-aided models of the original G-IC-NOF. Finally, it is shown
that the achievability region and the converse region approximate
the capacity region of the G-IC-NOF to within a constant gap
in bits per channel use.

Index Terms—Capacity, Interference Channel, Noisy Channel-
Output Feedback.

I. NOTATION

Throughout this paper, (·)+ denotes the positive part oper-
ator, i.e., (·)+ = max(·, 0) and EX [·] denotes the expectation
with respect to the distribution of the random variable X . The
logarithm function log is assumed to be base 2.

II. SYSTEM MODEL

Consider the two-user G-IC-NOF in Fig. 1. Transmitter i,
with i ∈ {1, 2}, communicates with receiver i subject to the
interference produced by transmitter j, with j ∈ {1, 2}\{i}.
There are two independent and uniformly distributed mes-
sages, Wi ∈ Wi, with Wi = {1, 2, . . . , 2NRi}, where N
denotes the block-length in channel uses and Ri is the trans-
mission rate in bits per channel use. At each block, transmitter
i sends the codeword Xi = (Xi,1, Xi,2, . . . , Xi,N )

T ∈ XN
i ,

where Xi and XN
i are respectively the channel-input alphabet

and the codebook of transmitter i.
The channel coefficient from transmitter j to receiver i is
denoted by hij ; the channel coefficient from transmitter i to
receiver i is denoted by

−→
h ii; and the channel coefficient from

channel-output i to transmitter i is denoted by
←−
h ii. All channel

coefficients are assumed to be non-negative real numbers. At
a given channel use n ∈ {1, 2, . . . , N}, the channel output
at receiver i is denoted by

−→
Y i,n. During channel use n, the

input-output relation of the channel model is given by:
−→
Y i,n=

−→
h iiXi,n + hijXj,n +

−→
Z i,n, (1)
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Fig. 1. Gaussian interference channel with noisy channel-output feedback at
channel use n.

where
−→
Z i,n is a real Gaussian random variable with zero mean

and unit variance that represents the noise at the input of
receiver i. Let d > 0 be the finite feedback delay in channel
uses. At the end of channel use n, transmitter i observes

←−
Y i,n,

which consists of a scaled and noisy version of
−→
Y i,n−d. More

specifically,

←−
Y i,n=

®←−
Z i,n for n∈ {1,2, . . . , d}
←−
h ii
−→
Y i,n−d+

←−
Z i,n, for n∈ {d+1,d+2, . . . ,N},

(2)

where
←−
Z i,n is a real Gaussian random variable with zero mean

and unit variance that represents the noise in the feedback
link of transmitter-receiver pair i. The random variables

−→
Z i,n

and
←−
Z i,n are independent and identically distributed. In the

following, without loss of generality, the feedback delay is
assumed to be one channel use (d = 1). The encoder of
transmitter i is defined by a set of deterministic functions
f
(1)
i , . . . , f

(N)
i , with f

(1)
i : Wi → Xi and for all n ∈

{2, . . . , N}, f (n)i :Wi ×Rn−1 → Xi, such that

Xi,1=f
(1)
i (Wi) , and (3a)

Xi,n=f
(n)
i

Ä
Wi,
←−
Y i,1, . . . ,

←−
Y i,n−1

ä
. (3b)

The components of the input vector Xi are real numbers
subject to an average power constraint:

1

N

N∑

n=1

E
(
Xi,n

2
)
≤ 1, (4)

where the expectation is taken over the joint distribution of
the message indexes W1, W2, and the noise terms, i.e.,

−→
Z 1,−→

Z 2,
←−
Z 1, and

←−
Z 2. The dependence of Xi,n on W1, W2, and

the previously observed noise realizations is due to the effect
of feedback as shown in (2) and (3).
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Assume that during a given communication, T blocks are
transmitted. Hence, the decoder of receiver i is defined
by a deterministic function ψi : RNT

i → WT
i . At the

end of the communication, receiver i uses the sequenceÄ−→
Y i,1,

−→
Y i,2, . . . ,

−→
Y i,NT

ä
to obtain an estimation of the mes-

sage indicesÄ
Ŵ

(1)
i , Ŵ

(2)
i , . . . , Ŵ

(T )
i

ä
=ψi

Ä−→
Y i,1,

−→
Y i,2, . . . ,

−→
Y i,NT

ä
, (5)

where Ŵ (t)
i is an estimation of the message index sent during

block t ∈ {1, 2, . . . , T}. The decoding error probability in the
two-user G-IC-NOF during block t, denoted by P

(t)
e (N), is

given by

P (t)
e (N)=max

Å
Pr
ï”W1

(t) 6=W (t)
1

ò
,Pr
ï
(”W2

(t) 6=W (t)
2

òã
. (6)

The definition of an achievable rate pair (R1, R2) ∈ R2
+ is

given below.
Definition 1 (Achievable Rate Pairs): A rate pair

(R1, R2) ∈ R2
+ is achievable if there exists at least one

pair of codebooks XN
1 and XN

2 with codewords of length
N , and the corresponding encoding functions f (1)1 , . . . , f

(N)
1

and f
(1)
2 , . . . , f

(N)
2 such that the decoding error probability

P
(t)
e (N) can be made arbitrarily small by letting the block-

length N grow to infinity, for all blocks t ∈ {1, . . . , T}.
The two-user G-IC-NOF in Fig. 1 can be fully described

by six parameters:
−−→
SNRi,

←−−
SNRi, and INRij , with i ∈ {1, 2}

and j ∈ {1, 2}\{i}, which are defined as follows
−−→
SNRi=

−→
h 2

ii, (7)
INRij=h

2
ij and (8)

←−−
SNRi=

←−
h 2

ii

Ä−→
h 2

ii + 2
−→
h iihij + h2ij + 1

ä
. (9)

III. MAIN RESULTS

This section introduces an achievable region (Theorem 1)
and a converse region (Theorem 2), denoted by CG−IC−NOF

and CG−IC−NOF respectively, for the two-user G-IC-NOF with
fixed parameters

−−→
SNR1,

−−→
SNR2, INR12, INR21,

←−−
SNR1, and←−−

SNR2. In general, the capacity region of a given multi-user
channel is said to be approximated to within a constant gap
according to the following definition.

Definition 2 (Approximation to within ξ units): A closed and
convex set T ⊂ Rm

+ is approximated to within ξ units by the
sets T and T if T ⊆ T ⊆ T and for all t = (t1, . . . , tm) ∈ T
then ((t1 − ξ)+, . . . , (tm − ξ)+) ∈ T .

Denote by CGIC−NOF the capacity region of the 2-user
G-IC-NOF. The achievable region CG−IC−NOF and the con-
verse region CG−IC−NOF approximate the capacity region
CGIC−NOF to within 4.4 bits per channel use (Theorem 3).

A. An Achievable Region for the Two-User G-IC-NOF

The description of the achievable region CG−IC−NOF is
presented using the constants a1,i; the functions a2,i : [0, 1]→
R+, al,i : [0, 1]2 → R+, with l ∈ {3, . . . , 6}; and a7,i :
[0, 1]3 → R+, which are defined as follows, for all i ∈ {1, 2},
with j ∈ {1, 2} \ {i}:

a1,i=
1

2
log

Ç
2 +

−−−→
SNRi

INRji

å
− 1

2
, (10a)

a2,i(ρ)=
1

2
log
(
b1,i(ρ) + 1

)
− 1

2
, (10b)

a3,i(ρ, µ)=
1

2
log

Ñ ←−−
SNRi

(
INRij + 1

)
+ b1,i(ρ) + 1

←−−
SNRi

(
(1−µ)b2,i(ρ)+2

)
+b1,i(ρ)+1

é
,

(10c)

a4,i(ρ, µ)=
1

2
log

Å(
1− µ

)
b2,i(ρ) + 2

ã
− 1

2
, (10d)

a5,i(ρ, µ)=
1

2
log

Ç
2 +

−−→
SNRi

INRji
+
(
1− µ

)
b2,i(ρ)

å
− 1

2
,

(10e)

a6,i(ρ, µ)=
1

2
log

Ç−−→
SNRi

INRji

Å(
1−µ

)
b2,j(ρ)+1

ã
+2

å
− 1

2
,

(10f)

a7,i(ρ,µ1,µ2)=
1

2
log

(−−→
SNRi

INRji

Å(
1−µi

)
b2,j(ρ)+1

ã
+
(
1−µj

)
b2,i(ρ) + 2

)
− 1

2
. (10g)

where the functions bl,i : [0, 1] → R+, with (l, i) ∈ {1, 2}2
are defined as follows

b1,i(ρ)=
−−→
SNRi + 2ρ

»−−→
SNRiINRij + INRij and (11a)

b2,i(ρ)=
(
1− ρ

)
INRij − 1, (11b)

with j ∈ {1, 2} \ {i}.
Note that the functions in (10) and (11) depend on

−−→
SNR1,−−→

SNR2, INR12, INR21,
←−−
SNR1, and

←−−
SNR2, however as these

parameters are fixed in this analysis, this dependence is not
emphasized in the definition of these functions. Finally, using
this notation, Theorem 1 is presented on the next page.

Proof: The proof of Theorem 1 is presented in [1].

B. Comments on the Achievability

The achievable region is obtained using a random coding
argument and combining three classical tools: rate splitting,
superposition coding, and backward decoding. This coding
scheme is described in [1] and it is specially designed for
the two-user IC-NOF. Consequently, only the strictly needed
number of superposition code-layers is used. Other achievable
schemes, as reported in [2], can also be obtained as special
cases of the more general scheme presented in [3]. However,
in this more general case, the resulting code for the IC-NOF
contains a handful of unnecessary superposing code-layers,
which complicates the error probability analysis.

C. A Converse Region for the Two-User G-IC-NOF

The description of the converse region CG−IC−NOF is
determined by the ratios INRij

−−→
SNRj

, and INRji
−−→
SNRj

, for all i ∈ {1, 2},
with j ∈ {1, 2} \ {i}. All relevant scenarios regarding these



3

Theorem 1: The capacity region CGIC−NOF contains the region CG−IC−NOF given by the closure of the set of all possible
non-negative achievable rate pairs (R1, R2) that satisfy

R16min
(
a2,1(ρ), a6,1(ρ, µ1) + a3,2(ρ, µ1), a1,1 + a3,2(ρ, µ1) + a4,2(ρ, µ1)

)
, (12a)

R26min
(
a2,2(ρ), a3,1(ρ, µ2) + a6,2(ρ, µ2), a3,1(ρ, µ2) + a4,1(ρ, µ2) + a1,2

)
, (12b)

R1 +R26min
(
a2,1(ρ) + a1,2, a1,1 + a2,2(ρ), a3,1(ρ, µ2) + a1,1 + a3,2(ρ, µ1) + a7,2(ρ, µ1, µ2),

a3,1(ρ, µ2) + a5,1(ρ, µ2) + a3,2(ρ, µ1) + a5,2(ρ, µ1), a3,1(ρ, µ2) + a7,1(ρ, µ1, µ2) + a3,2(ρ, µ1) + a1,2

)
, (12c)

2R1 +R26min
(
a2,1(ρ) + a1,1 + a3,2(ρ, µ1) + a7,2(ρ, µ1, µ2), (12d)

a3,1(ρ, µ2) + a1,1 + a7,1(ρ, µ1, µ2) + 2a3,2(ρ, µ1) + a5,2(ρ, µ1), a2,1(ρ) + a1,1 + a3,2(ρ, µ1) + a5,2(ρ, µ1)
)
,

R1 + 2R26min
(
a3,1(ρ, µ2) + a5,1(ρ, µ2) + a2,2(ρ) + a1,2, a3,1(ρ, µ2) + a7,1(ρ, µ1, µ2) + a2,2(ρ) + a1,2,

2a3,1(ρ, µ2) + a5,1(ρ, µ2) + a3,2(ρ, µ1) + a1,2 + a7,2(ρ, µ1, µ2)
)
, (12e)

with (ρ, µ1, µ2) ∈
[
0,
Ä
1−max

Ä
1

INR12
, 1
INR21

ää+]× [0, 1]× [0, 1]2.

ratios are described by two events denoted by Sl1,1 and Sl2,2,
where (l1, l2) ∈ {1, . . . , 5}2:

S1,i:
−−→
SNRj < min (INRij , INRji) , (13a)

S2,i: INRji 6
−−→
SNRj < INRij , (13b)

S3,i: INRij 6
−−→
SNRj < INRji, (13c)

S4,i: max (INRij , INRji) 6
−−→
SNRj < INRijINRji, (13d)

S5,i:
−−→
SNRj > max (INRij , INRji, INRijINRji) . (13e)

Note that for all i ∈ {1, 2}, the events S1,i, S2,i, S3,i, S4,i,
and S5,i are mutually exclusive. This observation shows that
given any 4-tuple (

−−→
SNR1,

−−→
SNR2, INR12, INR21), there always

exists one and only one pair of events (Sl1,1, Sl2,2), with
(l1, l2) ∈ {1, . . . , 5}2, that identifies a unique scenario. Note
also that the pairs of events (S2,1, S2,2) and (S3,1, S3,2) are
not feasible. In view of this, twenty-three different scenarios
can be identified using the events in (13). Once the exact sce-
nario is identified, the converse region is described using the
functions κl,i : [0, 1]→ R+, with (l, i) ∈ {1, . . . , 3}× {1, 2};
κl : [0, 1] → R+, with l ∈ {4, 5}; κ6,l : [0, 1] → R+, with
l ∈ {1, . . . , 4}; and κ7,i,l : [0, 1]→ R+, with (i, l) ∈ {1, 2}2.
These functions are defined as follows for all i ∈ {1, 2}, with
j ∈ {1, 2} \ {i}

κ1,i(ρ)=
1

2
log
(
b1,i(ρ) + 1

)
, (14a)

κ2,i(ρ)=
1

2
log
(
1 + b5,j(ρ)

)
+
1

2
log

(
1+

b4,i(ρ)

1 + b5,j(ρ)

)
, (14b)

κ3,i(ρ)=
1

2
log

Ü ←−−
SNRj

Å
b4,i(ρ) + b5,j(ρ) + 1

ãÅ
b1,j(ρ)+1

ãÅ
b4,i(ρ)+

(
1− ρ2

)ã+1

ê
+
1

2
log
(
b4,i(ρ) + 1

)
, (14c)

κ4(ρ)=
1

2
log

(
1 +

b4,1(ρ)

1 + b5,2(ρ)

)
+
1

2
log
(
b1,2(ρ) + 1

)
, (14d)

κ5(ρ)=
1

2
log

(
1+

b4,2(ρ)

1+b5,1(ρ)

)
+
1

2
log
(
b1,1(ρ)+1

)
, (14e)

κ6(ρ)=





κ6,1(ρ) if (S1,2 ∨ S2,2 ∨ S5,2)

∧(S1,1 ∨ S2,1 ∨ S5,1)

κ6,2(ρ) if (S1,2 ∨ S2,2 ∨ S5,2)

∧(S3,1 ∨ S4,1)

κ6,3(ρ) if (S3,2 ∨ S4,2)

∧(S1,1 ∨ S2,1 ∨ S5,1)

κ6,4(ρ) if (S3,2 ∨ S4,2) ∧ (S3,1 ∨ S4,1)

(14f)

κ7,i(ρ)=

®
κ7,i,1(ρ) if (S1,i ∨ S2,i ∨ S5,i)

κ7,i,2(ρ) if (S3,i ∨ S4,i)
(14g)

where

κ6,1(ρ)=
1

2
log
(
b1,1(ρ)+b5,1(ρ)INR21

)
− 1

2
log
(
1+INR12

)

+
1

2
log

Ç
1 +

b5,2(ρ)
←−−
SNR2

b1,2(ρ) + 1

å
+
1

2
log
(
b1,2(ρ) + b5,1(ρ)INR21

)
− 1

2
log
(
1+INR21

)

+
1

2
log

Ç
1+

b5,1(ρ)
←−−
SNR1

b1,1(ρ) + 1

å
+ log(2πe), (15a)

κ6,2(ρ)=
1

2
log
(
b1,1(ρ)+b5,1(ρ)INR21

)
− 1

2
log
(
1+INR12

)

+
1

2
log

(
1 +

b5,2(ρ)
−−→
SNR2

Ç
INR12 +

←−−
SNR2 (b3,2)

b1,2(ρ) + 1

å)
−1

2
log

Ç
1 +

b5,1(ρ)INR21
−−→
SNR2

å
+
1

2
log

Ç
1 +

b5,1(ρ)
←−−
SNR1

b1,1(ρ) + 1

å
+
1

2
log

Ç
b6,2(ρ) +

b5,1(ρ)INR21
−−→
SNR2

(−−→
SNR2 + b3,2

)å
−1

2
log
(
1 + INR21

)
+ log(2πe), (15b)
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Fig. 2. Genie-Aided G-IC-NOF models for channel use n. (a) Model used to calculate the outer-bound on R1; (b) Model used to calculate the outer-bound
on R1 +R2; and (c) Model used to calculate the outer-bound on 2R1 +R2

κ6,3(ρ)=
1

2
log

(
b6,1(ρ) + INR12

+
b5,1(ρ)INR21
−−→
SNR1

(−−→
SNR1 + b3,1

))

−1

2
log
(
1 + INR12

)
+

1

2
log

Ç
1 +

b5,2(ρ)
←−−
SNR2

b1,2(ρ) + 1

å
+
1

2
log
(
b1,2(ρ)+b5,1(ρ)INR21

)
− 1

2
log
(
1+INR21

)

+
1

2
log

(
1 +

b5,1(ρ)
−−→
SNR1

Ç
INR21 +

←−−
SNR1 (b3,1)

b1,1(ρ) + 1

å)
−1

2
log

Ç
1 +

b5,1(ρ)INR21
−−→
SNR1

å
+ log(2πe), (15c)

κ6,4(ρ) =
1

2
log

Ç
b6,1(ρ) +

b5,1(ρ)INR21
−−→
SNR1

(−−→
SNR1 + b3,1

)å
−1

2
log
(
1 + INR12

)
− 1

2
log
(
1 + INR21

)

+
1

2
log

Ç
1 +

b5,2(ρ)
−−→
SNR2

Ç
INR12 +

←−−
SNR2 (b3,2)

b1,2(ρ) + 1

åå
−1

2
log

Ç
1 +

b5,1(ρ)INR21
−−→
SNR2

å
−1

2
log

Ç
1 +

b5,1(ρ)INR21
−−→
SNR1

å
+
1

2
log

Ç
b6,2(ρ) +

b5,1(ρ)INR21
−−→
SNR2

(−−→
SNR2 + b3,2

)å
+
1

2
log

(
1 +

b5,1(ρ)
−−→
SNR1

Ç
INR21 +

←−−
SNR1 (b3,1)

b1,1(ρ) + 1

å)
+ log(2πe), (15d)

and
κ7,i,1(ρ) =

1

2
log
(
b1,i(ρ) + 1

)
− 1

2
log
(
1 + INRij

)

+
1

2
log

Ç
1 +

b5,j(ρ)
←−−
SNRj

b1,j(ρ) + 1

å
+
1

2
log
(
b1,j(ρ) + b5,i(ρ)INRji

)

+
1

2
log
(
1+b4,i(ρ)+b5,j(ρ)

)
− 1

2
log
(
1+b5,j(ρ)

)

+2 log(2πe), (16a)

κ7,i,2(ρ) =
1

2
log
(
b1,i(ρ) + 1

)
− 1

2
log
(
1 + INRij

)

−1

2
log
(
1 + b5,j(ρ)

)
+

1

2
log
(
1 + b4,i(ρ) + b5,j(ρ)

)

+
1

2
log

(
1 +

(
1− ρ2

) INRji
−−→
SNRj

(
INRij+

←−−
SNRj (b3,j)

b1,j(ρ) + 1

))
− 1

2
log

Ç
1 +

b5,i(ρ)INRji
−−→
SNRj

å
+
1

2
log

Ç
b6,j(ρ)+

b5,i(ρ)INRji
−−→
SNRj

(−−→
SNRj + b3,j

)å
+2 log(2πe), (16b)

where the functions bl,i, with (l, i) ∈ {1, 2}2 are defined in
(11); b3,i are constants; and the functions bl,i : [0, 1] → R+,
with (l, i) ∈ {4, 5, 6} × {1, 2} are defined as follows, with
j ∈ {1, 2} \ {i}:

b3,i=
−−→
SNRi − 2

»−−→
SNRiINRji + INRji, (17a)

b4,i(ρ)=
(
1− ρ2

)−−→
SNRi, (17b)

b5,i(ρ)=
(
1− ρ2

)
INRij , (17c)

b6,i(ρ)=
−−→
SNRi + INRij + 2ρ

√
INRij

Å»−−→
SNRi −

√
INRji

ã
+
INRij

√
INRji

−−→
SNRi

Å√
INRji − 2

»−−→
SNRi

ã
. (17d)

Note that the functions in (14), (15), (16) and (17) depend on−−→
SNR1,

−−→
SNR2, INR12, INR21,

←−−
SNR1, and

←−−
SNR2. However,

these parameters are fixed in this analysis, and therefore,
this dependence is not emphasized in the definition of these
functions. Finally, using this notation, Theorem 2 is presented
below.

Theorem 2: The capacity region CGIC−NOF is contained
within the region CG−IC−NOF given by the closure of the set of
non-negative rate pairs (R1, R2) that satisfy for all i ∈ {1, 2},
with j ∈ {1, 2} \ {i}:

Ri6min (κ1,i(ρ), κ2,i(ρ)) , (18a)
Ri6κ3,i(ρ), (18b)

R1 +R26min (κ4(ρ), κ5(ρ)) , (18c)
R1 +R26κ6(ρ), (18d)
2Ri +Rj6κ7,i(ρ), (18e)
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Fig. 3. Gap between the converse region CG−IC−NOF and the achievable
region CG−IC−NOF of the two-user G-IC-NOF, under symmetric channel
conditions, i.e.,

−−→
SNR1 =

−−→
SNR2 =

−−→
SNR, INR12 = INR21 = INR, and

←−−
SNR1 =

←−−
SNR2 =

←−−
SNR, as a function of α = log INR

log
−−→
SNR

and β = log
←−−
SNR

log
−−→
SNR

.

with ρ ∈ [0, 1].
Proof: The proof of Theorem 2 is presented in [1].

D. Comments on the Converse Region

The outer bounds (18a) and (18c) correspond to the outer
bounds for the case of perfect channel-output feedback [4].
The bounds (18b), (18d) and (18e) correspond to new outer
bounds that generalize those presented in [2] for the two-user
symmetric G-IC-NOF. These new outer-bounds were obtained
using the genie-aided models shown in Fig. 2.

E. A Gap Between the Achievable Region and the Converse
Region

Theorem 3 describes the gap between the achievable region
CG−IC−NOF and the converse region CG−IC−NOF using the
approximation notion described in Definition 2.

Theorem 3: The capacity region of the two-user G-IC-
NOF is approximated to within 4.4 bits per channel use by
the achievable region CG−IC−NOF and the converse region
CG−IC−NOF.

Proof: The proof of Theorem 3 is presented in [1].
The gap, denoted by δ, between the sets CG−IC−NOF and

CG−IC−NOF can be approximated (Definition 2) as follows

δ6 max

Å
δR1

, δR2
,
δ2R
2
,
δ3R1

3
,
δ3R2

3

ã
, (19)

where

δR1, min
(
κ1,1(ρ), κ2,1(ρ), κ3,1(ρ)

)
−min

(
a2,1(ρ),

a6,1(ρ, µ1)+a3,2(ρ, µ1), a1,1+a3,2(ρ, µ1)+a4,2(ρ, µ1)
)
,

(20a)

δR2
, min

(
κ1,2(ρ), κ2,2(ρ), κ3,2(ρ)

)
−min

(
a2,2(ρ),

a3,1(ρ, µ2)+a6,2(ρ, µ2), a3,1(ρ, µ2)+a4,1(ρ, µ2)+a1,2

)
,

(20b)

δ2R, min
(
κ4(ρ), κ5(ρ), κ6(ρ)

)
−min

(
a2,1(ρ) + a1,2,

a1,1 + a2,2(ρ),

a3,1(ρ, µ2) + a1,1 + a3,2(ρ, µ1) + a7,2(ρ, µ1, µ2),

a3,1(ρ, µ2) + a5,1(ρ, µ2) + a3,2(ρ, µ1) + a5,2(ρ, µ1),

a3,1(ρ, µ2) + a7,1(ρ, µ1, µ2) + a3,2(ρ, µ1) + a1,2

)
, (20c)

δ3R1
, κ7,1(ρ)−min

(
a2,1(ρ) + a1,1 + a3,2(ρ, µ1)

+a7,2(ρ, µ1, µ2), a3,1(ρ, µ2) + a1,1 + a7,1(ρ, µ1, µ2)

+2a3,2(ρ, µ1) + a5,2(ρ, µ1), a2,1(ρ) + a1,1 + a3,2(ρ, µ1)

+a5,2(ρ, µ1)
)
, (20d)

δ3R2
, κ7,2(ρ)−min

(
a3,1(ρ, µ2) + a5,1(ρ, µ2) + a2,2(ρ)

+a1,2, a3,1(ρ, µ2) + a7,1(ρ, µ1, µ2) + a2,2(ρ) + a1,2,

2a3,1(ρ, µ2) + a5,1(ρ, µ2) + a3,2(ρ, µ1) + a1,2

+a7,2(ρ, µ1, µ2)
)
. (20e)

Note that δR1
and δR2

represent the gap between the active
achievable single-rate bound and the active converse single-
rate bound; δ2R represents the gap between the active achiev-
able sum-rate bound and the active converse sum-rate bound;
and, δ3R1 and δ3R2 represent the gap between the active
achievable weighted sum-rate bound and the active converse
weighted sum-rate bound.
Finally, it is important to highlight that, as suggested in [2],
[4], and [5], the gap between CG−IC−NOF and CG−IC−NOF

can be calculated more precisely. However, the choice in (19)
eases the calculations at the expense of less precision.
Fig. 3 presents the exact gap existing between the
achievable region CG−IC−NOF and the converse region
CG−IC−NOF for the case in which

−−→
SNR1 =

−−→
SNR2 =

−−→
SNR,

INR12 = INR21 = INR, and
←−−
SNR1 =

←−−
SNR2 =

←−−
SNR as a

function of α = log INR

log
−−→
SNR

and β = log
←−−
SNR

log
−−→
SNR

. Note that in this
case, the maximum gap is 1.1 bits per channel use and occurs
when α = β = 1.1.

IV. CONCLUSIONS

An achievable region and a converse region for the two-
user G-IC-NOF have been introduced. It has been shown that
these regions approximate the capacity region of the two-user
G-IC-NOF to within 4.4 bits per channel use.
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